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Abstract

We study efficient and stable mechanisms in matching markets when the number

of agents is large and individuals’ preferences are drawn randomly from a class of

distributions allowing for both common value and idiosyncratic components. In this

context, as the market grows large, all Pareto efficient mechanisms (including top

trading cycles, serial dictatorship, and their randomized variants) are asymptotically

payoff equivalent (“up to the renaming of the agents”), yielding utilitarian upper

bound in the limit. If objects’ priorities are also randomly drawn but agents’ common

values for objects are heterogenous, then well-known mechanisms such as deferred

acceptance and top trading cycle mechanisms fail either efficiency or stability even

in the asymptotic sense. We propose a new mechanism is asymptotically efficient,

asymptotically stable and asymptotically incentive compatible.

Keywords: Large matching market, Pareto efficiency, Stability, Fairness, Payoff

equivalence, Random graph theory.

1 Introduction

Assigning indivisible resources such as housing, public school seats, employment contracts,

branch postings and human organs are of central interest in modern market design.1 Ef-

ficiency and stability are typically two goals in designing such matching markets. Pareto
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efficiency is an important goal since its failure means that a reassignment would make

some participants strictly better off without harming the others. Meanwhile, stability of

an assignment promotes long-term sustainability of a matching market by eliminating in-

centives for participants to block the assignment (Roth and Sotomayor, 1990); and even

when strategic blocking is not an issue (e.g., because the supply of the resources is under

the control of a non-strategic entity such as a public agency), stability possesses a desirable

fairness property.2

Due to the recent progress in matching theory research, there is by now a well-established

mechanism for attaining each of these two goals and for balancing the tradeoffs between

the two goals when they are in conflict. For instance, mechanisms such as a serial dictator-

ship and top trading cycles (henceforth, TTC) are known to generate efficient assignments

(Shapley and Scarf, 1974) and Gale and Shapley’s deferred acceptance algorithms (in short,

DA) are known to produce stable matchings (Gale and Shapley, 1962). Further, the DA

achieves stability with a minimal efficiency loss,3 and there is a sense in which TTC using

the priorities of the suppliers produces an efficient matching with a minimal incidence of

instabilities (Abdulkadiroglu, Che, and Tercieux, 2013).4

These knowledges are clearly useful. Yet, they leave open several fundamental and

practical questions. First, Pareto efficiency is a very weak standard for efficiency, compat-

ible with many different outcomes, including some apparently unreasonable and/or unfair.

There are multitude of efficient mechanisms that lead to vastly different outcomes that

treat individual participants very differently. For instance, a serial dictatorship can span

the entire set of Pareto efficient outcomes, depending on the serial order chosen, and like-

wise TTC can lead to different outcomes depending on how that participants’ endowments

or suppliers’ priorities are set. We do not yet know how they differ in terms of payoff

distribution of participants or utilitarian welfare, and the literature has yet to produce a

2Stability implies the so-called “no justified envy” (see Balinski and Sönmez (1999) and

Abdulkadiroglu and Sonmez (2003)), namely that whenever a participant envies another, then the sup-

plier of the object that the envied agent receives prefers that agent over the one who envies.
3It is well known that – with strict preferences – DA yields a stable matching that Pareto dominates

all other stable matchings for the participants (on the proposing side) (Gale and Shapley, 1962). Further,

there is no individually rational assignment that makes all participants on the proposing side strictly better

off relative to the DA.
4More precisely, in the one-to-one matching, any mechanism that is efficient, strategy-proof and weakly

dominates in stability TTC in the sense that pairs that do not block under TTC do not wish to block

must coincide with the TTC. This result does not extend to the many-to-one matching, however. See

Abdulkadiroglu, Che, and Tercieux (2013).
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clear prescription on which efficient mechanism should be chosen out of so many.

Second, while the tradeoff between efficiency and stability is well understood, it remains

unclear how best to resolve the tradeoff when both goals are important. As noted above,

the standard approach is to attain one goal with the minimal sacrifice of the other. Whether

this is the best way to resolve the tradeoff is far from clear. For instance, one can imagine a

mechanism that is neither stable nor efficient but may be superior to DA and TTC because

it involves very little loss on each account.

The purpose of the current paper is to answer these questions and in the process provide

useful insights on practical market design. These questions remain outstanding since our

analytical framework is so far driven primarily by the “qualitative” notions of the two

goals. To make progress, we therefore need to relax them “quantitatively.” To do so

requires some structures on the model. First, we consider markets that are “large” in

the number of participants as well as in the number of object types. Large markets are

clearly relevant in many settings. For instance, in the US Medical Match, each year about

20,000 applicants participate to fill a position in one hospital program out of 3,000 to

4,000 programs. In NYC School Choice, about 90,000 students apply each year to 500

school programs. Second, we assume that participants’ preferences are generated at random

according to some reasonable distributions. Specifically, we consider a model in which each

agent’s utility from an object depends on a common component (i.e., that does not vary

across agents) and an idiosyncratic component that is drawn at random independently (and

thus varies across the agents).

Studying the limit properties of a large market with random preferences generated in

this way provides a framework for answering our questions. In particular, this framework

enables us to perform meaningful “quantitative” relaxations of the two desiderata: we can

look for mechanisms that are asymptotically efficient in the sense that, as the economy

becomes large, with high probability (i.e., approaching one), the fraction of agents who

would gain more than some arbitrarily small amount from a Pareto improving assignment

goes to zero, and mechanisms that are asymptotically stable in the sense that as the

economy becomes large, with high probability, the fraction of agents and objects who would

each gain more than some arbitrarily small payoff from forming a blocking pair goes to zero.

Our findings are as follows.

First, all Pareto efficient mechanisms yield aggregate payoffs, or utilitarian welfare,

that converge to the same limit—more precisely the utilitarian optimum—as the economy

grows large (in the sense described above). This result implies that as the economy grows
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large the alternative efficient mechanisms become virtually indistinguishable in terms of

the aggregate payoff distribution of the participants; with the probability approaching one,

they become virtually identical. In other words, up to the “renaming” of agents, agents’

payoffs are asymptotically equivalent across different efficient mechanisms. The practical

implication of this result is that if one cares only about efficiency, and the assumptions of

the model is valid, one need not distinguish the alternative efficient mechanisms at least in

terms of the aggregate payoff profiles. For instance, SD with a random serial order or TTC

with random endowments or random (non intrinsic) priorities would achieve efficiency with

desirable ex ante fairness property.

Second, considering an environment in which the agents’ priorities at the objects are

drawn at random (e.g., possibly due to the use of lotteries), we find that the efficiency

loss from the DA and the stability loss from TTC do not disappear when the objects

differ significantly in qualities, namely in terms of the common components of the agents’

preferences. Possible inefficiencies of DA and possible instabilities of TTC are well known

from the existing literature; what we are adding here is that they remain “quantitatively”

significant in the large market.

The reasons can be explained in intuitive terms. Suppose the objects come in two

tiers, high quality and low quality, and despite the idiosyncratic preference shocks every

high-quality object dominates every low-quality objects for each agent. In this case, the

(agent-proposing) DA has all agents compete first for every high-quality object before

they start proposing to a low-quality object. Hence, a stable assignment—even the agent-

optimal stable matching—is largely dictated by the priorities/preferences of the objects

(more precisely their suppliers), with the agents’ preferences having very little influence on

the outcome. In other words, the competition among agents causes the stability requirement

to entail a significant efficiency loss for the agents.

Meanwhile, in the same environment, under TTC, a significant fraction of agents as-

signed low-quality objects can form blocks with a significant number of high-quality objects

whose priorities/preferences are ignored when they are traded among agents. This finding

is not only an interesting theoretical finding, but it has an important implication for prac-

tical market design, since it suggests that the standard approach of achieving one goal with

the minimal sacrifice of the other may not be the best.

These results are consistent with Abdulkadiroglu, Pathak, and Roth (2009), who sug-

gest that out of about 80,000 eighth grade students assigned to the New York City public

high schools in 2006-2007, about 6,000 students would be made better off from a Pareto
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improving rematching. They also show that if these students were assigned via an efficient

mechanism (unlike the practice of DA), then about 35,000 students would have justified

envy.5

Indeed, our third finding is that there is a novel mechanism that is both asymptotically

efficient and asymptotically stable. This mechanism runs a (modified) DA in multiple

stages. Specifically, all agents are ordered in some way, and in each step an agent applies

one at a time according to the serial order to the best object that has not yet rejected

him6 and the proposed object accepts or rejects the applicant, much as in the standard

DA. If at any point an agent applies to an object that holds an application, one agent is

rejected, and the rejected agent in turn applies to the best object among those that have

not rejected him. This process goes on until an agent makes a certain “threshold” number

of offers for the first time. Then the stage is terminated at that point, and all the tentative

assignments up to that point become final. The next stage then begins with the last agent

(who triggered termination of the last stage) applying to the best remaining object. The

stages proceed in this way until no rejection occurs.

This “staged” version of DA resembles the standard DA except for one crucial difference:

the mechanism periodically terminates a stage and finalizes the tentative assignment up to

that point. The event triggering the termination of a stage is that an agent is rejected a

number of times during the stage exceeding a certain threshold. Intuitively, the mechanism

turns on a “circuit breaker” whenever the competition “overheats” to a point that puts an

agent at the risk of losing an object he ranks highly to an agent who ranks it relatively lowly

(more precisely below the threshold rank). This feature ensures that an object assigned at

each stage does go to an agent who ranks it relatively highly among those objects available

at that stage.

Given the independent drawing of idiosyncratic shocks, the “right” threshold turns out

to be 3 log2(n). Given the threshold, the DA with a circuit breaker produces an assignment

that is both asymptotically stable and asymptotically efficient. The analytical case for this

mechanism rests on the limit analysis, but the mechanism appears to perform well even

away from the limit. Our simulation based on the case with n = 100, 200, 500, 1,000, 2,000

5Note that the efficient matching does not coincide with TTC. Instead,

Abdulkadiroglu, Pathak, and Roth (2009) produced an efficient matching by first running DA and

then running a Shapley-Scarf TTC from the DA assignment. We expect the figures to be comparable if

TTC were run to produce an efficient matching. [We can study our own analysis of the new data set.]
6DA where offers are made according to a serial order was first introduced by McVitie and Wilson

(1971).
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shows that our mechanism generates a significantly higher surplus to the agents with hardly

any loss on the objects side.

One potential concern about this mechanism is its incentive property. While the mech-

anism is not strategy proof, the incentive problem does not appear to be severe. A manip-

ulation incentive arises only when an agent is in a position to trigger the circuit breaker

since then the agent may wish to apply to some object safer instead of a more popular one

with high probability of rejecting him. The probability of this is one out of the number of

agents assigned in the current stage, which is in the order of n, so with a sufficient number

of participants, the incentive issue is rather small. Formally, we show that the mechanism

induces truthful reporting as an ǫ-Bayes Nash equilibrium.

Our DA mechanism with a circuit breaker bears some resemblance to the features

that are found in popular real-world matching algorithms. The “staged termination” fea-

ture is similar to the school choice program used to assign students to colleges in China

(Chen and Kesten (2013)). More importantly, the feature that prohibits an agent from

“outbidding” another over an object that the former ranks lowly but the latter ranks highly

is present in the truncation of participants’ choice lists, which is practiced in virtually every

implementation of the DA in real settings. Our large market result could provide a potential

rationale for the practice that is common in actual implementation of DA but has been so far

difficult to rationalize (see Haeringer and Klijn (2009), Calsamiglia, Haeringer, and Klijn

(2010) and Pathak and Sömez (2013)).

Related Literature

The present paper is connected with several strands of literature. First, it is related to the

literature that studies large matching markets, particularly those with large number of ob-

ject types and random preferences; see Immorlica and Mahdian (2005), Kojima and Pathak

(2008), Lee (2012), Knuth (1996), Pittel (1989) and Ashlagi, Kanoria, and Leshno (2013).

The first three papers are concerned largely with the incentive issues arising in DA. The last

three papers are concerned with the ranks of the partners achieved by the agents on the two

sides of the market under DA, so they are closely related to the current paper whose focus

is on the payoffs achieved by the agents. In particular, our asymptotic inefficiency result

of DA follows directly from Ashlagi, Kanoria, and Leshno (2013). Unlike these papers, our

paper considers not just DA but also other mechanisms and also has broader perspectives

dealing with efficiency and stability.
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Another strand of literature studying large matching markets considers a large number

of agents matched with a finite number of object types (or firms/schools) on the other side;

see Abdulkadiroglu, Che, and Yasuda (2008), Che and Kojima (2010), Kojima and Manea

(2010), Azevedo and Leshno (2011), Azevedo and Hatfield (2012) and Che, Kim, and Kojima

(2013), among others. The assumption of finite number of object types enables one to use

a continuum economy as a limit benchmark in these models. At the same time, this feature

makes both the analysis and the insights quite different. The two strands of large matching

market models capture issues that are relevant in different real-world settings and thus

complement each other.7

Methodologically, the current paper utilizes the framework developed in the random

graph and randommapping theory; see Bollobas (2001) and Dawande, Keskinocak, Swaminathan, and Tayur

(2001) for instance.

2 Set-up

We consider a model in which a finite set of agents are assigned a finite set of objects,

at most one object for each agent. Since our analysis will involve studying the limit of

a sequence of infinite economy, it is convenient to index the economy by its size n. An

n-economy En = (In, On) consists of agents In and object types On, where |In| = n.

For much of the analysis, we shall suppress the superscript n for notational ease.

The object types can be interpreted as schools or housing types. Each object type

o has qo ≥ 1 copies or quotas. Since our model allows for qo = 1 for all o ∈ On,

one-to-one matching is a special case of our model. We assume that total quantity is:

Qn =
∑

o∈On qo = n. In addition, we assume that the number of copies of each object is

uniformly bounded, i.e., there is q̄ ≥ 1 such that qo ≤ q̄ for all o ∈ On and all n. The

assumption that Qn = n is only for convenience as long as it grows at order n our results

will go through. Similarly, the assumption that the number of copies of each object is

uniformly bounded is not necessary as long as it grows at a rate which is low enough.8

7The latter model is more appropriate for situations in which there are a relatively small number of

institutions each with a large number of positions to feel. School choice in some district such as Boston

Public Schools could be a suitable application, since only a handful of schools each enroll hundreds of

students. The former model is descriptive of settings in which there are numerous participants on both

sides of the market. Medical matching and school choice in some district such as New York Public Schools

would fit the description.
8As will be clear from footnote 26, we can allow q̄ to grow in n as long as its growth rate is capped at
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Throughout, we shall consider a general class of random preferences that allows for a

positive correlation among agents on the objects. Specifically, each agent i ∈ In receives

utility from obtaining object type o ∈ On:

Ui(o) = U(uo, ξi,o),

where uo is a common value, and the idiosyncratic shock ξi,o is a random variable drawn

independently and identically from [0, 1] according to the uniform distribution.9

We further assume that the function U(·, ·) takes values in R+, is strictly increasing

in the common values and strictly increasing and continuous in the idiosyncratic shock.

The utility of remaining unmatched is assumed to be 0 so that all agents find all objects

acceptable.10

We assume that the agents’ common value for object o ∈ O, uo, takes an arbitrary

value in [0, 1] in an n-economy, and its population distribution is given by a cumulative

distribution function (CDF):

Xn(u) =

∑

o∈On:uo≤u qo

n

interpreted as the fraction of the objects whose common value is less than or equal to u,

and by

Y n(u) =
|{o ∈ On|uo ≤ u}|

n
,

interpreted as the fraction of the object types whose common value is no greater than u.

We assume that these CDFs converge to well-defined limits, X and Y . More precisely,

for any two distributions, F and G, consider their distance measured in Lévy metric:

L(F,G) := inf {δ > 0|F (z − δ)− δ ≤ G(z) ≤ F (z + δ) + δ, ∀z ∈ R+} .

According to this measure, any two distributions will be regarded as being close to each

other as long as they are uniformly close at all points of continuity.11 Accordingly, we

assume that Xn and Y n converge in the Lévy metric to X and Y , respectively, where X, Y

are nondecreasing and right-continuous, X(0) = 0, X(1) = 1 and X(·) − Y (·) ≥ 0. Note

O(n/log(n)).
9This assumption is without loss, as long as the type distribution is atom less, since one can always

focus on the quantile corresponding to the agent’s type, as a normalized type, and redefine the payoff

function as a function of the normalized type.
10This feature does not play a crucial role for our results, which go through as long as a linear fraction

of objects are acceptable to all agents.
11Here, convergence of CDFs in Lévy metric is equivalent to weak convergence.
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that each object type may possibly have multiple copies, so the model allows for many-to-

one matching but also includes as a special case an one-to-one matching with X(·) = Y (·).
We allow X and Y to be fairly general, allowing for atoms.

Two special cases of this model are of interest. The first is a finite-tier model. In this

model, the objects are partitioned into finite tiers, {On
1 , ...., O

n
K}, where ∪k∈KO

n
k = On and

On
k ∩ On

j = ∅. (With a slight abuse of notation, the largest cardinality K denotes also the

set of indexes.) In this model, the CDFs Xn and Y n are step functions with finite steps.

This model offers a good approximation of situations in which the objects have clear tiers,

as will be the case in situations in which schools are distinguished in different categories

or by regions, and houses may come in clearly distinguishable tiers. For the most part, the

finite model serves as an analytical vehicle that will be used to analyze the general model.

From this perspective, the finite model is useful to focus on since it brings out, in the most

transparent way.

Another special case of our model the full-support model in which the limit distribu-

tion Y is strictly increasing in its support. This model is very similar to Lee (2012), who

also considers random preferences that consist of common and idiosyncratic terms. One

difference is that his framework assumes that the common component of the payoff is also

drawn uniform randomly from a positive interval. Our model assumes common values to

be arbitrary, but with full support assumption, the values can be interpreted as realizations

of random draws (drawn according to the CDF Y ). Viewed in this way, the full-support

model is comparable to Lee (2012)’s, except that current model also allows for atoms in

the distribution of Y .

Unless specified, we are referring to a general model that has these two as special cases.

Fix an n-economy. We shall consider a class of matching mechanisms that are Pareto

efficient. A matching µ in an n-economy is a mapping µ : I → O ∪ {∅} such that

|µ−1(o)| ≤ qo, with the interpretation that agent i with µ(i) = ∅ is unmatched. Let M

denote the set of all matchings. All these objects depend on n, although their dependence

is suppressed for notational convenience.

In practice, a particular matching chosen will depend on the realized preferences of the

agents as well as other features of the economy that the matching institution may condition

on. For instance, if the objects O are institutions or individuals, their preferences on their

matching partners will typically impact on what matching will arise. Alternatively, one

may wish the matching to respect the existing rights that the individuals may have over

the objects; for instance, the objects may be housing, and some units may have existing
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tenants who may have priority over these units. Likewise, the objects may be schools,

and the agents are students, and assignment to a school may favor the students whose

siblings already attend the school or those living close to the school. Some of these factors

are random depending on the features (not captured by their idiosyncratic component)

that are random. We collect all assignment-relevant variables, call its generic realization

a “state,” and denote it by ω = ({ξi,o}i∈I,o∈O, θ), where {ξi,o}i∈I,o∈O is the realized profile

of idiosyncratic component of payoffs, and θ is the realization of all other variables that

influence the particular matching that is selected, and let Ω denote the set of all possible

states.

A matching mechanism is a function that maps from a state in Ω to a matching

in M . With a slight abuse of notation, we shall use µ = {µω(i)}ω∈Ω,i∈I to denote a

matching mechanism, which selects a matching µω(·) in state ω. Let M denote the set of

all matching mechanisms. For convenience, we shall often suppress the dependence of the

matching mechanism on ω.

A matching µ ∈ M is Pareto efficient if there is no other matching µ′ ∈ M such that

Ui(µ
′(i)) ≥ Ui(µ(i)) for all i ∈ I and Ui(µ

′(i)) > Ui(µ(i)) for some i ∈ I. A matching

mechanism µ ∈ M is Pareto efficient if, for each state ω ∈ Ω, the matching it induces, i.e.,

µω(·), is Pareto efficient. Let M∗
n denote the set of all Pareto efficient mechanisms in the

n-economy.

3 Payoff Equivalence of Pareto Efficient Mechanisms

A wide variety of mechanisms yield Pareto efficient matchings. Mechanisms such as (deter-

ministic or random) serial dictatorship attain efficiency with no particular regard to agents’

property rights or priorities; others such as TTC recognize such rights, and allow agents to

trade these rights to achieve efficiency. Market designers can also endow agents with fake

money, allowing them to purchase objects efficiently in an artificial market place, as en-

visioned by Hylland and Zeckhauser (1979). Mechanisms can be further adjusted to meet

other social needs, such as “affirmative treatment” of some target groups identified based

on their socio-economic backgrounds, for example. Any such adjustments will obviously

impact the welfare of the participants at the individual level. But do they impact the total

welfare of the agents or their aggregate payoff distribution? If so, how?

These questions have potentially significant market design implications. If accommo-
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dating the rights or priorities of some individuals or to satisfy specific social objectives or

constraints were to entail significant loss in terms of utilitarian welfare or to have significant

distributive impact, this will call into question the merit of the policy interventions. We

address these questions below.

3.1 Definitions

To begin, we first define an upper bound for the utilitarian welfare—a highest possible

level of total surplus that can be realized under any matching mechanism. To this end,

suppose every agent is assigned an object and realizes the highest possible idiosyncratic

payoff. Since the common values of the objects are distributed according to Xn, the

resulting (normalized) utilitarian welfare is
∫ 1

0
U(u, 1)dXn(u). This obviously gives the

upper bound for the utilitarian welfare in the n-economy. We consider its limit, called the

limit utilitarian upper bound:

U∗ :=

∫ 1

0

U(u, 1)dX(u).

The payoff distribution of an economy, whether it is a finite n-economy or its limit, can

be represented by a distribution function, i.e., a nondecreasing right-continuous function

F mapping from [0, U(1, 1)] to [0, 1]. The number F (z) is interpreted as the fraction of

the agents who realize payoffs no greater than z. We let F µ denote the payoff distribution

induced by mechanism µ.

3.2 Utilitarian efficiency and its implications

We are now in a position to state our first main theorem.

Theorem 1. Let F ∗ be the distribution of payoff attaining the limit utilitarian upper bound

U∗. Then,

sup
µn∈M∗

n

L(F µn

, F ∗)
p−→ 0.12

12We say Zn
p−→ z, or Zn converges in probability to z, where both Zn and z are real-valued random

variables, if for any ǫ > 0, δ > 0, there exists N ∈ N such that for all n > N , we have

Pr{|Zn − z| > ǫ} < δ.
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This theorem implies that, with probability approaching one as n → ∞, the population

distribution of agents’ payoffs under any Pareto efficient mechanism approaches that under

the limit Utilitarian bound. The following corollary is immediate:

Corollary 1.

inf
µn∈M∗

∑

i∈I Ui(µ
n(i))

|I|
p−→ U∗.

Note that the rate of convergence is “uniform” with respect to the entire class of the

Pareto efficient mechanisms. This means that alternative Pareto efficient mechanisms be-

come payoff equivalent uniformly as the market grows in size—that is, “up to the renaming

of the agents”:

Corollary 2.

sup
µn,µ̃n∈M∗

n

L(F µn

, F µ̃n

)
p−→ 0.

These results suggest that, as long as agents are ex ante symmetric in their preferences,

there is little ground to discriminate one Pareto efficient mechanism in favor of another in

terms of total welfare of participants or aggregate payoff distribution, at least in the large

economy. This has important implications for market design. Often designers face extra

constraints arising from the existing rights or priorities that some participants have over

some objects or there may be a need to treat some target group of participants affirma-

tively. And there is a concern that accommodating such constraints or needs may sacrifice

utilitarian welfare or to adversely impact the aggregate distribution of payoffs. Our result

implies that accommodating such constraints does not entail any significant loss in these

terms in the large economy, as long as Pareto efficiency is maintained.

Remark 1 (Virtual Transferability). Our result suggests that in the large economy the

opportunities to exchange on idiosyncratic payoffs are sufficiently “rich” enough to make

the preferences virtually transferable. In other words, objects that are uniformed valued by

the participants can be transferred from one set of agents to another set without entailing

much loss in terms of the idiosyncratic payoffs. Such a result, while plausible, is neither

obvious nor universally true. As will be seen in the second part of the current paper, the

strong payoff equivalence does not extend when the welfare of both sides are relevant. Gale

and Shapley’s deferred acceptance algorithm is Pareto efficient across both sides of the

market—i.e., taking the objects as welfare-relevant entities—but does not attain the highest

total payoffs across the market, and another Pareto inefficient mechanism yields a higher

utilitarian welfare.

12



Remark 2 (Relationship with other equivalent results). The current equivalence result is

reminiscent of a similar equivalence result obtained by Abdulkadiroglu and Sönmez (1998)

between two well known mechanisms, random serial dictatorship and TTC with random

ownership, and of the large market equivalence result obtained by Che and Kojima (2010)

between random serial dictatorship and probabilistic serial mechanism, and their extension

by Pathak and Sethuraman (2011). While these results consider arbitrary preferences on

the agents, they assume ex ante symmetric random priorities with respect to the objects.

By contrast, our equivalence result does not impose any structure on the priorities on the

object side, allowing them to be arbitrary, but it does impose a certain structure on the

agents’ preferences (to consist of common values and iid idiosyncratic preferences). Our

result also holds only at the limit as the number of agents and objects becomes large (with

the number of object types bounded or growing at a slower rate), whereas the equivalence

result by Abdulkadiroglu and Sönmez (1998) and Pathak and Sethuraman (2011) holds for

any finite economy.

3.3 Sketch of the Proof

Here we sketch the proof of Theorem 1, which is contained in Appendix A. For the current

purpose, assume X(·) is degenerated with a single common value u0, and X(·) = Y (·). In
other words, the agents have only idiosyncratic payoffs, and the matching is one-to-one (as

opposed to many to one). As will be seen in Appendix A, the same proof argument works

for the general case (with some care).

To begin, fix an arbitrary Pareto efficient mechanism µ̃. We first invoke the fact that

any Pareto efficient matching can be implemented by a serial dictatorship13 with a suitably-

chosen serial order (see Abdulkadiroglu and Sönmez (1998)). Let f̃ be the serial order that

implements µ̃ under a serial dictatorship. Since µ̃ induces a Pareto efficient matching that

depends on the state, the required serial order f̃ is random.

Next, for arbitrarily small ǫ, δ > 0, define the random set:

Ī := {i ∈ I
∣

∣

∣
Ui(µ̃(i)) ≤ U(u0, 1− ǫ) and f̃(i) ≤ (1− δ)|O|}.

The set Ī consists of agents who are within 1− δ top percentile in terms of their serial

13A serial dictatorship mechanism specifies an order over individuals, and then lets the first individual

– according to the specified ordering – receive his favorite object, the next individual receives his favorite

item among remaining objects, etc
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order f̃ but fail to achieve payoff ǫ-close to the highest possible payoff.14 Since ǫ, δ > 0 are

arbitrary, for the proof it will suffice to show that

|Ī|
n

p−→ 0. (1)

To prove this, we exploit a result in random graph theory. It is thus worth taking a

detour to introduce the relevant model of random graph. A bipartite graph G consists

in vertices, V1 ∪V2, and edges E ⊂ V1× V2 across V1 and V1 (with no possible edges within

vertices in each side). An independent set is V̄1 × V̄2 where V̄1 ⊆ V1 and V̄2 ⊆ V2 for

which no element in V̄1 × V̄2 is an edge of G. A random bipartite graph B = (V1 ∪ V2, p),

p ∈ (0, 1), is a bipartite graph with vertices V1 ∪ V2 in which each pair (v1, v2) ∈ V1 × V2

is linked by an edge with probability p independently (of edges created for all other pairs).

The following result provides the crucial step for our result.

Lemma 1 (Dawande, Keskinocak, Swaminathan, and Tayur (2001)). Consider a random

bipartite graph B = (V1 ∪ V2, p) where 0 < p < 1 is a constant and for each i ∈ {1, 2} and

|V1| = n and |V2| = m = O(n). There is κ > 0,

Pr
[

∃ an independent set V̂1 × V̂2 with min{|V̂1|, |V̂2|} ≥ κ ln(n)
]

→ 0 as n → ∞.

This result implies that with high probability, for every independent set, at least one

side of that set vanishes in relative size as n → ∞.

To prove our result, then it suffices to show that Ī forms a vanishing side of an inde-

pendent set in an appropriately-defined random graph. Consider a random bipartite graph

consisting of I on one side and O on the other side where an edge is created between i ∈ I

and o ∈ O if and only if ξi,o > 1− ǫ. Let

Ō := {o ∈ O
∣

∣

∣f̃(µ̃(o)) ≥ (1− δ)|O|}

be the (random) set of objects that are assigned to the agents who are in the bottom δ

percentile in terms of the serial order f̃ .

The key observation is that the (random) subgraph Ī × Ō is an independent set.

[Add a figure here.]

14Strictly speaking, we should be focusing on individuals receiving payoffs lower than U(u0, 1) − ǫ.

However, given that the utility functions are continuous there is little loss in focusing our attention on

agents receiving less that U(u0, 1− ǫ). This point will be made clear in the proof.
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To see this, suppose to the contrary that there is an edge between an agent i ∈ Ī and

an object o ∈ Ō in some state ω. By construction of Ī, agent i ∈ Ī must realize less than

1− ǫ of idiosyncratic payoff from µ̃ω(i). But the fact that there is an edge between i and o

means that i would gain more than 1 − ǫ in idiosyncratic payoff from o. So, agent i must

prefer o to his match µ̃ω(o). Yet, the fact that o ∈ Ō means that o is not yet claimed and

is thus available when agent i (who is within top 1− δ of serial order f̃ω) picks µ̃ω. This is

a contradiction, proving that Ī × Ō is an independent set.

Next we observe that |Ō| = δn, meaning that Ō never vanishes in probability. Lemma

1 then implies that the set Ī must vanish in probability. Importantly, this result applies

uniformly to all mechanisms in M∗: If we define the sets Ī(µ̃) and Ō(µ̃) for each µ̃ ∈ M∗

as above, then for each µ̃ ∈ M∗, Ī(µ̃)×Ō(µ̃) forms an independent set of the same random

graph! This explains the uniform convergence.

Remark 3. If the mechanism µ̃ is a serial dictatorship with a “deterministic” serial order

f , then a simple direct argument proves the result. First, let us note that we can think

of each agent as drawing his preferences “along the algorithm”, i.e., whenever i has his

opportunity to choose his most favorite object among remaining ones, we assume that i

draws his preferences at that stage. Obviously, the distribution of i’s preferences is not

affected by the choices of agents with serial order smaller than i. Fix any arbitrary ǫ, δ > 0

and let Ei be the event that whenever i gets his turn to pick his most favorite object, there

is one object o remaining such that Ui(o) ≥ U(u0, 1− ǫ). Clearly,

Pr{Ui(µ̃(i)) ≥ U(u0, 1− ǫ) for all i with f(i) < (1− δ)n}
≥Pr{∩i∈I:f(i)<(1−δ)nEi}
≥1− Pr{∪i∈I:f(i)<(1−δ)nE

c
i }

≥1− (1− δ)n(1− ǫ)δn → 1 as n → ∞.

Such an argument does not work for an arbitrary Pareto efficient mechanism, however: For

a general Pareto efficient mechanism, the serial order implementing the mechanism need

not be independent of the preferences of the agents, (which is required in the last inequality

in the above string). Our general proof using random graph theory avoids this difficulty.
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4 Resolving the Tradeoff between Efficiency and Sta-

bility

As motivated in the introduction, efficiency and stability are important objectives in the

designing of markets for allocating indivisible resources to agents. While theses two objec-

tives are generally in conflict with each other, it is unknown how the tradeoff plays out in

the larger market where the number of agents as well as the number of objects are large. In

this section, we study whether the two prominent mechanisms—top trading cycles (TTC)

and Gale and Shapley’s deferred acceptance algorithm (DA)—resolve the tradeoff at least

in a suitably-defined asymptotic sense in the large market. Our main result will identify a

plausible set of circumstances in which the two mechanisms fail to provide adequate reso-

lution of the tradeoff—namely, the TTC entails a significant loss in stability and the DA

entails a significant efficiency loss for the agents. We then propose a new mechanism that

attains both objectives in the asymptotic senses and has desirable large market incentive

property.

We begin by simplifying the model. First, we focus on the one-to-one matching environ-

ment. Formally, we assume Xn(·) = Y n(·) and X(·) = Y (·). Second, we assume that agents

have priorities at the objects that are drawn (uniform) randomly. These priorities can be

interpreted as “objects’ preferences toward agents.” Such an interpretation is particularly

relevant if, for instance, objects are institutions such as firms. Formally, we assume that

each object o ∈ O receives utility from getting matched with individual i ∈ I:

Vi(o) = V (ηi,o),

where idiosyncratic shock ηi,o is a random variable drawn independently and identically

from [0, 1] according to the uniform distribution.15 We further assume that the function

V (·) takes values in R+, is strictly increasing and continuous in the idiosyncratic shock. The

utility of remaining unmatched is assumed to be 0 so that all objects find all individuals

acceptable. Third, we restrict attention to the finite-tier model. Namely, the objects are

partitioned into finite sets, {O1, ...., OK}, such that agents realize the same common value

uk from objects in Ok, where u1 > ... > uK . For each k = 1, ..., K, the proportion of objects

in Ok, i.e.,
|Ok|
|O|

, has a well defined limit denoted by xk. This simplification, while invoked

for tractability of analysis, is not without realism. In the school choice context, schools are

often segmented into different tiers based on the geographic districts the schools belong to.

15Again, the uniform distribution is without loss.
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We make use of the following result throughout:

Lemma 2. Fix any ǫ > 0, and any k = 1, ..., K. There exists δ > 0 small enough such that,

with probability going to 1 as n → ∞, every agent in I has his δ|Ok| most favorite objects

in O≥k

1. yield a payoff greater than U(uk, 1)− ǫ

2. come from Ok.

Proof. See Appendix B. �

We next suggest how efficiency and stability can be weakened in the large market setting.

� Asymptotic Notions of Efficiency and Stability

We say a matching mechanism µ is asymptotically efficient if, for any mechanism µ′

that weakly Pareto-dominates µ for the agents I,

|Iǫ(µ′|µ)|
n

p−→ 0,

where

Iǫ(µ
′|µ) := {i ∈ I|Ui(µ(i)) < Ui(µ

′(i))− ǫ}

is the set of agents who would benefit more than ǫ by switching from µ to µ′. In words, a

matching is asymptotically efficient if, as the economy gets large, with high probability any

Pareto improving rematching, if there is any, could make only an arbitrarily small fraction

of agents significantly better off.

The notion of stability can be weakened in a similar way. We say a matching mechanism

µ is asymptotically stable if, for any ǫ > 0,

|Jǫ(µ)|
n(n− 1)

p−→ 0,

where

Jǫ(µ) := {(i, o) ∈ I × O|Ui(o) > Ui(µ(i)) + ǫ and Vo(i) > Vo(µ(o)) + ǫ}.

is the set of ǫ-block’s—namely, the set of pairs of unmatched agent and object who each

would gain ǫ or more from matching each other rather than matching according to µ.

Asymptotic stability requires that for any ǫ > 0, with high probability the fraction of these
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ǫ-blocks out of all n(n − 1) “possible” blocking pairs is vanishing as the economy grows

large. Hence, in a large market, an asymptotically stable matching will not admit a large

number of agents and objects with discrete motive to block them. It is still possible that

a large number of agents may be willing to form blocks with some objects, but in that

case the number of such objects will be small relative to the willing agents, accommodating

only a small number. This can be stated more formally. For any ǫ > 0, let Ôi
ǫ(µ) := {o ∈

O|(i, o) ∈ Jǫ(µ)} be the set of objects agent i can from an ǫ-block with against µ. Then, a

matching is asymptotically stable if and only if the set of agents who can form an ǫ-blocks

with a non-vanishing fraction of objects vanishes, or more formally, for any ǫ, δ > 0,

|Iǫ,δ(µ)|
n

p−→ 0,

where

Iǫ,δ(µ) := {i ∈ I||Ôi
ǫ(µ)| ≥ δn}.

If, as is plausible in many circumstances, agents form ǫ-blocks by randomly sampling a

finite number of potential partners (i.e., objects), asymptotic stability would mean that

only a vanishing proportion of agents will succeed in finding blocking partners in a large

market.

A similar implication can be drawn on the fairness of the allocation. Asymptotic stabil-

ity of matching implies that only a vanishing proportion of agents would have (a discrete

amount of) justified envy toward a non-vanishing proportion of agents. If one gets aggrieved

from justifiably envying say (finitely many) individuals who she randomly encounters, then

the property will guarantee that only a vanishing fraction of individuals will suffer signifi-

cant aggrievement as the economy grows large.

4.1 Two Prominent Mechanisms

� Top Trading Cycles (TTC) Mechanism:

Top Trading Cycles algorithm, originally introduced by Shapley and Scarf (1974) and

later adapted by Abdulkadiroglu and Sonmez (2003) to the context of strict priorities, has

been an influential method for achieving efficiency.16 The mechanism has some notable

applications. For instance, TTC was used until recently in New Orleans and recently,

San Francisco announced plans to implement a top trading cycles mechanism. A gener-

16The original idea is attributed to David Gale by Shapley and Scarf (1974).
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alized version of TTC is also used for kidney exchange among donor-patient pairs with

incompatible donor kidneys (see Sonmez and Unver (2011)).

The TTC algorithm (defined by Abdulkadiroglu and Sonmez (2003)) proceeds in multi-

ple rounds as follows: In Round t = 1, ...,, each individual i ∈ I points to his most preferred

object (if any). Each object o ∈ O points to the individual to which it assigns the high-

est priority. Since the number of individuals and objects are finite, the directed graph so

obtained has at least one cycle. Every individual who belongs to a cycle is assigned to the

object he is pointing at. Any individuals and objects that are assigned are then removed.

The algorithm terminates when all individuals have been assigned; otherwise, it proceeds

to Round t+ 1.

This algorithm terminates in a finite number of rounds. Indeed, there are finite individ-

uals, and at the end of each round, at least one individual is removed. The TTC mechanism

is then a function which for each realization of individuals’ preferences as well as objects’

priorities selects a matching obtained by the above algorithm.

As is well-known, the TTC mechanism is Pareto-efficient and strategy-proof, namely

making it a dominant strategy for agents to report their preferences truthfully. But the

mechanism is not stable.

� The Deferred Acceptance (DA) Mechanism

The best-known mechanism for attaining stability is the deferred acceptance algorithm.

Since introduced by Gale and Shapley (1962), the mechanism has been applied widely

in a variety of contexts. The Medical Match in the US and other countries adopt DA

for placing doctors to hospitals for residency programs. The school systems in Boston

and New York City use DA to assign eighth-grade students to public high schools (see

Abdulkadiroglu, Pathak, and Roth (2005) and Abdulkadiroglu, Pathak, Roth, and Sonmez

(2005)). College admissions are organized via DA in many provinces in Australia.

For our purpose, it is more convenient define DA in a version proposed by McVitie and Wilson

(1971), which proceeds in multiple steps as follows:

Step 0: Linearly order individuals in I.

Step 1: Let individual 1 make an offer to his most favorite object in O. This object

tentatively holds individual 1, and go to Step 2.

Step i ≥ 2: Let agent i make an offer to his most favorite object o in O among

the objects to which he has not yet made an offer. If o is not tentatively holding any
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individual, then o tentatively holds i. whenever i = n, end the algorithm; otherwise iterate

to Step i + 1. If however o is holding an individual tentatively—call him i∗—object o

chooses between i and i∗ accepting tentatively the one who is higher in its preference list,

and rejecting the other. The rejected agent is named i and we go back to the beginning of

Step i.

This process terminates in finite time and yields to a matching µ. The DA mechanism is

a function which for each realization of individuals’ preferences as well as objects’ priorities

selects a matching obtained by the above algorithm.

As is well known, the DA mechanism is stable, student-optimal, selecting a matching

that Pareto dominates all other stable matchings from the perspective the agents, and it is

strategy proof (Dubins and Freedman (1981); Roth (1982)). Yet, it is not Pareto efficient

among the agents, meaning the agents may all be better off by another matching (which is

not stable).

4.2 Uncorrelated Preferences

We first consider the case in which the participants’ preferences for the objects are un-

correlated. That is, the support of the common component of the agents’ utilities are

degenerate, with a single tier K = 1 for the objects. In this case, both DA and TTC

involve little tradeoff:

Theorem 2. If the support of Y (·) is degenerate, then TTC is asymptotically stable and

DA is asymptotically efficient.

Proof. The asymptotic stability of TTC follows from Theorem 1. Since TTC is Pareto

efficient, Theorem 1 implies that for any ǫ > 0, the proportion of the agents I≤1 who realize

payoffs less than U(u1, 1) − ǫ vanishes in probability as n → ∞. Since I≤1 ⊃ Iǫ(TTC),

asymptotic stability then follows.

The asymptotic efficiency of DA is as follows. Let E1 be the event that all agents are

assigned objects which they rank within 3 log2(n). By Pittel (1992), the probability of that

event goes to 1 as n goes to infinity. Now, fix ǫ > 0 arbitrarily small and let E2 be the

event that for all agents the objects which they rank within 3 log2(n) give them a payoff

greater than U(uk, 1)− ǫ. By Lemma 2, the probability of that event goes to 1 as n tends

to infinity. It is clear that whenever both events occur, all agents will get a payoff greater

than U(uk, 1) − ǫ under DA. Since the probability of both events realizing goes to 1, the
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DA mechanism is asymptotically efficient.17 �

It is worth noting that the tradeoffs of the two mechanisms do not disappear qualitatively

even in the large markets: DA remains inefficient and TTC remains unstable even as

the market grows large. In fact, given random priorities on the objects, the acyclicity

conditions that would guarantee efficiency of DA and stability of TTC, respectively,18 fail

almost surely as the market grows large. What Theorem 2 suggests is that the tradeoff

disappears quantitatively, provided that the agents have uncorrelated preferences. The

uncorrelatedness of preferences implies that the conflicts agents may have over the goods

disappear as the economy grows large, for each agent is increasingly able to find an object

that he likes that others do not like as much. Hence, the diminishing conflicts of preferences

means that the agents can attain high payoffs, in fact arbitrarily close to their payoff

upper bound as n → ∞. This eliminates (probabilistically) the possibility that a Pareto

dominating mechanism can benefit a significant fraction agents significantly, explaining

the asymptotic efficiency of DA. Similarly, under TTC, the agents enjoy payoffs that are

arbitrarily close to their payoff upper bound as n → ∞, which guarantees that the number

of agents who each would justifiably envy a significant number of agents vanishes in the

large market.

4.3 Correlated Preferences

As we show below, Theorem 2 no longer holds when the agents’ preferences are correlated,

in particular, when some objects are perceived by “all” agents to be better than the other

objects. This situation is quite common in many contexts, such as school assignment, since

schools have distinct qualities that students and parents evaluate in a similar fashion.

To consider such an environment in a simple way, we shall suppose the objects are

divided into two tiers O1 and O2 such that |I| = |O1| + |O2| = n. As assumed earlier,

limn→∞
|Ok|
n

= xk > 0. In addition, we assume that each object in O1 is considered by every

agent to be better than each object in O2: U(u1, 0) > U(u2, 1), where u1 and u2 are common

values of the objects from tier 1 and tier 2, respectively. The preferences/priorities by the

objects are given by idiosyncratic random shocks, as assumed above. In this environment,

we shall show that the standard tradeoff between DA and TTC extends to the large markets

17Our notion of efficiency focuses on one side of the market: the individuals’ side. It is worth noting

here that even if we were to focus only on the other side: the objects’ side, efficiency would still follow

from Pittel (1992) even though we are using DA where individuals are the proposers.
18The former is due to Ergin and the latter is due to Kesten
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even in the asymptotic sense — namely, DA is not asymptotically efficient and TTC is not

asymptotically stable. This observation runs counter to the common wisdom based on

finite market that correlation of preferences on one side usually renders stable allocations

efficient or efficient allocations stable.

4.3.1 Asymptotic Instability of TTC

Our first result is that, with correlated preferences, TTC fails to be asymptotically stable.

Theorem 3. In our model with two tiers, TTC is not asymptotically stable. More precisely,

|Jǫ(TTC)|
n(n− 1)

p

6→ 0.

Proof. See Appendix C. �

We provide the main idea of the proof here. In a nutshell, the asymptotic instability

arises from the key feature of TTC. In TTC, agents attain efficiency by “trading” among

themselves the objects with which they have high priorities. This process entails instabilities

since some agent may gain an object despite having a low priority, ahead of an agent who

has a higher priority but whose priority is still lower than the agent who traded off his

priority to the gaining agent. This insight is well known but informs little about the

magnitude of the instabilities.

The results in the previous subsection suggest that instabilities are not significant in case

agents’ preferences are uncorrelated. In that case, the agents’ preferences do not conflict

with each other, and they all attain close to their “bliss” payoffs in TTC, resulting in only

a vanishing number of agents with justifiable envy toward any significant number of agents.

The situation is different, however, when their preferences are correlated significantly. In

the two-tier case, for instance, a large number of agents are assigned objects in O2, and

they would all envy the agents who are assigned objects in O1. The asymptotic stability of

the mechanism then depends on whether a significant number of the latter agents (those

assigned objects in O1) would have significantly lower priorities (with the objects they are

obtaining) relative to the former agents who envy them.

This latter question boils down to the length of the cycles through which the latter

agents (who are assigned the objects in O1) are assigned in the TTC mechanism. Call a

cycle of length two—namely, an agent top-ranks an object, and also has the highest priority

with that object, among those remaining in each round—-a short cycle, and any cycle of

length greater than two a long cycle.
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It is intuitive that agents who are assigned via short cycles are likely to have high

priorities (with the objects they are assigned).19 By contrast, the agents who are assigned

via long cycles are unlikely to have high priorities. Agents in the long cycles tend to have

high priorities with the objects they trade up (since the objects must have pointed to them),

but they could have very low priorities with the objects they are assigned. In fact, their

priorities with the objects they are assigned play no (contributory) role for such a cycle

to form.20 Hence, their priorities with the objects they are assigned (in O1) are at best

simple iid draws, with one half chance of them being higher than the priorities of those

agents assigned objects in O2. This suggests that any agent assigned objects in O2 will

have on average a significant amount of justified envy toward one half of those agents who

are assigned objects in O1 via long cycles.

[Do we put a picture?]

Ultimately, therefore the crucial part of the proof of Theorem 3, provided in Appendix

C, is to show that the number of agents assigned O1 via long cycles is significant—i.e.,

the number does not vanish in probability as n → ∞. While this result is intuitive, its

proof is not trivial. By an appropriate extension of “random mapping theory,” we can

compute the expected number of objects in O1 that are assigned via long cycles in the first

round of TTC. But, this turns out to be insufficient for our purpose since the number of

objects that are assigned in the first round of TTC (in the the order of
√
n) comprises

a vanishing fraction of n as the market gets large. But extending the random mapping

analysis to the subsequent rounds of TTC is difficult since the preferences of the agents

and objects remaining after the first round are no longer i.i.d. The extension requires us

to gain a deeper understanding about the precise random structure of the preferences that

evolve over time. Appendix D does this. In particular, we establish that the number of

objects (and thus agents) assigned in each round of TTC follows a simple Markov structure,

implying that the number of agents cleared in each round is not subject to the conditioning

issue. The composition of the cycles, in particular short versus long cycles, is subject to the

19This is obvious for the agents assigned in the first round, for they have the highest priorities. But

even those assigned in later rounds are likely to have high priorities as long as they are assigned via short

cycles: Theorem 1 implies that almost all agents are assigned within the number of steps in TTC that is

sub linear—i.e., small relative to n, meaning that those assigned via short cycles tend to have relatively

high priorities.
20If any, the role is negative. That an agent is assigned via a long cycle, as opposed to a short cycle,

means that she does not have the highest priority with object he is getting in that round.
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conditioning issue, however. Nevertheless, we manage to show that the number of objects

assigned in each round of TTC can be bounded above. And this bound, combined with

the Markov property of the number of objects assigned in each round, produces the result.

Remark 4 (Markov Property of TTC). The Markov property we establish in Appendix D

is of independent interest and is likely to be of use beyond the current paper. It means that

the number of agents (and thus objects) assigned in each round depends only on the number

of agents and objects remaining at the beginning of that round, and importantly does not

depend on the history before that round. Furthermore, we explicitly derive in Theorem 7 of

Appendix D the formula for the distribution of these variables. This formula can be used

to analyze the welfare of agents under TTC even for the finite economy.

4.3.2 Asymptotic Inefficiency of DA

Given correlated preferences, we also find the inefficiency of DA to remain significant in

the large market.

Theorem 4. In our two tier model, DA is not asymptotically efficient. More precisely,

there exists a matching µ that Pareto dominates DA and

|Iǫ(µ|DA)|
|I|

p

6→ 0.

Proof. See Appendix E. �

Corollary 3. Any stable matching mechanism fails to be asymptotically efficient in our

two-tier model.

Proof. The DA matching Pareto dominates all other stable matching, as is shown by

Gale and Shapley (1962). Hence, any matching µ that Pareto dominates and satisfies the

property stated in Theorem 4 will Pareto dominate any stable matching and satisfy the

same property. �

The intuition behind Theorem 4 is as follows. When the agents’ preferences are corre-

lated, they tend to compete excessively for the same set of objects, and this competition

results in a significant welfare loss under a stable mechanism. To see this intuition more

clearly, recall that all agents prefer every object in O1 to any object in O2. This means

that in the DA they all first propose to objects in O1 before they ever propose to any

object in O2. The first phase of the DA (in its McVitie-Wilson version) is then effectively
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a sub-market consisting of I agents and O1 objects with random preferences and priorities.

Given that there are excess agents of size |I| − |O1|, which grows linearly in n, even those

agents lucky enough to be assigned objects in O1 must compete so much so that their

payoffs will be bounded above from U(u1, 1).21

This result is quite intuitive. Note that all agents who are eventually assigned objects

in O2 must have made each |O1| offers to the objects in O1 before they are rejected by all

of them. This means each object in O1 must receive at least |I| − |O1| offers. Then, from

an agent’s perspective, to get assigned an object in O1, he must survive competition from

at least |I| − |O1| other agents. The odds of this is 1
|I|−|O1|

, since the agents are all ex ante

symmetric. Hence, the odds that an agent gets rejected by his top δn choices, for small

enough δ > 0, is at least

(

1− 1

|I| − |O1|

)δn

→
(

1

e

)
δ

(1−x1)

, (2)

since |I| − |O1| → (1 − x1)n as n → ∞. Note that this probability gets close to one, for δ

sufficiently small. This probability is not conditional on whether an agent is assigned an

object in O1, and surely the probability will be large (in fact, approach one) conditional on

an agent being unassigned any object in O1. But an agent does get assigned an object in

O1 with positive probability (i.e., approaching x1 > 0), so for the unconditional probability

of an agent making at least δn offers to be close to one, the same event must occur with

positive probability even conditional on being assigned an object in O1. As shown more

precisely in Appendix E, therefore, even the agents who are lucky enough to be assigned

objects in O1 have a non-vanishing chance of suffering a significant number of rejections

before they are assigned. These agents will therefore attain payoffs that are on average

bounded above from U(u1, 1).

This outcome is inconsistent with asymptotic efficiency. To see this, suppose that, once

objects are assigned through DA, the Shapley-Scarf TTC is run with their DA assignment

serving as the agents’ initial endowment. The resulting reassignment Pareto dominates the

DA assignment. Further, it is Pareto efficient. Then by Theorem 1, all agents assigned to

O1 enjoy payoffs arbitrarily close to U(u1, 1) when the market grows large. This implies

that a significant number of agents will enjoy a significant welfare gain from a Pareto

21This result is obtained by Ashlagi, Kanoria, and Leshno (2013) and

Ashlagi, Braverman, and Hassidim (2011) building on the algorithm originally developed by

Knuth, Motwani, and Pittel (1990) and Immorlica and Mahdian (2005). Here we provide a direct

proof which is much simpler. This proof is sketched here and detailed in Appendix E.
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dominating reassignment.

It is worth emphasizing that in the presence of systematic correlation in agents’ prefer-

ences, DA, or equivalently stability, forces the agents to compete one another so intensively

as to entail significant welfare loss. This observation serves as a key motivation for designing

a new mechanism that we will show next is asymptotically efficient as well as asymptotically

stable.

4.4 DA with Circuit Breaker

As we just saw, two of the most prominent mechanisms fail to find matchings which are

asymptotically efficient and asymptotically stable. Is there a mechanism that attains both

properties? In the sequel, we propose a new mechanism which finds such matchings.22 To

be more precise, we define a class of mechanisms indexed by some integer κ (allowed to be

∞ as well). We will show how an appropriate value of κ can be chosen in order to achieve

our goal.

Given a value κ, the DA with Circuit Breaker algorithm (DACB) is defined recursively

on triplets: Î and Ô, the sets of remaining agents and objects, respectively, and a counter

for each agent that records the number of times the agent has made an offer. We first

initialize Î = I and Ô = O, and set the counter for each agent to be zero.

Step 0: Linearly order individuals in Î.

Step 1: Let the individual with the lowest index in Î make an offer to his most favorite

object in Ô. The counter for that agent increases by one. This object tentatively holds

that individual, and go to Step 2.

Step i ≥ 2: The individual with index i (i.e., i-th lowest index) in Î makes an offer

to his most favorite object o in Ô among the objects to which he has not yet made an

offer. The counter for that agent increases by one. If o is not tentatively holding any

individual, then o tentatively holds that individual. Whenever the index of the agent who

made an offer is equal to |Î|, end the algorithm; otherwise iterate to Step i+1. If however

o is holding an individual tentatively, he accepts tentatively the one who is higher in its

priority list, and rejects the other. There are two cases to consider:

22As we discuss in Remark 5, existence of such a mechanism can be established by appealing to Erdos-

Renyi theorem. The implied mechanism is not practical and unlikely to have a good incentive property.

By contrast, the mechanism that is proposed here does have a good incentive property, as we show below.
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1. If the counter for the agent who has made an offer is greater than or equal to κ,

then each agent who is assigned tentatively an object in Steps 1, ..., i is assigned that

object. Reset Ô to be the set of unassigned objects and Î to be the set of unassigned

individuals. Reset the counter for the agent rejected at step i to be zero. If Î is

non-empty, go back to Step 1, otherwise, terminate the algorithm.

2. If the counter for the agent who has made an offer is strictly below κ, we return to

the beginning of Step i.

This process terminates in finite time and yields to a matching µ. This algorithm

modifies the McVitie and Wilson (1971) version of DA where the tentative assignments are

periodically finalized. We say that a stage begins whenever Ô is reset, and the stages are

numbered 1, 2, .... serially.

The DACB mechanism encompasses a broad spectrum of mechanisms depending on the

value of κ. If κ = 1, then each stage consists of one step, wherein an agent acts as a dictator

with respect to the objects remaining at that stage. Hence, with κ = 1, the DACB reduces

to a serial dictatorship mechanism with the ordering over agents given in Step 0. A serial

dictatorship is efficient, but obviously fails (even asymptotic) stability since it completely

ignores the agents’ priorities at the objects. By contrast, if κ = +∞, then the DACB

mechanism coincides with the DA mechanism. As was seen already, DA is stable but fails

to be asymptotically efficient. So intuitively, κ should be large enough to allow agents to

make enough offers (or else, we will not achieve asymptotic stability), but should be small

enough to avoid excessive competition by the agents (or else, the outcome would not be

asymptotically efficient).

The next theorem provides the relevant lower and upper bounds on κ to ensure that

the DACB mechanism attains both asymptotic efficiency and asymptotic stability.

Theorem 5. If κ(n) ≥ 3 log2(n) and κ(n) = o(n) then DACB is asymptotically efficient

and asymptotically stable.

In the sequel, we assume that κ(n) ≥ 3 log2(n) and κ(n) = o(n). The Theorem directly

follows from the proposition below.

Proposition 1. Fix any k ≥ 1. As n → ∞, with probability approaching one, stage k

of the DACB ends at step |Ok| + 1 and the set of assigned objects at that stage is Ok. In

addition, for any ǫ > 0 and γ

|{i ∈ Ik|Ui(DACB(i)) ≥ U(uk, 1)− ǫ}|
|Ik|

p−→ 1
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as n → ∞; where Ik := {i ∈ I|DACB(i) ∈ Ok}. Similarly,

|{o ∈ Ok|Vo(DACB(o)) ≥ V (1)− ǫ}|
|Ok|

p−→ 1

as n → ∞.

Proof of Proposition 1. We focus on k = 1, as will become clear, the other cases

can be treated exactly in the same way. In the sequel, we fix ǫ and γ > 0.

First, consider the submarket that consists of the |O1| first agents (according to the

ordering given in the definition of DACB) and of all objects in O1 objects. If we were to

run DA just for this submarket, then because preferences are drawn iid, by Pittel [Theorem

6.1., (b) 1992], with probability approaching 1 as n grows, all agents have made less than

3 log(n)2 offers at the end of (standard) DA.

Consider now the original market. By Lemma 2 (and the fact that κ(n) = o(n) implies

that κ(n) ≤ δ |O1| for any n large enough), the event that all agents’ κ(n) favorite objects

are in O1 has probability approaching 1 as n → 0. Let us condition on this event, labeled

E . Given this conditioning event E , no object outside O1 would receive an offer before

somebody reaches his κ-th offer. Also since not all of the first |O1| + 1 agents can get

assigned objects in O1, given E , one of these agents must reach his κ-th offer, having made

offers only to objects in O1. We thus conclude that Stage 1 will end at Step |O1| + 1 or

before, with only the objects in O1 being assigned by the end of that stage, conditioning

on the event E .
We now show that all objects in O1 are assigned by the end of Stage 1, and that Stage 1

indeed ends at Step |O1|+1 . Note that under our conditioning event E , the distribution of

individuals’ preferences over objects in O1 is the same as the unconditional one (of course,

this is also true for the distribution of objects’ priorities over individuals). Given event

E , as long as all agents have made fewer than κ(n) offers, the |O1| first steps of DACB

proceed exactly in the same way as DA in the submarket composed of the |O1| first agents
(according to the ordering used in DACB) and of all objects in O1 objects. Applying the

result by Pittel mentioned above, with probability going to 1 as → ∞, we then reach the

end of Step |O1| of DACB before Stage 1 ends (i.e., before any agent has applied to his

3 log(n)2 ≤ κ(n) most favorite object). Thus, with probability going to 1, the outcome

so far coincides with the one attained in DA in the Submarket composed of the |O1| first
agents and of all objects in O1 objects. This implies that with probability going to 1, all

objects in O1 are assigned. In addition, given our high probability event E that all agents

28



have made fewer than κ(n) offers at the end of Step |O1|, this implies that with probability

going to 1, Step |O1| + 1 will be triggered. This completes the proof of the first part of

Proposition 1.

In sum, with probability going to 1, the first |O1| Steps (i.e., Stage 1) of DACB proceed

exactly the same way as DA in the submarket that consists of the |O1| first agents and

of all objects in O1 objects. Thus, appealing again to Pittel [we need to mention the

relative rank of objects in Pittel, Shall we state Pittel’s result somewhere? How

about putting a footnote here to mention this?], with probability going to 1 by the end of

Stage |O1|, the proportion of objects in O1 for which Vo(DACB(o)) ≥ 1 − ǫ is above any

γ arbitrarily close to 1. Since objects in O1 will have received even more offers at the end

of Stage 1, it must still be that, with probability going to 1, the proportion of objects in

O1 for which Vo(DACB(o)) ≥ 1− ǫ is above γ. Finally, by construction, all these matched

individuals obtain an object within their κ(n) most favorite objects which by Lemma 2

implies that with probability going to 1, they enjoy a payoff above U(u1, 1) − ǫ.23 Thus,

for k = 1, the statement in Proposition 1 is proved provided that our conditioning event

E holds. Since this event has probability going to 1 as n → ∞, the result must hold even

without the conditioning. Thus, we have proved Proposition 1 for the case k = 1.

Consider next Stage k > 1. The objects remaining in Stage k have received no offers in

Stages j = 1, ..., k−1 (or else the objects would have been assigned in those stages). Hence,

by the principle of deferred decisions, we can assume that the individuals’ preferences over

those objects are yet to be drawn in the beginning of Stage k. Similarly, we can assume

that priorities of those objects are also yet to be drawn. Put in another way, conditional

on Stage k being over, we can assume without loss that the distribution of preferences

and priorities is the same as the unconditional one. Thus, we can proceed inductively to

complete the proof. �

Theorem 5 shows that DACB is superior to DA or TTC in large markets when the

designer cares about both (asymptotic) efficiency and (asymptotic) stability. One potential

drawback of DACB is that it is not strategy-proof.24 In particular, the agent who triggers

23Note that this implies that

Pr [{i ∈ Ik|Ui(DACB(i)) ≥ U(uk, 1)− ǫ} = Ik] → 1

as n → ∞. Hence, part of the statement of Proposition 1 can be strengthened.
24 Similarly, truthful-reporting may not be Bayesian incentive compatible under DACB in a finite

economy. To see this, suppose there are three individuals and three tiers of objects each containing only

one object. Let us note these objects o1, o2 and o3. Further assume that the differences in common values
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a stage to end may misreport his preference by including in his top κ favorite objects a

“safe” item which is outside his top κ favorite objects but is unlikely to be popular among

other agents. Such a misreporting could benefit the agent since the safe item would not

have received any other offer and thus would accept him whereas truthful reporting could

trigger a stage to end and result in the agent receiving a worse object. But the chance of

becoming in the position to trigger termination of a stage is one out of the number of agents

assigned in the same stage, so it is very small in a large economy. Hence, the incentive

problem with the DACB is not very serious.

To formalize this idea, we study the Bayesian game induced by DACB. In this game,

the set of types for each individual corresponds to his vector of cardinal utilities, i.e.,

{Ui(o)}o∈O, or equivalently, ξi := {ξi,o}o∈O. These values are drawn according to the

distributions assumed so far. The underlying informational environment is Bayesian: each

individual only knows his own preferences, labeled his “type,” and knows the distribution

of others’ preferences. Importantly, the agents do not know the priorities of all agents

(including their own). I wonder if we can allow an agent to know his priorities? DACB

maps profiles of ordinal preferences reported by the agents and their priorities with objects

into matchings. In the game induced by DACB, the set of actions by individual i of a given

type ξi is the set of all possible ordinal preferences the agent may report. A typical element

of that set will be denoted Pi. Each type ξi induces an ordinal preference which we denote

Pi(ξi). This is interpreted as the truthful report of individual i of type ξi.

We will use the notion of interim ǫ-Bayes-Nash equilibrium Why interim? Bayesian

equilibrium already implies “interim”?. Given any ǫ > 0, truthtelling is said to be an

interim ǫ-Bayes-Nash equilibrium if for each individual i, each type ξi and any possible

are so large that irrespective of the idiosyncratic shocks, individuals all agree on their ordinal ranking: o1

is ranked first, then o2 and finally o3 is the less desirable object. Assume that κ = 2. In that case if all

individuals report truthfully, under DACB, individual 1 gets object o1 with probability 1/2 (in the event o1

ranks 1 above 2 in which case 1 is the individual matched in the first stage), object o2 with probability 1/4

(in which case 1 is the individual matched in the second stage and o2 ranks 1 above 3) and object o3 with

probability 1/4 (in which case 1 is the individual matched in the third stage). However, if individual 1 lies

and reports that o2 is his most favorite object, then, provided that the other individuals report truthfully,

1 must believe that he will get o2 with probability 1 (either 2 or 3 end stage 1 and individual 1 is matched

in the fist stage for sure). With an appropriate choice of common values and of the upper bound on the

idiosyncratic shock (i.e., 1), the misreport will be profitable. As we argue below, however, in the large

economy, truthful reporting is ǫ-Bayesian Nash equilibrium.
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report of ordinal preferences P ′
i , we have

E [Ui(DACBi(Pi(ξi), ·)) | ξi] ≥ E [Ui(DACBi(P
′
i , ·)) | ξi]− ǫ,

for all n > N for some N , where Ui(DACB(Pi, .)) denotes the random utility that i gets

given that he reports Pi.

We state the following result which provides a sense in which DACB performs well from

incentive perspectives.

Theorem 6. Let us assume that κ(n) ≥ 3 log2(n) and κ(n) = o(n). Fix any ǫ > 0.

Under DACB, there exists N > 0 such that for all n > N , truthtelling is an ǫ-Bayes-Nash

equilibrium.

Proof. See Appendix F. �

Remark 5 (Feasibility of asymptotic efficiency and asymptotic stability). The feasibility

of attaining both asymptotic efficiency and asymptotic stability can be seen directly by

appealing to the Erdös-Renyi theorem. The theorem states that a random bipartite graph

that consists of vertices I and O and of edges created at random with fixed probability

p > 0 for each (i, o)i∈I,o∈O admits a perfect bipartite matching with probability approaching

one as n = |I| = |O| tends to ∞.25 Well-known algorithms such as the augmenting path

algorithm would find a maximal matching and thus would find a perfect matching whenever

it exists.

Exploiting the Erdös-Renyi theorem, one can construct a mechanism in which (1) agents

and objects (more precisely their suppliers) report their idiosyncratic shocks, (2) an edge

is created between each agent and each object based on the reports if and only if ξ > 1− ǫ

and η > 1− ǫ, for any arbitrary ǫ > 0, and (3) a maximal bipartite matching is found. The

matching obtained in this way is asymptotically efficient and asymptotically stable, since

all objects attain arbitrarily high payoffs and all agents realize arbitrarily high idiosyncratic

payoffs. But this mechanism would not be desirable for several reasons. First, it would

not work if the agents cannot tell apart common values from idiosyncratic values. More

important, the mechanism would not have a good incentive property. An agent will be

reluctant to report the objects in lower tiers even though they have high idiosyncratic

preferences. Indeed, if he expects that with significant probability, he will not to get any

object in the highest tier, he will have incentives to claim that he enjoys high idiosyncratic

25A perfect bipartite matching is a bipartite graph in which each vertex is involved in exactly one edge.
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payoffs with a large number of high tier objects and that all his idiosyncratic payoffs for

the other tiers are low. It is very likely that there is a perfect matching even under this

misreport and this will ensure him to get matched with a high tier object.

Remark 6 (General priorities distribution). So far, we have assumed that the agents’

priorities with the objects are distributed at random.

Remark 7 (Shanghai mechanism).
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A Proof of Theorem 1

A.1 Preliminaries

We first partition the set of objects in each n-economy based on their common values into

finite tiers. That is, let sup 1 : u1 > u2 > ... > uK = 0. In the finite-tier economy, the tiers

here can be defined to correspond to the common values (since there is a finite number

of them). In the general model, any such tiers will induce a CDF which will approximate

the true distribution Y n from below (as K increases). For each k = 1, . . . , K, define

On
≤k := {o ∈ On|uo ≥ uk} be the set of objects in tier k or better, and let Y n

≤k := Y n(1)−
limu′↑uk Y n(u′) and Xn

≤k := Xn(1)− limu′↑uk Xn(u′), denote the associated mass of objects

and the associated mass of copies of objects. Define similarly Y≤k := Y (1)− limu′↑uk Y (u′)

and X≤k := X(1)− limu′↑uk X(u′) for the limit economy. From now on, for notational ease,

we shall suppress n except for Xn and Y n to avoid confusion with their limit counterparts.

Now, consider any Pareto efficient mechanism µ ∈ M∗. By a well known result (e.g.,

Abdulkadiroglu and Sönmez (1998)), any Pareto efficient matching can be equivalently

implemented by a serial dictatorship mechanism with a suitably chosen serial order. Let

SDfµ be the serial dictatorship mechanism where for each state ω a serial order fµ(ω) : I →
I, a bijective mapping, is chosen so as to implement µω(·). That is, for each state ω ∈ Ω,

the serial order fµ is chosen so that SD
fµ(ω)
ω (i) = µω(i) for each i ∈ I. Since the matching

µ arising from the mechanism depends on the random state ω, so is the serial order f

implementing µ. In the sequel, we shall study a Pareto efficient matching mechanism µ via

the associated SDfµ . To avoid clutter, we shall now suppress the dependence of f on µ.

Given an n-economy, for any Pareto efficient mechanism µ and the associated serial

order f , let

I≤k(µ) := {i ∈ I|f(i) ≤ QnXn
≤k}.

be the set of agents who have a serial order within the total supply of objects in tiers k or

better (in the equivalent serial dictatorship implementation). For any ǫ, the set

Ī≤k(µ) =
{

i ∈ I≤k(µ)|Ui(SD
f(i)) ≤ U(uk, 1− ǫ)},

consists of the agents who realize payoff no greater than U(uk, 1− ǫ) while having a serial

order within QnXn
≤k. The following lemma will be crucial for the main result.

Lemma 3. For any ǫ and γ > 0,

Pr

[

∃µ ∈ M∗ such that
|Ī≤k(µ)|

|I| ≥ γ

]

→ 0

33



as n → ∞.

Proof. For each k such that Y≤k = 0, the result holds trivially since in that case,
|Ī≤k(µ)|

|I|
≤ q̄Y n

≤k → q̄Y≤k = 0. So let us consider k s.t. Y≤k > 0. Fix any ǫ > 0 and

γ > 0. We first build a random graph on I ∪O where an edge (i, o) is added if and only if

ξi,o > 1− ǫ.

Now choose any δ ∈ (0, 1). For each µ ∈ M∗, define random sets Iδ≤k(µ) := {i ∈
I
∣

∣f(i) ≤ QnXn
≤k(1− δ)} , Īδ≤k(µ) := {i ∈ Iδ≤k

∣

∣Ui(SD
f(i)) ≤ U(uk, 1− ǫ)}, and

Ōδ
≤k(µ) := {o ∈ O≤k

∣

∣∃i ∈ µ−1(o) s.t. f(i) > QnXn
≤k(1− δ)},

which consists of objects in O≤k assigned to the agents with serial order worse than

QnXn
≤k(1− δ).

Then, the set I
δ

≤k(µ) ∪ Ōδ
≤k(µ) must be an independent set. If not, there would exist

an edge (i, o) ∈ I
δ

≤k × Ōδ
≤k. Then,

Ui(o) > U(uk, 1− ǫ) ≥ Ui(SD
f(i))

where the strict inequality holds since ξi,o > 1 − ǫ (i.e., (i, o) is an edge), o ∈ O≤k, and

since U(·, ·) is monotonic (in particular strictly increasing in idiosyncratic component). The

weak inequality holds because i ∈ I
δ

≤k. In addition, we must have

f(i) ≤ QnXn
≤k(1− δ) < f(i′), for some i′ ∈ µ−1(o)

where the first inequality comes from the fact that i ∈ Iδ≤k(µ) while the second from the

fact that o ∈ Ōδ
≤k(µ). Thus, this means that when i becomes the dictator under SDf ,

object o is still available, and the agent does not choose it. But Ui(o) > Ui(SD
f(i)) means

that i chooses an object worse than o, which yields a contradiction.

Thus, for each µ ∈ M∗, I
δ

≤k(µ)∪ Ōδ
≤k(µ) contains a balanced independent set with size

min
{

|Iδ≤k(µ)|, |Ōδ
≤k(µ)|

}

. Since |I| = n and |O| is in the order of n, applying Lemma 1,

we get that, for any γ̃ > 0:

Pr
[

∃µ ∈ M∗ s.t. min
{

|Iδ≤k(µ)|, |Ōδ
≤k(µ)|

}

≥ γ̃n
]

→ 0 (3)

as n goes to infinity.

Since
∣

∣Ōδ
≤k(µ)

∣

∣ q̄ ≥∑o∈Ōδ
≤k

(µ) qo ≥
⌊

δQnXn
≤k

⌋

=
⌊

δnXn
≤k

⌋

for each µ ∈ M∗ , and since

Xn
≤k → X≤k ≥ Y≤k > 0 as n → ∞, one can find β > 0 and N1 ∈ N such that for all n > N1,
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∣

∣Ōδ
≤k(µ)

∣

∣ ≥ βn for each µ ∈ M∗.26 Hence, for any γ′ > 0 and for any n > N1:

Pr
[

∃µ ∈ M∗ s.t. |Iδ≤k(µ)| ≥ γ′n
]

≤ Pr
[

∃µ ∈ M∗ s.t. |Iδ≤k(µ)| ≥ min{γ′, β}n
]

= Pr
[

∃µ ∈ M∗ s.t. min
{

|Iδ≤k(µ)|, |Ōδ
≤k(µ)|

}

≥ min{γ′, β}n
]

→ 0,

as n goes to infinity, where the equality comes from the choice of β and N1 while the

convergence to 0 holds by (3).

Finally, by construction, |Īδ≤k(µ)| ≥ |Ī≤k(µ)| −
⌊

δQnXn
≤k

⌋

≥ |Ī≤k(µ)| − δQnXn
≤k. Since

Qn = |I| and Xn
≤k ≤ 1, we get that

∣

∣Īδ≤k(µ)
∣

∣

|I| ≥
∣

∣Ī≤k(µ)
∣

∣

|I| − δ

for each µ ∈ M∗. Hence, it follows that

Pr

[

∃µ ∈ M∗ s.t.

∣

∣Ī≤k(µ)
∣

∣

|I| ≥ γ′ + δ

]

≤ Pr

[

∃µ ∈ M∗ s.t.

∣

∣Īδ≤k(µ)
∣

∣

|I| ≥ γ′

]

→ 0.

Set δ and γ′ such that δ + γ′ = γ. Then,

Pr

[

∃µ ∈ M∗ s.t.

∣

∣Ī≤k(µ)
∣

∣

|I| ≥ γ

]

→ 0.

�

We are now ready to prove Theorem 1.

A.2 Proof of Theorem 1

To prove the statement, we will show that the payoff distributions induced by Pareto

efficient mechanisms converge to F ∗ in the sense defined earlier.

Fix any ǫ′ > 0 and υ′ > 0. We shall show that there exists N ∈ N such that for all

n > N ,

Pr

[

sup
µ∈M̂∗

sup
z∈Z

inf
ẑ∈[z−ǫ′,z+ǫ′]

{|F µ(ẑ)− F ∗(z)|} ≥ ǫ′

]

< υ′, (4)

26 Here we use the assumption that q̄ does not increase in n. If it were to depend on n and we further

assume that it is o(n/log(n)), one can check that
∣

∣Ōδ
≤k(µ)

∣

∣ is ω(log(n)). Using Lemma 1, one can show

that Theorem 1.
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where F ∗ and F µ are respectively the CDF of the payoff induced by the limit utilitarian

upper bound and the CDF induced by mechanism µ in M∗. We later show that this is

sufficient for the proof.

To this end, we partition the common value space [0, 1] into intervals ∪K
k=1[u

k, uk−1),

where 1 =: u1 > u2 > ... > uK := 0) are such that supk supu,u′∈[uk,uk−1) |X(u)−Xn(u′)| < ǫ′

2
,

for any n > N̂ for some N̂ ∈ N. Such a partition exists since Xn → X in Lévy metric and

since one can select all points of discontinuity of X to be a subset of the threshold values for

the partition. Define as before O≤k = {o ∈ O|uo ≥ uk} and Y n
≤k := Y n(1)− limu′↑uk Y n(u′)

, Xn
≤k := Xn(1)− limu′↑uk Xn(u′).

The partition induces a corresponding partition of the payoff space Z := [U(uK , 1), U(1, 1)]

into intervals Zk := [U(uk, 1), U(uk−1, 1)), k = 1, ..., K. Next, let ǫ > 0 be such that

U(uk−1, 1 − ǫ) > max{U(uk−1, 1) − ǫ′, U(uk, 1)}, for all k = 1, ..., K. Then, for each

Pareto efficient mechanism µ ∈ M∗ and for each z ∈ Zk, k ∈ {1, ..., K}, there exists

z′ ∈ [z − ǫ′, z + ǫ′] ∩ Zk. Specifically, let z′ := min{z, U(uk−1, 1 − ǫ)}. Clearly, given our

choice of ǫ, we have that z′ ∈ Zk. In addition, given this choice of ǫ, z′ ∈ [z− ǫ′, z+ ǫ′]. In-

deed, this is trivially true if z ≤ U(uk−1, 1−ǫ) (in which case z′ = z) and if z > U(uk−1, 1−ǫ),

we have that z − ǫ′ < U(uk−1, 1)− ǫ′ < U(uk−1, 1− ǫ) = z′(< z) where the first inequality

comes from the fact that z ∈ Zk while the second is by the choice of ǫ.

Define

Jµ(z) = {i ∈ I|Ui(µ(i)) ≤ z} .

be the set of agents enjoying payoff of at most z under matching mechanism µ. Let uz be

such that U(uz, 1) = z. (Given that we are interested in z ∈ [U(0, 1), U(1, 1)], such a uz is

well defined since U(·, 1) continuous.) Clearly, any agent matched with an object having

common value no greater than uz must be in Jµ(z). This means that |Jµ(z)| ≥ QnXn(uz)

for all µ ∈ M∗.

By definition, for each z, F ∗(z) = X(uz). Now, since Qn = n = |I|, for each z,
|Jµ(z′)|

|I|
− F ∗(z) ≥ Xn(uz′)−X(uz), for any z′ ∈ [z − ǫ′, z + ǫ′] ∩ Zk. (Hence, one can set z′

as above.)
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Fix k = 1, ..., K. Then, for all n > N̂ ,

Pr

[

sup
µ∈M∗

sup
z∈Zk

inf
z′∈[z−ǫ′,z+ǫ′]

(

−|Jµ(z′)|
|I| + F ∗(z)

)

≥ ǫ′
]

≤Pr

[

sup
µ∈M∗

sup
z,z′∈Zk

(−Xn(uz′) +X(uz)) ≥ ǫ′
]

=Pr

[

sup
µ∈M∗

sup
u,u′∈[uk,uk−1)

(−Xn(u′) +X(u)) ≥ ǫ′

]

= 0, (5)

where the equality to 0 is from the definition of N̂ .

For each k, recall I≤k(µ) :=
{

i ∈ I|f(i) ≤ QnXn
≤k

}

and Ī≤k(µ) :=
{

i ∈ I≤k(µ)|Ui(SD
f(i)) ≤ U(uk, 1− ǫ)

where SDf is the SD rule implementing µ.

Then, any agent who obtains a payoff weakly less than U(uk−1, 1− ǫ) must be in the set

(I \I≤k−1(µ))∪ Ī≤k−1(µ). As shown above, for any z ∈ Zk, there exists z
′ ∈ [z−ǫ′, z+ǫ′]∩Zk

such that z′ ≤ U(uk−1, 1 − ǫ). For such a z′, we have Jµ(z′) ⊂ (I \ I≤k−1(µ)) ∪ Ī≤k−1(µ).

Hence, there exists Nk ∈ N, with Nk ≥ N̂ , such that for all n > Nk,

Pr

[

sup
µ∈M∗

sup
z∈Zk

inf
z′∈[z−ǫ′,z+ǫ′]

( |Jµ(z′)|
|I| − F ∗(z)

)

≥ ǫ′
]

≤Pr

[

sup
µ∈M∗

sup
z∈Zk

( |Ī≤k−1(µ)|+ |I| − |I≤k−1|
|I| −X(uz)

)

≥ ǫ′
]

=Pr

[

sup
µ∈M∗

sup
z∈Zk

( |Ī≤k−1(µ)|
|I| + lim

u′↑uk−1
Xn(u′)−X(uz)

)

≥ ǫ′
]

≤Pr

[

sup
µ∈M∗

|Ī≤k−1(µ)|
|I| + sup

u,u′∈[uk,uk−1)

|Xn(u′)−X(u)| ≥ ǫ′

]

<υ′/K, (6)

where the last inequality follows from Lemma 3 (with γ = ǫ′/2) and an appropriate choice

of Nk together with the definition of N̂ .

Combining (5) and (6), we get that for each k = 1, . . . , K, and n > Nk,

Pr

[

sup
µ∈M∗

sup
z∈Zk

inf
z′∈[z−ǫ′,z+ǫ′]

∣

∣

∣

∣

|Jµ(z′)|
|I| − F ∗(z)

∣

∣

∣

∣

≥ ǫ′
]

< υ′/K,
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Since F µ(z′) = |Jµ(z′)|
|I|

, for all n > maxk Nk,

Pr

[

sup
µ∈M∗

L(F µ, F ∗) ≥ ǫ′
]

≤Pr

[

sup
µ∈M∗

{

sup
z∈Z

inf
z′∈[z−ǫ′,z+ǫ′]

|F µ(z′)− F ∗(z)|
}

≥ ǫ′
]

≤
K
∑

k=1

Pr

[

sup
µ∈M∗

{

sup
z∈Zk

inf
z′∈[z−ǫ′,z+ǫ′]

|F µ(z′)− F ∗(z)|
}

≥ ǫ′
]

<Kυ′/K = υ′,

where the first inequality holds since if L(F µ, F ∗) ≥ ǫ′, then there exists z such that

infz′∈[z−ǫ′,z+ǫ′] |F µ(z′)− F ∗(z)| ≥ ǫ′; the second follows from the union bound, and the last

follows from the above argument. This completes the proof.

B Proof of Lemma 2

We first prove the following claim:

Claim: Fix any ǫ̃ > 0. Let Î and Ô be two sets such that both |Î| and |Ô| are in between

αn and n for some α > 0. For each i ∈ Î, let Xi be the number of objects in Ô for which

ξio ≥ 1− ǫ̃. For any δ < ǫ̃,

Pr{∃i with Xi ≤ δ |Ô|} → 0

as n → ∞.

Proof. Xi follows a binomial distribution B(|Ô|, ǫ̃) (recall that ξio follows a uniform

distribution with support [0, 1]). Hence,

Pr{∃i with Xi ≤ δ|Ô|} ≤ ∑

i∈Î Pr{Xi ≤ δ|Ô|}
= |Î|Pr{Xi ≤ δ|Ô|}
≤ |Î|1

2
exp

(

−2 (|Ô|ǫ̃−δ|Ô|)2

|Ô|

)

= |Î|

2 exp(2(ǫ̃−δ)2|Ô|)
→ 0

where the first inequality is by the union bound while the second equality is by Hoeffding’s

inequality. �
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Proof of Lemma 2. Note that for ǫ > 0 so small that for each k = 1, . . . , K − 1,

U(uk, 1)− ǫ > U(uk+1, 1), objects in O≥k that yield a payoff greater than U(uk, 1)− ǫ can

only be in Ok. Hence, the first part of the Lemma implies the second part, so we prove the

first part.

Let us fix ǫ > 0. By the continuity of U(uk, ·), there exists ǫ̃ > 0 such that U(uk, 1− ǫ̃) >

U(uk, 1) − ǫ. By the above claim, with Î := I and Ô := Ok, there exists δ < ǫ̃ such that

with probability going to 1 as n → ∞, all individuals in I have at least δ|Ok| objects o’s

in Ok for which ξio > 1− ǫ̃. By our choice of ǫ̃, the payoffs that individuals enjoy for these

objects must be higher than U(uk, 1) − ǫ. This implies that with probability going to 1,

for every individual in I, his δ|Ok| most favorite objects in O≥k yield a payoff greater than

U(uk, 1)− ǫ, as claimed. �

C Proof of Theorem 3

C.1 Preliminary Results

We first perform preliminary analysis on TTC, which will prove useful for the proof (which

is contained in the next subsection). The important part of this analysis concerns the

number of objects assigned via long cycles in TTC. This analysis requires delving deeply

into stochastic (more precisely Markovian) structure of the number of the objects/agents

assigned at any given round of TTC. And since this involves the setting up of the “random

mapping” framework and is quite involved, we separate that result out as a new section

in Appendix D. Here, we simply state the result developed from that section, that will be

necessary for our proof.

To begin, define a random set:

Ô := {o ∈ O1|o is assigned in TTC via long cycles}.

Appendix D establishes the following result.

Lemma 4. There exist γ > 0, δ > 0, N > 0 s.t.

Pr

{

|Ô|
n

> δ

}

> γ,

for all n > N .
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Proof. See Appendix D. �

For the next result, define

I2 := {i ∈ I|TTC(i) ∈ O2}

to be the (random) set of agents who are assigned under TTC to objects in O2. We next

establish that any randomly selected (unmatched) pair from Ô and I2 forms an ǫ-block

with positive probability for sufficiently small ǫ > 0.

Lemma 5. There exist ε > 0, ζ > 0 such that, for all n > N , for any ǫ ∈ [0, ε),

Pr
[

ηjo ≥ ηTTC(o)o + ǫ
∣

∣

∣
o ∈ Ô, j ∈ I2

]

> ζ.

Proof. Note first that since there are large common value differences, if o ∈ Ô ⊂ O1

and j ∈ I2, it must be that o does not point to j in the cycle to which o belongs under

TTC (otherwise, if j is part of the cycle in which o is cleared, since o ∈ O1, this means

that j must be pointing to an object in O1 when she is cleared, which is a contradiction

with j ∈ I2). Note also that j is still in the market when o is cleared.

Define E1 := {ηjo ≥ ηTTC(o)o} ∧ {o ∈ Ô} ∧ {j ∈ I2} and E2 := {ηjo ≤ ηTTC(o)o} ∧ {o ∈
Ô} ∧ {j ∈ I2}. We first show that PrE1 = PrE2.

Assume that under the realizations ξ := (ξio)io and η := (ηio)io event E1 is true.

Define η̂ := (η̂io)io where η̂jo := ηTTC(o)o and η̂TTC(o)o := ηjo – while η̂ and η coincide

otherwise. It is easily checked that under the realizations ξ and η̂, event E2 is true.

Indeed, that {η̂jo ≤ η̂TTC(o)o} holds true is trivial. Now, since, as we already claimed,

under the realizations ξ and η, j and TTC(o) are never pointed by o, when j and TTC(o)

are switched in o’s priorities, by definition of TTC, o still belongs to the same cycle and,

hence, TTC runs exactly in the same way. This shows that {o ∈ Ô} ∧ {j ∈ I2} also holds

true under the realizations ξ and η̂,

Given that Pr(ξ,η) = Pr(ξ, η̂), we get that PrE1 = PrE2.

Next, let Eǫ := {ηjo ≥ ηTTC(o)o + ǫ}. Note that

∪ǫ>0Eǫ = {ηjo > ηTTC(o)o} =: E.

Since the distribution Pr[·] of ηio has no atom, Pr
[

·
∣

∣

∣
o ∈ Ô, j ∈ I2

]

has no atom as well

(Pr(ηjo = η) = 0 ⇒ Pr(ηjo = η
∣

∣

∣
o ∈ Ô, j ∈ I2 ) = 0). Thus, we must have

Pr
[

E
∣

∣

∣
o ∈ Ô, j ∈ I2

]

= Pr
[

{ηjo ≥ ηTTC(o)o}
∣

∣

∣
o ∈ Ô, j ∈ I2

]

=
1

2
.
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Since Eǫ is increasing when ǫ decreases, combining the above, we get27

lim
ǫ→0

Pr
[

Eǫ

∣

∣

∣
o ∈ Ô, j ∈ I2

]

= Pr
[

∪ǫ>0Eǫ

∣

∣

∣
o ∈ Ô, j ∈ I2

]

= Pr
[

E
∣

∣

∣
o ∈ Ô, j ∈ I2

]

=
1

2
.

Thus, one can fix δ ∈ (0, 1/2) arbitrarily close to 0 and find ε > 0 so that for any ǫ ∈ (0, ε),

Pr
[

Eǫ

∣

∣

∣
o ∈ Ô, j ∈ I2

]

≥ 1
2
− δ > 0. �

Corollary 4. For any ǫ > 0 sufficiently small, there exist ζ > 0, N > 0 such that, for all

n > N ,

E

[

|Î2(o)|
n

∣

∣

∣o ∈ Ô

]

≥ x2ζ

Proof. Then, for any ǫ sufficiently small, we have ζ > 0 and N > 0 such that

E

[

|Î2(o)|
∣

∣

∣
o ∈ Ô

]

= E

[

∑

i∈I2

1{ηio>ηTTC(o)o+ǫ}

∣

∣

∣
o ∈ Ô

]

= EI2

(

E

[

∑

i∈I2

1{ηio>ηTTC(o)o+ǫ}

∣

∣

∣
o ∈ Ô, I2

])

= EI2

(

∑

i∈I2

E

[

1{ηio>ηTTC(o)o+ǫ}

∣

∣

∣
o ∈ Ô, I2, i ∈ I2

]

)

= EI2

(

x2nE
[

1{ηio>ηTTC(o)o+ǫ}

∣

∣

∣
o ∈ Ô, I2, i ∈ I2

])

= x2n
(

E

[

1{ηio>ηTTC(o)o+ǫ}

∣

∣

∣
o ∈ Ô, i ∈ I2

])

= x2nPr(ηio > ηTTC(o)o + ǫ
∣

∣

∣
o ∈ Ô, i ∈ I2 )

= x2nPr(ηio ≥ ηTTC(o)o + ǫ
∣

∣

∣
o ∈ Ô, i ∈ I2 )

≥ x2ζn,

for all n > N . �

C.2 Proof of Theorem 3

Proof. The theorem follows from Lemma 4 and Corollary 4. The former implies that as

the economy grows, the number of objects assigned via long cycles remain significant. The

27Recall the following property. Let {En}n be an increasing sequence of events. Let E := ∪nEn be the

limit of {En}n. Then: Pr(E) = limn→∞ Pr(En).
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latter implies that each of such object finds many agents assigned by TTC to O2 desirable

for forming ǫ-blocks. More precisely, for any sufficiently small ǫ ∈ (0, U(u0
1, 0)− U(u0

2, 1)),

we get that, for any large n,

E

[ |Jǫ(TTC)|
n(n− 1)

]

≥ E





∑

o∈Ô

|Î2(o)|
n(n− 1)





≥ Pr{|Ô| ≥ δn}E





∑

o∈Ô

|Î2(o)|
n(n− 1)

∣

∣

∣
|Ô| ≥ δn





≥ γE



E





∑

o∈Ô

|Î2(o)|
n(n− 1)

∣

∣

∣
|Ô| ≥ δn, Ô









= γE





∑

o∈Ô

E

[

|Î2(o)|
n(n− 1)

∣

∣

∣
|Ô| ≥ δn, Ô, o ∈ Ô

]





≥ γδnE

[

|Î2(o)|
n(n− 1)

∣

∣

∣
o ∈ Ô

]

≥ γδE

[

|Î2(o)|
n

∣

∣

∣
o ∈ Ô

]

γ ≥ δζx2 > 0.

�

D Proof of Lemma 4: Random Structure of TTC

In this section, we provide an analysis of TTC in our random environment. Our ultimate

goal is to prove Lemma 4. For our purpose, it is sufficient to consider the TTC assignment

arising from the market consisting of the agents I and the objects O1 in the top tier

(recall that, irrespective of the realizations of the idiosyncratic values, all agents prefer

every object in O1 to any object in O2). Hence, we shall simply consider an unbalanced

market consisting of a set I of agents and a set O of objects such that (1) the preferences

of each side with respect to the other side are drawn i.i.d. uniformly, and (2) both |O| and
|I| − |O| increase in the order of |O|, as the market size |O| grows to infinity. The analysis

of this market requires a preliminary result on bipartite random mapping.
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D.0.1 Preliminaries

Here, we develop a couple of preliminary results that we shall later invoke. Throughout,

we shall consider two finite sets I and O, with cardinalities |I| = n, |O| = o.

Number of Spanning Rooted Forests. A rooted tree is a connected directed bipar-

tite digraph where all vertices have out-degree 1 except the root which has out-degree 0.28

A rooted forest is a bipartite graph which consists of a collection of disjoint rooted trees.

A spanning rooted forest over I ∪O is a forest comprising vertices I ∪O. From now on,

a spanning forest will be understood as being over I ∪ O. We will be using the following

result.

Lemma 6 (Jin and Liu (2004)). Let V1 ⊂ I and V2 ⊂ O where |V1| = ℓ and |V2| = k. The

number of spanning rooted forests having k roots in V1 and ℓ roots in V2 is f(n, o, k, ℓ) :=

on−k−1no−ℓ−1(ℓn+ ko− kℓ).

Random Bipartite Mapping. We now consider arbitrary mappings, g : I → O and

h : O → I, defined over our finite sets I and O. Note that such mappings naturally induces

bipartite digraphs with vertices I ∪ O and directed edges with the number of outgoing

edges equal to the number of vertices, one for each vertex. In this digraph, i ∈ I points

to g(i) ∈ O while o ∈ O points to h(o) ∈ I. A random bipartite mapping selects a

composite map h◦ g uniformly from a set H×G = IO×OI of all bipartite mappings. Note

that a random bipartite mapping induces a random bipartite digraph consisting of vertices

I∪O and directed edges emanating from vertices, one for each vertex. We say that a vertex

in a digraph is cyclic if it is in a cycle. The following lemma states the number of cyclic

vertices in a random bipartite digraph induced by a random bipartite mapping.

Lemma 7 (Jaworski (1985), Corollary 3). The number q of the cyclic vertices in a random

bipartite digraph induced by a random bipartite mapping g : I → O and h : O → I has an

expected value of

E[q] := 2

o
∑

i=1

(o)i(n)i
oini

,

28Sometimes, a tree is defined as an acyclic undirected connected graph. In such a case, a tree is rooted

when we name one of its vertex a “root.” Starting from such a rooted tree, if all edges now have a direction

leading toward the root, then the out-degree of any vertex (except the root) is 1. So the two definitions

are actually equivalent.
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where (x)j := x(x− 1) · · · (x− j − 1).

For the next result, consider agents I ′ and objects O′ such that |I ′| = |O′| = m > 0.

We say a mapping f = h ◦ g is a bipartite bijection, if g : I ′ → O′ and h : O′ → I ′

are both bijections. Note that a bipartite bijection consists of disjoint cycles. A random

bipartite bijection is a (uniform) random selection of a bipartite bijection from the set

of all bipartite bijections. The following result will prove useful for a later analysis.

Lemma 8. Fix sets I ′ and O′ with |I ′| = |O′| = m > 0, and a subset K ⊂ I ′∪O′, containing

a ≥ 0 vertices in I ′ and b ≥ 0 vertices in O′. The probability that each cycle in a random

bipartite bijection contains at least one vertex from K is

a+ b

m
− ab

m2
.

Proof. We shall invoke Lovasz (1979) Exercise 3.6, which establishes that the prob-

ability that each cycle of a random permutation29 of a finite set |X| contains at least one
element of a set K ⊂ X is |K|/|X|.

To this end, observe first that a bipartite bijection h◦ g induces a permutation of set I ′.

Thus, a random bipartite bijection defined over I ′×O′ induces a random permutation of I ′.

The probability that each cycle of the randomly selected bipartite bijection contains at least

one vertex in K is identical to the probability that each cycle of the induced permutation

of I ′ contains at least one of a+Z vertices, where Z is the (random) number of vertices in

I ′ \K that point to K ∩ O′. For any max{b− a, 0} ≤ z ≤ min{m− a, b},

Pr{Z = z} =

(

m−a

z

)(

a

b−z

)

(

m

b

) .

The above formula can be understood as follows.
(

m−a

z

)(

a

b−z

)

is the number of ways one

can choose z vertices from I ′ \K and b−x vertices from K ∩ I ′. Thus, the total number of

bipartite bijections having exactly z vertices in I ′ \K that point to K ∩O′ is
(

m−a

z

)(

a

b−z

)

υ

where υ is the total number of bipartite bijections in which the z vertices chosen from I ′\K
point to vertices in K ∩ O′ and the b − z vertices chosen from K ∩ I ′ point to vertices in

K ∩O′. Note that υ is precisely the number of bipartite bijections in which any b vertices

arbitrarily chosen from I ′ point to vertices in K ∩O′. Hence, the total number of bipartite

bijections having b vertices in I ′ pointing toK∩O′ is
(

m

b

)

υ. Thus, we get the above formula.

29Formally, a permutation of X is a bijection f : X → X . A random permutation chooses randomly a

permutation f from the set of all possible permutations.
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Applying the earlier result, the desired probability is

min{m−a,b}
∑

x=max{b−a,0}

Pr{Z = z}a+ z

m

=
a

m
+

min{m−a,b}
∑

z=max{b−a,0}

Pr{Z = z} z

m

=
a

m
+

min{m−a,b}
∑

x=max{b−a,0}

(

m−a

z

)(

a

b−z

)

(

m

b

)

( z

m

)

=
a

m
+

(

m− a

m
(

m

b

)

)

min{m−a,b}
∑

z=max{b−a,1}

(

a

b− z

)(

m− a− 1

z − 1

)

=
a

m
+

(

m− a

m
(

m

b

)

)

(

m− 1

b− 1

)

=
a

m
+

b(m− a)

m2

=
a+ b

m
− ab

m2
,

where the fourth equality follows from the Vandermonde’s identity. �

D.1 Markov Chain Property of TTC

Again consider a TTC in an unbalanced market with agents I and objects O. As is well

known, TTC assigns agents to objects via cycles formed recursively in multiple rounds. We

shall call a cycle of length 2—an agent points to an object, which in turn points to the

original agent—a short-cycle. Any cycles of length greater than 2 shall be called long-

cycles. Our aim is to prove that the number of agents assigned via long-cycles in TTC

grows in the same order n as the size of the market n grows. The difficulty with proving this

result stems from the fact that the preferences of the agents and objects remaining after

the first round of TTC need not be uniform, with their distributions affected nontrivially

by the realized event of the first round TTC, and the nature of the conditioning is difficult

to analyze in the large market. Our approach is to prove that, even though the exact

composition of cycles are subject to the conditioning issue, the number of agents assigned

in each round follows a Markov chain, and is thus free from the conditioning issue. We

then combine this observation with the bound we shall establish on the number of agents

assigned via short-cycles, to produce a desired result.
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We shall begin with the Markov Chain result. This result parallels the corresponding

result by Frieze and Pittel (1995) on the Shapley-Scarf version of TTC. The difference

between the two versions of TTC is not trivial, so their proofs do not carry over.

Theorem 7. Suppose any round of TTC begins with n agents and o objects remaining in

the market. Then, the probability that there are m ≤ min{o, n} agents assigned at the end

of that round is

pn,o;m =

(

m

(on)m+1

)(

n!

(n−m)!

)(

o!

(o−m)!

)

(o+ n−m).

Thus, denoting ni and oi the number of individuals and objects remaining in the market at

any round i, the random sequence (ni, oi) is a Markov chain.

D.2 Proof of Theorem 7

We begin by noting that TTC induces a random sequence of spanning rooted forests.

Indeed, one could see the beginning of the first round of TTC as a situation where we have

the trivial forest consisting of |I| + |O| trees with isolated vertices. Within this step each

vertex in I will randomly point to a vertex in O and each vertex in O will randomly point to

a vertex in I. Note that once we delete the realized cycles, we again get a spanning rooted

forest. So we can think again of the beginning of the second round of TTC as a situation

where we start with a spanning rooted forest where the agents and objects remaining from

the first round form this spanning rooted forest, where the roots consist of those agents and

objects that had pointed to the entities that were cleared via cycles. Here again objects

that are roots randomly point to a remaining individual and individuals that are roots

randomly point to a remaining object. Once cycles are cleared we again obtain a forest

and the process goes on like this.

Formally, the random sequence of forests, F1, F2, .... is defined as follows. First, we let

F1 be a trivial unique forest consisting of |I| + |O| trees with isolated vertices, forming

their own roots. For any i = 2, ..., we first create a random directed edge from each root

of Fi−1 to a vertex on the other side, and then delete the resulting cycles (these are the

agents and objects assigned in around i − 1) and Fi is defined to be the resulting rooted

forest. For any rooted forest Fi, let Ni = Ii ∪ Oi be its vertex set and ki = (kI
i , k

O
i ) be

the vector denoting the numbers of roots on both sides, and use (Ni, ki) to summarize this

information. And let FNi,ki denote the set of all rooted forests having Ni as the vertex set

and ki as the vector of its root numbers.
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Lemma 9. Given (Nj, kj), j = 1, ..., i, every (rooted) forest of FNi,ki is equally likely.

Proof. We prove this result by induction on i. Since for i = 1, by construction, the

trivial forest is the unique forest which can occur, this is trivially true for i = 1. Fix i ≥ 2,

and assume our statement is true for i− 1.

Fix Ni = Ii ∪Oi ⊂ Ni+1 = Ii+1 ∪ Oi+1, and ki and ki+1. For each forest F ∈ FNi+1,ki+1
,

we consider a possible pair (F ′, φ) that could have given rise to F , where F ′ ∈ FNi,ki and φ

maps the roots of F ′ in Ii to its vertices in Oi as well as the roots of F
′ in Oi to its vertices

in Ii. In words, such a pair (F ′, φ) corresponds to a set Ni of agents and objects remaining

at the end of TTC round i, of which kI
i agents of Ii and kO

i objects have lost their favorite

parties (and thus must their repoint to new partners in Ni at TTC round i + 1), and the

way in which they repoint to the new partners at TTC round i+1 causes a new forest F to

emerge at the end of TTC round i+ 1. There are typically multiple such pairs that could

give rise to F .

We start by showing that each forest F ∈ FNi+1,ki+1
arises from the same number of

such pairs—i.e., that the number of pairs (F ′, φ), F ′ ∈ FNi,ki, causing F to arise does not

depend on the particular F ∈ FNi+1,ki+1
. To this end, for any given F ∈ FNi+1,ki+1

, we

construct all such pairs by choosing a quadruplet (a, b, c, d) of four non-negative integers

with a + c = kI
i and c+ d = kO

i ,

(i) choosing c old roots from Ii+1, and similarly, d old roots from Oi+1,

(ii) choosing a old roots from Ii\Ii+1 and similarly, b old roots from Oi\Oi+1,

(iii) choosing a partition into cycles of Ni\Ni+1, each cycle of which contains at least one

old root from (ii),

(iv) choosing a mapping of the λ new roots to Ni\Ni+1 satisfying the bipartite graph

constraint.

Clearly, the number of pairs (F ′, φ), F ′ ∈ FNi,ki, satisfying the above restrictions de-

pends only on |Ii|, |Oi|, ki, ki+1, and |Ni+1| − |Ni|. We denote the number of such pairs by

β(|Ii|, |Oi|, ki; |Ii+1| − |Ii|, ki+1). Let φi = (φI
i , φ

O
i ) where φI

i is the random mapping from

the roots of Fi in Ii to Oi and φO
i is the random mapping from the roots of Fi in Oi to

Ii. Let φ = (φI , φO) be a generic mapping of that sort. Since, conditioned on Fi = F ′, the
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mappings φI
i and φO

i are uniform, we get (where kI
i and kO

i denote the number of roots of

Fi in Ii and Oi respectively)

Pr(Fi+1 = F |Fi = F ′) =
1

|Oi|kIi
1

|Ii|kOi
∑

φ

Pr(Fi+1 = F |Fi = F ′, φi = φ), (7)

where we used the fact that the conditional probability in the sum above is 1 or 0, depending

upon whether the forest F arises from the pair (F
′
, φ) or not.

Therefore, we obtain

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F, Fi = F ′|(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), Fi = F ′) Pr(Fi = F ′|(N1, k1), ...., (Ni, ki))

=
1

|FNi,ki|
∑

F ′∈FNi,ki

Pr(Fi+1 = F |Fi = F ′)

=
1

|FNi,ki|
∑

F ′∈FNi,ki

1

|Oi|kIi
1

|Ii|kOi
∑

φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki|
1

|Oi|kIi
1

|Ii|kOi
∑

F ′∈FNi,ki

∑

φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki|
1

|Oi|kIi
1

|Ii|kOi
β(|Ii|, |Oi|, ki; |Ii+1| − |Ii|, ki+1), (8)

where the third equality follows from the induction hypothesis and the Markov property of

{Fj}, the fourth follows from (7), and the last follows from the definition of β. Note this

probability is independent of F ∈ FNi+1,ki+1
. Hence,

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), (Ni+1, ki+1))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

Pr(Fi+1 ∈ FNi+1,ki+1
|(N1, k1), ..., (Ni, ki))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

∑

F̃∈FNi+1,ki+1
Pr(Fi+1 = F̃ |(N1, k1), ..., (Ni, ki))

=
1

|FNi+1,ki+1
| , (9)

which proves that, given (Nj, kj), j = 1, ..., i, every rooted forest of FNi,ki is equally likely.

�

The next lemma then follows easily.
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Lemma 10. Random sequence (Ni, ki) forms a Markov chain.

Proof.

Pr((Ni+1, ki+1)|(N1, k1), ...., (Ni, ki)) =
∑

F∈FNi+1,ki+1

Pr(Fi+1 = F |(N1, k1), ...., (Ni, ki))

=
∑

F∈FNi+1,ki+1

∑

F ′∈FNi,ki

Pr(Fi+1 = F, Fi = F ′|(N1, k1), ...., (Ni, ki))

=
∑

F∈FNi+1,ki+1

∑

F ′∈FNi,ki

Pr(Fi+1 = F |(N1, k1), ...., (Ni, ki), Fi = F ′) Pr(Fi = F ′|(N1, k1), ...., (Ni, ki))

=
∑

F∈FNi+1,ki+1

∑

F ′∈FNi,ki

1

|FNi,ki|
Pr(Fi+1 = F |Fi = F ′)

=
∑

F∈FNi+1,ki+1

1

|FNi,ki|
1

|Oi|kIi
1

|Ii|kOi
β(|Ii|, |Oi|, ki; |Ii+1| − |Ii|, ki+1),

where third equality follows from Lemma 9, specifically (9), and the Markov property of

{Fi}, and the last equality follows from (8). Observing that the conditional probability

depends only on (Ni+1, ki+1) and (Ni, ki), the Markov chain property is established. �

The proof of Lemma 10 reveals in fact that the conditional probability of (Ni+1, ki+1)

depends on (Ni, ki) only through its cardinalities (|Ii|, |Oi|), leading to the following con-

clusion.

Corollary 5. Random sequence {(|Ii|, |Oi|, kI
i , k

O
i )} forms a Markov chain.

Proof. Let ni := |Ii| and oi := |Oi|. By symmetry, given (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i ),
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the set (Ii, Oi) is chosen uniformly at random among all the
(

n

ni

)(

o

oi

)

possible sets. Hence,

Pr((ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ))

=
∑

(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ), (Ii, Oi)}

× Pr
{

(Ii, Oi) | (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i )
}

=





∑

(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}





1
(

n

ni

)(

o

oi

)

=







∑

(Ii,Oi):|Ii|=ni,|Oi|=oi
(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}







× 1
(

n

ni

)(

o

oi

)

=
1

(

n

ni

)(

o

oi

)

∑

(Ii,Oi):|Ii|=ni,|Oi|=oi
(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(Ii, Oi, k

I
i , k

O
i )},

where the second equality follows from the above reasoning and the last equality follows

from the Markov property of {(Ii, Oi, k
I
i , k

O
i )}. The proof is complete by the fact that the

last line, as shown in the proof of Lemma 10, depends only on (ni+1, oi+1, k
I
i+1, k

O
i+1), (ni, oi, k

I
i , k

O
i )).

�

We are now in a position to obtain our main result:

Lemma 11. The random sequence (ni, oi) is a Markov chain, with transition probability

given by

pn,o;m :=Pr{ni − ni+1 = oi − oi+1 = m|ni = n, oi = o}

=

(

m

(on)m+1

)(

n!

(n−m)!

)(

o!

(o−m)!

)

(o+ n−m).

Proof. We first compute the probability of transition from (ni, oi, k
I
i , k

O
i ) such that

kI
i + kO

i = κ to (ni+1, oi+1, k
I
i+1, k

O
i+1) such that kI

i+1 = λI and kO
i+1 = λO:

P(n, o, κ;m, λI , λO)

:=Pr
{

ni − ni+1 = oi − oi+1 = m, kI
i+1 = λI , kO

i+1 = λO | ni = n, oi = o, kI
i + kO

i = κ
}

.

This will be computed as a fraction Θ
Υ
. The denominator Υ counts the number of rooted

forests in the bipartite digraph with kI
i roots in Ii and kO

i roots in Oi, multiplied by the
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ways in which kI
i roots of Ii could point to Oi and kO

i roots of Oi could point to Ii.
30 Hence,

letting f(n, o, kI , kO) denote the number of rooted forests in a bipartite graph (with n and

o vertices on both sides) containing kI and kO roots on both sides.

Υ =
∑

(kI ,kO):kI+kO=κ

ok
I

nkOf(n, o, kI , kO)

=
∑

kI+kO=κ

ok
I

nkO
(

n

kI

)(

o

kO

)

on−kI−1no−kO−1(nkO + okI − kIkO)

=
∑

kI+kO=κ

(

n

kI

)(

o

kO

)

on−1no−1(nkO + okI − kIkO)

=onno

(

2

(

n+ o− 1

κ− 1

)

−
(

n+ o− 2

κ− 2

))

.

The first equality follows from the fact that there are ok
I

nkO ways in which kI roots in Ii

point to Oi and kO roots in Oi could point to Ii. The second equality follows from Lemma

6. The last uses Vandermonde’s identity.

The numerator Θ counts the number of ways in which m agents are chosen from Ii and

m objects are chosen from Oi to form a bipartite bijection each cycle of which contains

at least one of κ old roots, and for each such choice, the number of ways in which the

remaining vertices form a spanning rooted forest and the λI roots in Ii+1 point to objects

in Oi \ Oi+1 and λO roots in Oi+1 point to agents in Oi \ Oi+1. To compute this, we first

compute

α(n, o, κ;m, λI , λO) =
∑

(kI ,kO):kI+kO=κ

β(n, o, kI , kO;m, λI , λO),

where β is defined in Lemma 9. In words, α counts, for any F with n − m agents and

o − m objects and roots λI and λO on both sides, the total number of pairs (F ′, φ) that

could have given rise to F , where F ′ has n agents and o objects with κ roots and φ maps

the roots to the remaining vertices. Following the construction in the beginning of Lemma

30Given that we have ni = n individuals, oi = o objects and kIi + kOi = κ roots at the beginning of

step i under TTC, one may think of this as the total number of possible directed bipartite digraph one

may obtain via TTC at the end of step i when we let kIi roots in Ii point to their remaining most favorite

object and kOi roots in Oi point to their remaining most favorite individual.
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9, the number of such pairs is computed as

α(n, o, κ;m, λI , λO)

:=
∑

a+b+c+d=κ

(

n−m

c

)(

o−m

d

)(

m

a

)(

m

b

)(

a+ b

m
− ab

m2

)

(m!)2mλI+λO

=(m!)2mλI+λO ×
(

∑

a+b+c+d=κ

(

n−m

c

)(

o−m

d

)(

m− 1

a− 1

)(

m

b

)

+
∑

a+b+c+d=κ

(

n−m

c

)(

o−m

d

)(

m

a

)(

m− 1

b− 1

)

−
∑

a+b+c+d=κ

(

n−m

c

)(

o−m

d

)(

m− 1

a− 1

)(

m− 1

b− 1

)

)

=(m!)2mλI+λO

(

2

(

n+ o− 1

κ− 1

)

−
(

n + o− 2

κ− 2

))

.

The first equality follows from Lemma 8, along with the fact that there are (m!)2 possible

bipartite bijections between n −m agents and o −m objects, and the fact that there are

mλI

mλO

ways in which new roots λI agents and λO objects) could have pointed to 2m

cyclic vertices (m on the individuals’ side and m on the objects’ side), and the last equality

follows from Vandermonde’s identity.

The numerator Θ is now computed as:

Θ =

(

n

m

)(

o

m

)

f(n−m, o−m, λI , λO)α(n, o, κ;m, λI, λO)

=

(

n

m

)(

o

m

)

f(n−m, o−m, λI , λO)(m!)2mλI+λO

(

2

(

n+ o− 1

κ− 1

)

−
(

n+ o− 2

κ− 2

))

.

=

(

n!

(n−m)!

)(

o!

(o−m)!

)

mλI+λO

f(n−m, o−m, λI , λO)

(

2

(

n + o− 1

κ− 1

)

−
(

n+ o− 2

κ− 2

))

.

Collecting terms, let us compute

P(n, o, κ;m, λI , λO) =
1

onno

(

n!

(n−m)!

)(

o!

(o−m)!

)

mλI+λO

f(n−m, o−m, λI , λO).

A key observation is that this expression does not depend on κ, which implies that (ni, oi)

forms a Markov chain.

Its transition probability can be derived by summing the expression over all possible

(λI , λO)’s:

pn,o;m :=
∑

0≤λI≤n−m,0≤λO≤o−m

P (n, o, κ;m, λI , λO).
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To this end, we obtain:

∑

0≤λI≤n−m

∑

0≤λO≤o−m

mλI

mλO

f(n−m, o−m, λI , λO)

=
∑

0≤λI≤n−m

∑

0≤λO≤o−m

mλI

mλO

(

n−m

λI

)(

o−m

λO

)

×

(o−m)n−m−λI−1(n−m)o−m−λO−1((n−m)λO + (o−m)λI − λIλO)

=m





∑

0≤λI≤n−m

(

n−m

λI

)

mλI

(o−m)n−m−λI









∑

1≤λO≤o−m

(

o−m− 1

λO − 1

)

mλO−1(n−m)o−m−λO





+m





∑

1≤λI≤n−m

(

n−m− 1

λI − 1

)

mλI−1(o−m)n−m−λI









∑

0≤λO≤o−m

(

o−m

λO

)

mλO

(n−m)o−m−λO





−m2





∑

1≤λI≤n−m

(

n−m− 1

λI − 1

)

mλI−1(o−m)n−m−λI









∑

1≤λO≤o−m

(

o−m− 1

λO − 1

)

mλO−1(n−m)o−m−λO





=mon−mno−m−1 +mon−m−1no−m −m2on−m−1no−m−1

=mon−m−1no−m−1(n+ o−m),

where the first equality follows from Lemma 6, and the third follows from the Binomial

Theorem.

Multiplying the term 1
onno

(

n!
(n−m)!

)(

o!
(o−m)!

)

, we get the formula stated in the Lemma.

�

This last lemma concludes the proof of Theorem 7.

D.3 The Number of Objects Assigned via Short Cycles

We begin with the following question: If round k of TTC begins with a rooted forest F ,

what is the expected number of short-cycles that will form at the end of that round? We

will show that, irrespective of F , this expectation is bounded by 2. To show this, we will

make a couple of observations.

To begin, let nk be the cardinality of the set Ik of individuals in our forest F and let ok

be the cardinality of Ok, the set of F ’s objects. And, let A ⊂ Ik be the set of roots on the

individuals side of our given forest F and let B ⊂ Ok be the set of its roots on the objects

side. Their cardinalities are a and b, respectively.
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Now, observe that for any (i, o) ∈ A×B, the probability that (i, o) forms a short-cycle

is 1
nk

1
ok
. For any (i, o) ∈ (Ik\A) × B, the probability that (i, o) forms a short-cycle is

1
nk

if i points to o and 0 otherwise. Similarly, for (i, o) ∈ A × (Ok\B), the probability

that (i, o) forms a short-cycle is 1
ok

if o points to i and 0 otherwise. Finally, for any

(i, o) ∈ (Ik\A)× (Ok\B), the probability that (i, o) forms a short-cycle is 0 (by definition

of a forest, i and o cannot be pointing to each other in the forest F ). So, given the forest

F , the expectation of the number Sk of short-cycles is

E [Sk|Fk = F ] = E





∑

(i,o)∈Ik×Ok

1{(i,o) is a short-cycle}

∣

∣

∣

∣

Fk = F





=
∑

(i,o)∈Ik×Ok

E
[

1{(i,o) is a short-cycle} |Fk = F
]

=
∑

(i,o)∈A×B

E
[

1{(i,o) is a short-cycle} |Fk = F
]

+
∑

(i,o)∈(Ik\A)×B

E
[

1{(i,o) is a short-cycle} |Fk = F
]

+
∑

(i,o)∈A×(Ok\B)

E
[

1{(i,o) is a short-cycle} |Fk = F
]

=
∑

(i,o)∈A×B

Pr{(i, o) is a short-cycle |Fk = F }

+
∑

(i,o)∈(Ik\A)×B

Pr{(i, o) is a short-cycle |Fk = F }

+
∑

(i,o)∈Ik×(Ok\B)

Pr{(i, o) is a short-cycle |Fk = F }

≤ ab

nkok
+

nk − a

nk

+
ok − b

ok

= 2− aok + bnk − ab

nkok
≤ 2.

Observe that since ok ≥ b, the above term is smaller than 2. Thus, as claimed, we

obtain the following result31

31Note that the bound is pretty tight: if the forest F has one root on each side and each node which

is not a root points to the (unique) root on the opposite side, the expected number of short-cycles given

F is 1

nkok
+ nk−1

nk

+ ok−1

ok
→ 2 as nk, ok → ∞. Thus, the conditional expectation of sk is bounded by 2

and, asymptotically, this bound is tight. However, we can show, using a more involved computation, that

the unconditional expectation of sk is bounded by 1. The details of the computation are available upon

request.
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Proposition 2. If TTC round k begins with any forest F ,

E [Sk |Fk + F ] ≤ 2.

Given that our upper bound holds for any forest F , we get the following corollary.

Corollary 6. For any round k of TTC, E [Sk] ≤ 2.

D.4 The Number of Objects Assigned via Long Cycles

Again consider the unbalanced market in which |I|− |O| is in the same order of magnitude

as |O|, and recall n := |I| and o := |O|.
The Markov property established in Theorem 7 means that the number of agents and

objects assigned in any TTC round depends only on the number of agents and objects that

round begins with, regardless of how many rounds preceded that round and what happened

in those rounds. Hence, the distribution of the (random) number Mk of objects that would

be assigned in any round of TTC that begins with nk agents and ok(≤ nk) objects is

the same as that in the first round of TTC when there are nk agents and ok(≤ nk). In

particular, we can apply Lemma 7 to compute its expected value:32

E[Mk | |Ok| = ok] =
o
∑

i=1

(ok)i(nk)i
oikn

i
k

.

We can make two observations: First, the expected number is increasing in ok (and nk)

and goes to infinity as ok (and nk) increases. This can be seen easily by the fact that k−l
k

is increasing in k for any k > l. Second, given our assumption that nk ≥ ok, there exists

ô ≥ 133 such that

E[Mk |ok ] ≥ 3 if ok ≥ ô.

We are now ready to present the main result. Recall that Ô is the (random) set of

objects that are assigned via long cycles in TTC.

Theorem 8. E
[

|Ô|
|O|

]

≥ 1
3
− ô+2

3|O|
.

32The number is half of that stated in Lemma 7 since the number of agents cleared in any round is

precisely the half of the cyclic vertices in a random bipartite graph at the beginning of that round. Recall

also that, by definition of TTC, together with our assumption that o ≤ n, given the number of objects ok,

the number of individuals nk is totally determined and is equal to ok + n− o.
33One can check that ô = 13 works. In particular, if nk = ok, E[mk |ok ] ≥ 3 if and only if ok ≥ 13.

55



Proof. Consider the following sequence of random variables {E(Lk |ok )}|O|
k=1 where ok

is the number of remaining objects at round k while Lk is the number of objects assigned

at round k via long cycles. (Note both are random variables.) Thus, o1 = |O|. Note that

E(L|O|

∣

∣o|O|) = 0. By Theorem 7, we are defining here the process {E(Lk |ok )}|O|
k=1 induced

by the Markov chain {ok}. Note also that E(Lk |ok ) = E[Mk |ok ]−E[Sk |ok ] where Sk is the

number of objects assigned at round k via short cycles. By Proposition 2, E[Sk |F ] ≤ 2 for

any possible forest F , this implies that E[Sk |ok ] ≤ 2. Hence, we obtain that E(Lk |ok ) ≥
3− 2 = 1 if ok ≥ ô. (Recall that ô is defined such that ok ≥ ô implies E[Mk |ok ] ≥ 3.) Let

T be first round at which the E(Lk |ok ) becomes smaller than 1: formally, E(Lk |ok) ≤ 1

only if k ≥ T (this is well-defined since E(L|O|

∣

∣o|O|) = 0). Note that oT ≤ ô.

Now we obtain:

E[|Ô|] = E(

|O|
∑

k=1

Lk)

=
∑

o∈O

Pr{õk = o}
|O|
∑

k=1

E
[

Lk

∣

∣õk = o
]

=
∑

t

Pr{T = t}
∑

o∈O

Pr{õk = o
∣

∣T = t}
|O|
∑

k=1

E
[

Lk

∣

∣õk = o
]

≥
∑

t

Pr{T = t}
t−1
∑

k=1

∑

o∈O

Pr{õk = o
∣

∣T = t}E
[

Lk

∣

∣õk = o
]

≥
∑

t

Pr{T = t}(t− 1)

= E[T ]− 1

where the last inequality holds by definition of the random variable T . Indeed, whenever

Pr{õk = o
∣

∣T = t} > 0 (recall that k < t), E
[

Lk

∣

∣õk = o
]

≥ 1 must hold.

Once we have reached round T under TTC, at most ô more short cycles can arise. Thus,

the expected number of short cycles must be smaller than 2E(T )+ ô. Indeed, the expected

number of short cycles is smaller than 2 times the expected number of rounds for TTC to

converge (recall that, by Corollary 6, the expected number of short cycles at each round is

at most two) which itself is smaller than 2E(T ) + ô. It follows that

2E[T ] + ô ≥ E[|O| − |Ô|].
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Combining the above inequalities, we obtain that

E[|Ô|] ≥ 1

3
(|O| − ô+ 2) ,

from which the result follows. �

Corollary 7. There exists γ > 0, δ > 0, N > 0

Pr

{

|Ô|
|O| > δ

}

> γ,

for all |O| > N .

E Proof of Theorem 4

Since U(u0
1, 0) > U(u0

2, 1)), all objects in O1 are assigned before any agent starts applying

to objects in O2. Hence, the assignment achieved by individuals assigned objects in O1

is the same as the one obtained when we run DA in the submarket with individuals in

I and objects in O1. The following lemma shows that the agents assigned objects in O1

suffer a significant number of rejections before getting assigned. This result is obtained by

Ashlagi, Kanoria, and Leshno (2013) and by ?. We provide a much simpler direct proof

for this result here.34

Lemma 12 (Welfare Loss under Unbalanced Market). Consider an unbalanced submar-

ket consisting of agents I and objects O1, where |I| − |O1| → n(1 − x1) as n → ∞.

Let I1 be the (random) set of agents who are assigned objects in O1, and let Iδ1 := {i ∈
I1|i makes at least δn offers} be the subset of them who each suffer from more than δn re-

jections (before getting assigned objects in O1). Then, there exist γ, δ, υ, all strictly positive,

such that for all n > N for some N > 0,

Pr

{ |Iδ1 |
|I| > γ

}

> υ.

Proof. Without loss, we work with the McVitie and Wilson’s algorithm (which equiv-

alently implement DA). Consider the individual i = n at the last serial order, at the

beginning of step n. By that step, each object in O1 has surely received at least |I| − |O1|
34The main case studied by Ashlagi, Kanoria, and Leshno (2013) deals with the situation in which the

degree of unbalancedness is small; i.e., |I| − |O1| is sublinear in n. Our proof does not apply to that case.
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offers. This is because at least |I| − |O1| − 1 preceding agents must be unassigned, so each

of them must have been rejected by all objects in O1 before the beginning of step n.

Each object receives offers randomly and selects its most preferred individual among

those who have made offers to that object. Since each object will have received at least

|I| − |O1| offers, its payoff must be at least max{η1,o, ...η|I|−|O1|,o}, i.e., the maximum of

|I| − |O1| random draws of its idiosyncratic payoffs. At the beginning of step n, agent n

makes an offer to an object o (i.e., his most favorite object which is drawn iid). Then, for

n to be accepted by o, it must be the case that ηi,o ≥ max{η1,o, ...η|I|−|O1|,o}. This occurs

with probability 1
|I|−|O1|

. Thus, the probability that n is assigned o is at most 1
|I|−|O1|

.

Hence, for any δ ∈ (0, x1), the probability that agent n is rejected δn times in a row is

at least
(

1− 1

|I| − |O1|

)δn

→
(

1

e

)
δ

1−x1

.

Since agent n is ex ante symmetric with all other agents, for any agent i ∈ I,

lim inf Pr
{

E δ
i

}

≥
(

1

e

) δ
1−x1

,

for any δ ∈ (0, x1), where E δ
i denotes the event that i makes at least δn offers.

Let Fi := {i ∈ I1} denote the event that agent i is assigned an object in O1, and let

F c
i := {i 6∈ I1} be its complementary event. Then, by ex ante symmetry of all agents,

Pr{Fi} = |O1|/n → x1 as n → ∞. For δ ∈ (0, x1), we obtain

Pr
{

E δ
i

}

= Pr{Fi}Pr
{

E δ
i | Fi

}

+ Pr{F c
i }Pr

{

E δ
i | F c

i

}

→ x1 Pr
{

E δ
i | Fi

}

+ (1− x1) · 1 as n → ∞,

where the last line obtains since, with probability going to one as n → 1, an agent who is

not assigned an object in O1 must make at least δn < x1n offers. Combining the two facts,

we have

lim inf Pr
{

E δ
i | Fi

}

≥ 1

x1

(

(

1

e

)
δ

1−x1

− (1− x1)

)

.

Observe that the RHS tends to a strictly positive number as δ → 0. Thus, for δ > 0 small

enough (smaller than (1 − x1) log(
1
x1
)), Pr

{

E δ
i | Fi

}

is bounded below by some positive

constant for all n large enough.
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It thus follows that there exist δ ∈ (0, x1), γ > 0 such that

E

[ |Iδ1 |
|I|

]

=
1

|I|E
[

∑

i∈I1

1Eδ
i

]

=
1

|I|EI1E

[

∑

i∈I1

1Eδ
i

∣

∣

∣

∣

I1

]

=
|I1|
|I| EI1E

[

1Eδ
i
|i ∈ I1

]

=
|I1|
|I| E

[

1Eδ
i
|i ∈ I1

]

=
|I1|
|I| Pr

{

E δ
i |Fi

}

> γ

for all n > N for some N > 0, since |I1|
|I|

→ x1 as n → ∞. The claimed result then follows.

�

Lemma 12 implies that there exists ǫ′ > 0, υ′ > 0, γ′ > 0 such that for all n > N ′ for

some N ′ > 0,

Pr

{

|Ĩǫ|
|I| ≥ γ′

}

≥ υ′,

where Ĩǫ′ := {i ∈ I|DA(i) ∈ O1, Ui(DA(i)) ≤ U(u1, 1− ǫ′)} is the set of agents assigned to

objects in O1 but receive payoffs bounded above by U(u1, 1− ǫ′).

Now consider a matching mechanism µ that first runs DA and then runs a Shapley-

Scarf TTC afterwards, namely the TTC with the DA assignments serving as the initial

endowments for the agents. This mechanism µ clearly Pareto dominates DA. In particular,

if DA(i) ∈ O1, then µ(i) ∈ O1. For any ǫ′′, let

Ǐǫ′′ := {i ∈ I|µ(i) ∈ O1, Ui(DA(i)) ≥ U(u1, 1− ǫ′′)},

be those agents who attain at least U(u1, 1 − ǫ′′) from µ. By Theorem 1, we have for any

ǫ′′, γ′′ and υ′′, such that

Pr

{ |Ǐǫ′′|
|I| ≤ γ′′

}

< υ′′,

for all n > N ′′ for some N ′′ > 0. [ I am referring to Theorem 1, but it is not precise. I

wonder if this is OK.]
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Now set ǫ′, ǫ′′ such that ǫ = ǫ′ − ǫ′′ > 0, γ′, γ′′ such that γ := γ′ − γ′′ > 0, and υ′, υ′′

such that υ := υ′ − υ′′ > 0. Observe that Iǫ(µ|DA) ⊃ Ĩǫ′ \ Ǐǫ′′, so |Iǫ(µ|DA)| ≥ |Ĩǫ′| − |Ǐǫ′′|.
It then follows that for all n > N := max{N ′, N ′′},

Pr

{ |Iǫ(µ|DA)|
|I| ≥ γ

}

≥ Pr

{

|Ĩǫ′|
|I| − |Ǐǫ′′|

|I| ≥ γ

}

≥ Pr

{

|Ĩǫ′|
|I| ≥ γ′ and

|Ǐǫ′′|
|I| ≤ γ′′

}

≥ Pr

{

|Ĩǫ′|
|I| ≥ γ′

}

− Pr

{ |Ǐǫ′′|
|I| > γ′′

}

≥ υ′ − υ = υ.

F Proof of Theorem 6

Let us fix ǫ > 0. Fix k = {1, . . . , K} and i ∈ {|Ok−1|+2, . . . , |Ok|+1} with the convention

that |O0|+ 2 = 1. Fix any vector of cardinal utilities of individual i. We show that given

this “type”, for n sufficiently large, i cannot gain more than ǫ by deviating given that

everyone else reports truthfully.

Let us consider the event E1 that for each k′ = 1, ..., k − 1, all individuals only rank

objects in Ok′ within their 3log2(n) most favorite objects in O≥k′. Consider as well E2 the

event under which, provided that all individuals from 1 to |Ok−1|+1 report truthfully their

preferences over objects in O≤k−1, for each k′ = 1, ..., k − 1, the objects assigned in stage

k′ are exactly those in Ok′. Let E := E1 ∩ E2. By Proposition 2 as well as Proposition 1,

we know that Pr(E) → 1 as n goes to infinity. In addition, if E occurs then it continues

to occur irrespective of the preferences of the remaining individuals at stage k over the

remaining objects at that stage (and similarly for the priorities of remaining objects).35

From now on we assume that event E realizes and that all i’s opponents report truthfully

their preferences.

Now, let us consider two different types of reports of ordinal preferences for agent i.

Assume that i’s report of his ordinal preferences restricted to O≥k are such that within his

3log2(n) most favorite objects, only objects in Ok appear. Then, we know – again by the

35If E occurs, then the remaining objects are those in O≥k. None of these objects have received any

offer so far.
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proof of Proposition 1 – that the probability of i being assigned in stage k goes to 1 as n

goes to infinity.36 Now, consider a report of i where, restricted to O≥k, i ranks some object

outside Ok within the 3log2(n) most favorite. In that case, here again with probability

going to 1, i is assigned in stage k.37

Thus, irrespective of his report, agent i believes, with probability going to 1, that he

will be assigned in stage k. Let Pi be a truthful report and P ′
i be a misreport. Fix any

realization of preferences/priorities on both sides of the market that gives rise to event E

and the event that i will be assigned in stage k irrespective of whether i reports Pi or P
′
i .

We show that under such realization i cannot have any (ex-post) gains from misreporting

P ′
i . Given that the set of such profiles of preferences have a probability which goes to 1, and

given that the utility gains from misreporting are bounded (uniformly across preferences’

realizations), the expected utility gains from misreporting are bounded by ǫ for n sufficiently

large.38

If agent i reports truthfully, say Pi, then the assignment for the agent is the same as

DA applied to a submarket consisting of agents assigned in stage k plus the unique agent

who made applications in stage k but is eventually not assigned at that stage and all

agents except for i have their preferences truncated to contain only their 3 log(n)2 favorite

choices, and agent i reports Pi. By assumption, we know that if i reports P ′
i , he will still

be assigned in stage k. i’s assignment is the same as DA on the same subeconomy with i’s

preferences replaced by P ′
i . Strategyproofness of DA on the subeconomy implies that the

agent does not gain from misreporting his preferences. Thus, i has no (ex-post) incentives

to misreport.

36Here we are using the fact mentioned previously that conditional on E, the distribution

of preferences of the remaining individuals at stage k over the remaining objects at that stage

is unchanged (and similarly for the priorities of remaining objects). This should be made

more precise but there is here again overlap with the proof of Lemma 2
37To see this, consider the event that all j 6= i rank only Ok objects within their 3log2(n) most favorite

objects in O≥k. Recall that – by Lemma 2 – the probability of that event goes to 1. Similarly to the

argument in the proof of Proposition 1 (i.e., applying the argument in Pittel (1992)), if we restrict our

attention to offers made by i’s opponents, we know that with probability going to 1, |Ok| objects will receive
offers before any of the i’s opponents will have attained his 3log2(n)th offer. Hence, even if i = |Ok| + 1,

with probability going to 1, i will have an opportunity to make an offer in stage k. In such a case, he is

the only individual ranking an object outside Ok and so i will be assigned in stage k.
38Should we say a word on the fact that the critical N does not depend on the specific P ′

i

which is buried here. Or on i ’s type...?
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