
On Equi-/Over-/Underdispersion

and Related Properties of Some

Classes of Probability Distributions

Vladimir Vinogradov

(Ohio University, on leave at

the Fields Institute, University of

Toronto and York University)

Presented at

Toronto Probability Seminar

Fields Institute, Toronto

February 2, 2015

1



Definition 1 (Lambert W function and its

principal branch W0, see [1]).

(i) Complex-valued Lambert function W (z)

is defined as the multi-valued inverse of func-

tion y(x) := x ·ex. Equivalently, it can be de-

fined as the function satisfying the identity

W (z) · eW (z) ≡ z,

where z ∈ C.

Its Taylor series around z = 0,

W (z) =

∞
∑

ℓ=1

wℓ · z
ℓ, (1)

has the radius of convergence 1/e.

The coefficients {wℓ’s, ℓ ∈ N} are as follows:

wℓ = (−ℓ)ℓ−1/ℓ! (2)
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(ii) The series (1)–(2) can be extended to a

holomorphic function on C with a branch cut

along (−∞,−1/e]. This function defines the

principal branch W0(z) of W (z).

Definition 2 (Index of dispersion or the

variance-to-mean ratio). Given r.v. Y with

finite variance, its index of dispersion which

is hereinafter denoted by VMR, is defined

as follows:

VMR(Y) := Var(Y)/E(Y).

Index of dispersion for Poisson distribution = 1,

but its values for binomial and negative bino-

mial distributions are < 1 & > 1, respectively.
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It is overdispersion which is exhibited more

frequently by the data.

A toy example of distribution theory:

Neyman Type A EDM and

Lambert W function

The additive Neyman type A exponential dis-

persion model is comprised of non-negative in-

finitely divisible distributions on Z+ such that

its generic member is a compound Poisson sum

of i.i.d. Poisson-distributed r.v.’s as well as the

Poisson mixture with Poisson mixing measure.

This EDM can be constructed starting from

its member X whose c.g.f. {ΨX (v), v ∈ R1} is
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as follows:

ΨX (v) := log EevX = eev−1 − 1.

Theorem 3 (see [5, Th. 5.1]). The u.v.f.

VX (µ) of the Neyman type A EDM which is

constructed starting from r.v. X has domain

R1
+, where it is expressed as follows:

VX (µ) = µ · (1 + W0(e · µ)). (3)

Since W0(x) > 0 for real x > 0, (3) implies

overdispersion automatically.

Also, since

W0(z) ∼ z as z ↓ 0;

W0(z) ∼ log z as z → +∞,
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a combination of (3) with [2, Ch. 4] and [3,

pp. 410–411] implies that this EDM is locally

Poisson, both at 0 and at +∞. In particular,

as µ → +∞,

VX (µ) ∼ µ · log µ (4)

[3, pp. 410–411] provides several assertions on

weak convergence to members of the power-

variance family under assumptions on regu-

lar variation of u.v.f. However, [3] did not

provide specific examples which involve a non-

trivial regularly varying function per se – all the

illustrative examples therein concern just power

functions. The following result fills in this gap.
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Corollary 4 (see [5, p. 2040]). A combina-

tion of [3, pp. 410–411] with (4) implies that

for an arbitrary fixed µ ∈ R1
+,

1

log c

Tw1(µ,1)
∑

i=1

Tw
(i)
1 (log c, 1)

d
→ Tw1(µ, 1) (5)

as c → +∞.

Here, Tw1(µ, 1) is Poisson r.v. with mean µ.

It is relevant that it is an application of [3, pp.

410–411] which necessitates the use of the slowly

varying function log c for normalizing purposes

on l.h.s. of (5). (The power index = 0.) This is

is parallel to classical limit theorems on general

domains of attraction to stable distributions.

At the same time, it is evident that (5) can be
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rewritten as follows:

1

b

Poiss(µ)
∑

i=1

Poiss(i)(b)
d
→ Poiss(µ) (6)

as b → +∞, which can also be established by

the method of m.g.f.’s. Note that (6) is NOT

a result of Poisson law of small numbers type,

but that on a cluster structure evolution!

Other overdispersed non-negative

integer-valued distributions

which are related to Poisson

1) zero-modified Poisson; parameter δ ∈ (0, 1):

p0 = δ + (1 − δ) · e−µ;

pn = (1 − δ) · e−µ ·
µn

n!
, n ≥ 1.
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2) generalized Poisson (or back-shifted Borel)

distribution which emerges, among other things,

as the law of the total progeny of a Galton-

Watson branching process in the case where the

mechanism of local branching is Poisson with

mean ≤ 1.

Special case:

pn = e−(n+1) ·
(n + 1)n−1

n!
, n ≥ 0.

Its p.g.f. is expressed in terms of Lambert W0

function.
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Extended family of

zero-modified geometric distributions

Definition 5 For γ ∈ (0, 1), r ∈ [−(1−γ)/γ, 1),

non-negative integer-valued

r.v. Yγ,r ∈ EFZMGL if

P{Yγ,r = 0} = γ,

and ∀ k ∈ N,

P{Yγ,r = k}

= γ(1 − γ)(1 − r) {1 − γ + γr}k−1 .

Special cases: (i) Yγ,0 - standard geometric;

(ii) Yγ,−(1−γ)/γ
d
= B(1, 1 − γ).

The mean, variance, skewness and kurtosis are

all available in the closed form.
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Shannon entropy:

Hγ(r) := −

∞
∑

k=0

P{Yγ,r = k} log2 P{Yγ,r = k}

= −{γ · log2 γ + (1 − γ) · log2(1 − γ)}

−
1 − γ

γ(1 − r)
{(1 − γ + γr) · log2(1 − γ + γr)

+γ(1 − r) · log2(γ(1 − r))}.

This formula is consistent with already known

expressions for Shannon entropy of Bernoulli

r.v. Yγ,−(1−γ)/γ, which is frequently termed

binary entropy function, and also of geometric

r.v. Yγ,0.

We decompose EFZMGL into separate NEFs.

To this end, consider the following quantity,
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which turns out to be an invariant of the expo-

nential tilting transformation:

Iγ,r :=
1 − γ + γr

(1 − γ)(1 − r)
∈ [0, +∞). (7)

In particular, I = 0 and 1 correspond to Bernoulli

and geometric NEFs, respectively.

(φ, I)-parameterization. ∀I ∈ R1
+, define

counting measure νI({k}) on Z+ such that

νI({k}) =







1 if k = 0,

1/I if k ≥ 1.

Let canonical parameter φ ∈ Φ = (−∞, 0).

For such φ’s, we introduce cumulant

κI(φ) = log(I − (I − 1)eφ)

− log(I(1 − eφ)).
(8)
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Theorem 6 The NEF from EFZMGL that

corresponds to value I ∈ R1
+ of invariant

(7) admits the following canonical represen-

tation:

P(φ)(k) = eφ·k · e−κI(φ) · νI({k}).

Here, φ ∈ Φ and k ∈ Z+.

The u.v.f. VI(µ) of each such NEF admits the

following closed-form representation:

VI(µ) = µ ·
√

µ2 + (4I − 2)µ + 1. (9)

Letac-Mora ([4]) self-reciprocity:

Theorem 7 ∀I ∈ R1
+,

−κI(−κI(φ)) ≡ φ;

VI(µ) ≡ µ3 · VI(1/µ).
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It can be shown that all the members of

EFZMGL for which I ≥ 1/2, are infinitely di-

visible. Hence, they can be emloyed to build the

corresponding exponential families of Lévy pro-

cesses. The remaining representatives of this

family which correspond to the values of I ∈

[0, 1/2), are not infinitely divisible.

The next result is derived from the closed-form

expression for the index of dispersion of a mem-

ber of EFZMGL (which follows from (9)), and

representation (7) for invariant I:

Proposition 8 Fix an arbitrary γ ∈ (0, 1).

Then r.v. Yγ,r is underdispersed if

r ∈ [−(1 − γ)/γ,−(1 − γ)/(2γ)).
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In the cases where r = −(1−γ)/(2γ) and r ∈

(−(1 − γ)/(2γ), 1), this r.v. is equidispersed

and overdispersed, respectively.

Hence, we found additional examples of under-

and equidispersed r.v.’s. Member of EFZMGL

can be either unimodal with mode at either 0

or 1 or bimodal with modes at 0 and 1.
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