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0. What this talk is about?

Theorem

(A. Fet - L. Lyusternik) Let M be a closed Riemannian manifold.
There exists at least one non-trivial periodic geodesic on M.

Let l denote the minimal length of a non-trivial periodic geodesic.
Problem (M. Gromov): Is there a constant c(n) depending only on

the dimension n of M such that l ≤ c(n)vol(Mn)
1
n ?

Problem: Is there a constant C (n) such that

l ≤ C (n) diameter(M)?
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Other well-known existence theorems:

Theorem

(J.-P. Serre) Let M be a closed Riemannian manifold, p, q a pair of
points on M. There exists infinitely many geodesics connecting p
and q.

Note that p and q can be the same point. In this case geodesics
connecting p and q become geodesic loops based at p.
Question. Can we majorize lengths of the m shortest geodesics
connecting p and q in terms of m, the dimension and the diameter
of M?

Theorem

(L. Lyusternik-A. Shnirelman) Let M be a Riemannian 2-sphere.
There exists at least three distinct simple periodic geodesics on M.

Question: Can we majorize their lengths in terms of the diameter
of M?
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Theorem

(F. Almgren-J. Pitts) Let M be a closed Riemannian manifold of
dimension n ∈ {3, 4, 5, 6, 7}. Then there exists an embedded
smooth minimal hypersurface in M.

This result can be generalized to other dimensions and
codimensions if one does not insist on the smoothness of the
minimal object anymore.



1. Some quantitative versions of Fet-Lyusternik theorem.

l denotes the length of a shortest non-constant periodic geodesic.
An obvious observation: If M is nonsimply-connected, then l ≤ 2d ,
(d denotes diameter of M) (Exercise).
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But

Theorem

(F. Balacheff, C. Croke, M. Katz) There exist Riemannian metrics
arbitrarily close to the standard round metric on S2 such that
l > 2d .

Yet:

Theorem

(A.N. and R. Rotman; independently S. Sabourau) If M is
diffeomorphic to S2, then l ≤ 4d .

This result improves the constant in earlier inequality l ≤ 9d by C.
Croke.
Problem. GUESS a Riemannian metric on S2 for which l

d is
(nearly) maximal possible.
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Also, if M = S2, then

Theorem

(R. Rotman) l ≤ 4
√

2
√
Area(M).

This result improves the constant 31 in an earlier similar inequality
by C. Croke.
Conjectured optimal shape (E.Calabi): Two equilateral triangles
glued along their common boundary.
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l and the volume of M: nonsimply-connected case.
Systolic geometry: Find an upper bound for the length of the
shortest non-contractible periodic geodesic on M in terms of
vol(M).

Lowner, Pu, Accola, Blatter, Yu. Burago, Zalgaller, Gromov,
Bavard, Calabi, M. Katz, Buser, Sarnak, Sabourau...
A manifold Mn is called essential if the image of its fundamental
homology class in homology of K (π1(Mn), 1) is non-trivial (under
the homomorphism induced by the classifying map). Essential
manifolds include non-simply connected surfaces, tori, RPn.

Theorem

(M. Gromov) If Mn is essential, then there exists a

non-contractible periodic geodesic of length ≤ c(n)vol(Mn)
1
n .

But, I. Babenko proved that this result holds only for essential
manifolds.
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Geodesic nets: Let M be a Riemannian manifold. A geodesic net
in M is an immersed (multi)graph such that:
1) The image of each edge is a geodesic;
2) For each vertex v the sum of unit tangent vectors at v to all
edges adjacent to v is equal to 0.

This is a stationarity condition for the length functional (with
respect to each 1-parametric group of diffeomorphisms of M).
Geodesic nets are “homological ” analogues of periodic geodesics.

Theorem

(A.N., R. Rotman) There exists (explicit) constants c1(n), c2(n)
such that for each closed Riemannian manifold Mn the length of
the shortest geodesic net on M does not exceed c1(n)d . Also, it

does not exceed c2(n)vol(Mn)
1
n .
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Theorem

(R. Rotman) The estimates in the previous theorem hold for the
length of a shortest geodesic net that consists of at most N(n)
geodesic loops based at the same point.



Problems about geodesic nets:
1. (M. Gromov) Is is true that for each closed Riemannian surface
geodesic nets form a dense set?

2. Is it true that for each closed Riemannian manifold M there
exists a geodesic net on M which is not composed of periodic
geodesics?
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2. Quantitative Lyusternik-Shnirelman theorem.

Theorem

(Y. Liokumovich, A. N., R. Rotman)
Let M be a Riemannian 2-sphere. Then there exist three simple
periodic geodesics on M such that their lengths do not exceed,
correspondingly, 5d , 10d and 20d , where d denotes the diameter
of M.

A very general idea of the proof: The original proof by Lyusternik
and Shnirelman uses three specific cycles in the space of
nonparametrized simple closed curves on M.
If M has a “nice” metric, then one can find homologous cycles
that consist of “short” curves, and then the desired estimates
follow from the existence proof.
If M is not “nice”, its “ruggedness” implies the existence of
“short” simple closed geodesics that are local minima of the length
functional.
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Here “nice” means that M can be sliced into pairwise
non-intersecting nonself-intersecting curves of length ≤ const d
connecting a pair of points. It turns out that one can use these
curves to bound lengths of simple closed curves in some cycles
representing each of the three homology classes in
Lyusternik-Shnirelman proof.





Now one attempts to construct a slicing of M into
nonself-intersecting curves of length ≤ const d that connect a
fixed pair of points. Our construction process can be blocked only
by a simple periodic geodesic of index 0 and “small” length. Each
time the extension process is blocked, we can continue in a
different fashion until it is blocked again. We are done after the
appearance of three “obstructing” simple periodic geodesics.



Note that, in general, one cannot slice a Riemannian 2-sphere into
closed curves of length ≤ const d . So, not all 2-spheres are “nice”.
For example:

Theorem

(Y. Liokumovich) There is no contant C such that each
Riemannian 2-sphere of diameter d can be divided into two parts
of equal area by a (not necessarily connected) closed curve of
length ≤ Cd .



So, the simple geodesics that we obtain are not necessarily those
that appear in the original LS proof. If one wishes to majorize the
lengths of three simple geodesics provided by the original proof,
one can use the following theorem:

Theorem

(Y. Liokumovich, A.N., R. Rotman) Let M be a Riemannian
2-sphere of diameter d and area A. Then it can be sliced into

simple loops of length ≤ 200d max{1, ln
√
A
d }. The simple loops

intersect only at their common base point. This upper bound is
optimal up to a constant factor.

This theorem implies that three “original” LS simple periodic

geodesics have length ≤ 800d max{1, ln
√
A
d }.

This theorem answers a question of S. Frankel and M. Katz which
was a modification of an earlier question posed by M. Gromov.
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The strategy of the proof is to use cuts of several different types to
reduce the problem to a similar “controlled” slicing problem for
smaller and smaller subdiscs. The cuts come from the coarea
formula, Besicovitch inequality and a version of Gromov’s
“attempted impossible extension” technique.



3. Quantitative versions of Serre’s theorem

Theorem

(R. Rotman) Let Mn be a closed Riemannian manifold. For each
p ∈ Mn there exists a geodesic loop based at p of length ≤ 2nd
(and even ≤ 2qd , where q = min{i |πi (Mn) 6= 0}).

Theorem

(A.N., R. Rotman) Let p, q be any two points on a closed
Riemannian manifold Mn. For every m there exists m distinct
geodesics connecting p and q of length ≤ 4m2nd .
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PROOF:
Curve-shortening process: It can be blocked only by many “short”
geodesic loops.
Purpose: Given a curve γ connecting two points p and q we would
like to shorten it by a path homotopy (=a homotopy that keeps p
and q fixed).
Assumption: There are no geodesic loops based at p of length in
the interval (l , l + 2d ] for some l .
Conclusion: There is a path homotopy that shortens γ to the
length ≤ l + d .





Process: First, note that there exists ε > 0 such that there are no
geodesics in the interval (l , l + 2d + ε] (by an easy compactness
argument).

Now consider the initial segment γ0 of γ of length l + d + ε.
Connect its endpoint with p by a minimizing geodesic σ (of length
≤ d). Insert σ traversed twice in the opposite directions inside γ.
Shorten the loop γ0 ∗ σ to a geodesic loop τ based at p by a path
homotopy. The length of τ ≤ l . Curve γ shortens to τ ∗ σ−1∗the
rest of γ that has length ≤ length(γ)− ε.
Repeat the process.
As l is arbitrary, one needs geodesic loops with length in intervals
(0, 2d ], (2d , 4d ], . . . to block the curve shortening process.
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homotopy. The length of τ ≤ l . Curve γ shortens to τ ∗ σ−1∗the
rest of γ that has length ≤ length(γ)− ε.
Repeat the process.
As l is arbitrary, one needs geodesic loops with length in intervals
(0, 2d ], (2d , 4d ], . . . to block the curve shortening process.



The process is not continuous, but one can still construct a
parametric version.

Theorem

(A.N., R. Rotman) Let Mn be a closed Riemannian manifold,
p ∈ Mn. Then either
1) there exist k geodesic loops of index 0 based at p with lengths
in the intervals (0, 2d ], (2d , 4d ], . . . , (2(k − 1)d , 2kd ],
or
2) For each N any map of SN into the space of based loops ΩpM

n

can be homotoped to its subspace ΩL
pM

n that consists of loops of
length ≤ L = 4(k + 2)(N + 1)d .



Cohomology of the loop space of Mn with real coefficients: Using
rational homotopy theory one concludes that there exists a
cohomology class u ∈ H2l(ΩpM

n,R) such that

1) All cup powers
of u are non-trivial; 2) 2l ≤ 2n − 2; 3) u is “dual” to a spherical
homology class h; cup powers of u are dual to Pontryagin powers of
h. In simpler words, uk “corresponds” to a cocycle formed by loops
that are obtained as joins of k loops in (the image of) a 2l-sphere
in ΩpM

n that corresponds to h. The last theorem means that in
the absence of many short geodesic loops of index 0 h can be
“moved” to a subspace of the loop space formed by “short” loops.



Cohomology of the loop space of Mn with real coefficients: Using
rational homotopy theory one concludes that there exists a
cohomology class u ∈ H2l(ΩpM

n,R) such that 1) All cup powers
of u are non-trivial;

2) 2l ≤ 2n − 2; 3) u is “dual” to a spherical
homology class h; cup powers of u are dual to Pontryagin powers of
h. In simpler words, uk “corresponds” to a cocycle formed by loops
that are obtained as joins of k loops in (the image of) a 2l-sphere
in ΩpM

n that corresponds to h. The last theorem means that in
the absence of many short geodesic loops of index 0 h can be
“moved” to a subspace of the loop space formed by “short” loops.



Cohomology of the loop space of Mn with real coefficients: Using
rational homotopy theory one concludes that there exists a
cohomology class u ∈ H2l(ΩpM

n,R) such that 1) All cup powers
of u are non-trivial; 2) 2l ≤ 2n − 2;

3) u is “dual” to a spherical
homology class h; cup powers of u are dual to Pontryagin powers of
h. In simpler words, uk “corresponds” to a cocycle formed by loops
that are obtained as joins of k loops in (the image of) a 2l-sphere
in ΩpM

n that corresponds to h. The last theorem means that in
the absence of many short geodesic loops of index 0 h can be
“moved” to a subspace of the loop space formed by “short” loops.



Cohomology of the loop space of Mn with real coefficients: Using
rational homotopy theory one concludes that there exists a
cohomology class u ∈ H2l(ΩpM

n,R) such that 1) All cup powers
of u are non-trivial; 2) 2l ≤ 2n − 2; 3) u is “dual” to a spherical
homology class h; cup powers of u are dual to Pontryagin powers of
h. In simpler words, uk “corresponds” to a cocycle formed by loops
that are obtained as joins of k loops in (the image of) a 2l-sphere
in ΩpM

n that corresponds to h.

The last theorem means that in
the absence of many short geodesic loops of index 0 h can be
“moved” to a subspace of the loop space formed by “short” loops.



Cohomology of the loop space of Mn with real coefficients: Using
rational homotopy theory one concludes that there exists a
cohomology class u ∈ H2l(ΩpM

n,R) such that 1) All cup powers
of u are non-trivial; 2) 2l ≤ 2n − 2; 3) u is “dual” to a spherical
homology class h; cup powers of u are dual to Pontryagin powers of
h. In simpler words, uk “corresponds” to a cocycle formed by loops
that are obtained as joins of k loops in (the image of) a 2l-sphere
in ΩpM

n that corresponds to h. The last theorem means that in
the absence of many short geodesic loops of index 0 h can be
“moved” to a subspace of the loop space formed by “short” loops.



The proof of Serre’s theorem given by Albert Schwartz imples that
the length of kth geodesic between p and q does not exceed
c(Mn)k , where c(Mn) depends on the Riemannian metric on Mn

in an unknown way.
Problem: Is it true that the length of the kth geodesic does not
exceed c(n)kd , where c(n) depends only on n?

Theorem

(A.N., R. Rotman) If n = 2 then the length of the kth geodesic
between p and q does not exceed 22kd .

Problem. Is there an upper bound for the length of the first k
geodesics between p and q of the form c(k)d (that is, there is no
dependence on n)?.
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4. Quantiative versions of Almgren-Pitts theorem.
Definition: Let M be a Riemannian manifold such that H1(M) is
trivial. For each x > 0 the first homological filling function of M is
defined as the infimum of y such that each closed curve of length
≤ x can be represented as the boundary of a singular Lipschitz
chain c = Σiaiσi such that the area(c) = Σi |ai |area(σi ) ≤ y .

Theorem

(A.N., R. Rotman) Let M be a Riemannian homology 3-sphere
(e.g. S3). The smallest area of an embedded minimal surface in M

does not exceed (i) 6F1(2d); (ii) 12F1(3300 vol(M)
1
3 ).
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One can generalize this theorem for higher dimensions and
codimensions. On gets the same regularity of stationary varifolds
as in known existence theorems.

To get an upper bound for the
smallest mass of a stationary k-varifold one needs to assume
vanishing of the first (k − 1) homology groups of M, and to use
the corresponding (k − 1) homological filling functions as well as
either the diameter or the volume of M.
Problem. Is it true that each closed Riemannian 3-dimensional
manifold of volume 1 contains a smooth embedded minimal
surface of area ≤ 1010 ?
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Theorem

(P. Glynn-Adey, Y. Liokumovich): A closed Riemannian manifold
Mn of dimension n ∈ {3, 4, 5, 6, 7} satisfying Ric ≥ −(n − 1)a2 for
a ≥ 0 contains a closed smooth embedded minimal hypersurface Σ

of volume ≤ C (n) max{1, a vol(Mn)
1
n }vol(Mn)

n−1
n .

Their upper bound is for the (n − 1)-width of M and holds for all
n. It is a corollary of a stronger upper bound for the (n − 1)-width
that involves n, vol(Mn) and the “minimal conformal volume” of
Mn, which is a scale-invariant conformal invariant.
Note that there is no upper bound on the (n − 1)-width of M in
terms of vol(M), if n > 2 (Larry Guth; D. Burago and S. Ivanov).
So, one cannot hope for curvature-free estimates for
(n − 1)-widths.
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Problem. Are there analogous results for higher codimensions?

Theorem

(P. Glynn-Adey, Y. Liokumovich); an effectice version of the
existence theorem by Fernando Coda Marquees and André Neves
Let Mn be a closed Riemannian manifold of dimension
n ∈ {3, 4, 5, 6, 7} with positive Ricci curvature. Then for each
k = 1, 2, . . . it contains at least k distinct minimal hypersurfaces of

volume ≤ C (n) vol(Mn)

minvoln−1(Mn)
1

n−1
k

1
n−1 , where minvoln−1(Mn)

denotes ther minimal volume of a non-trivial minimal hypersurface
in Mn.

Question. Is it possible to get rid of minvoln−1(Mn) in this
estimate?
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Let Mn be a closed Riemannian manifold of dimension
n ∈ {3, 4, 5, 6, 7} with positive Ricci curvature. Then for each
k = 1, 2, . . . it contains at least k distinct minimal hypersurfaces of

volume ≤ C (n) vol(Mn)

minvoln−1(Mn)
1

n−1
k

1
n−1 , where minvoln−1(Mn)

denotes ther minimal volume of a non-trivial minimal hypersurface
in Mn.

Question. Is it possible to get rid of minvoln−1(Mn) in this
estimate?



Problem. Are there analogous results for higher codimensions?

Theorem

(P. Glynn-Adey, Y. Liokumovich); an effectice version of the
existence theorem by Fernando Coda Marquees and André Neves
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General ideas behind proofs:

1. The desired minimal object on a
Riemannian manifold M comes from a known or unknown
homology class h in a space X (M) of based loops, or free loops, or
cycles. It would be helpful to represent h by a cycle made of
“short” loops or cycles of a controlled volume. Then Morse theory
yields the desired estimate. In many cases we can settle for any
non-trivial homology class (maybe, of a prescribed dimension).
More precisely, we want to represent h by a homology or homotopy
class of M swept-out by “short” loops or “small” cycles.
2. Assume that this class is represented by a map f of, say, a
sphere Sm to M. We can attempt an (impossible) extension of f
to a disc Dm+1 triaingulated as a cone over Sm. Induction is done
by induction with respect to skeleta.
3. Each step is an extension in M, but we try to represent it as an
extension in X (M) so that the image of the extension consists
“small” objects in X (M). If an extension in X (M) is impossible,
then there is a “small” extremal object in X (M) obstructing the
extension process.
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4. If the extension process is unobstructed up to the dimension m ,
then the boundary of at least one of (m + 1)-cells of Dm+1

represents a non-trivial cycle. Its boundary had been mapped into
“small” objects in X (M), and its contractibility is obstructed by a
“small” minimal object in X (M).

5. Another useful “attempted impossible extension” (Gromov):
Embed M = Mn into L∞(M) using Kuratowski embedding.
Represent Mn as ∂W n+1, where W is an

c(n)vol
1
n (Mn)-neighborhood of Mn (Gromov’s filling radius

theorem). Triangulate W n+1 into small simplices, and attempt to
extend the identity map Mn −→ Mn to a map of W n+1 into Mn.
First, one sends all vertices to closest points of Mn, then
1-simplices to minimal geodesics, setting the scale for subsequent

steps of the extension process as const(n)vol(Mn)
1
n .
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6. Assume that one needs to establish upper bounds not just for
one minimal object in M but for a finite or infinite family of
minimal objects.

If one has a sweep-out of a class of M by “small”
loops or cycles, one typically gets the desired estimate not for just
one minimal object but for all of them. On the other hand, the
extension process can be obstructed by just one “small” minimal
object. The idea is to start the extension process anew looking for
maps into “bigger” objects in X (M). The idea is that either we are
going to get “bigger” and “bigger” obstructing minimal objects, or
we will get a desired “controlled” sweep-out.
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