Universally Baire subsets of 2^{κ}

Matteo Viale (joint work with Daisuke Ikegami)

University of Torino

April 2, 2015

◆□ → < 部 → < 差 → < 差 → 差 < う へ (%) 1/31

Outline

Topology

2 B-names for reals as continuous functions

Oniversally Baire sets of reals

- $UB_{\kappa}^{\Gamma} sets$
 - Different characterizations of UB_{κ}^{Γ} -sets

- Forcing axioms and $UB_{\omega_1}^{\Gamma}$ -sets
- Generic absoluteness for $UB_{\omega_1}^{\Gamma}$ -sets

Final comments

Definition

Let (X, τ) be a topological space.

- $A \subseteq X$ is a regular open set if $A = \overline{A}$.
- (X, τ) is an *interesting for this talk* (IFTT) topological space if it has a base of regular open sets.
- $\operatorname{RO}(X, \tau)$ denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

- T₃ spaces (thus all compact Haussdorff spaces),
- Spaces given by the order topology induced by a partial order: Let (P, ≤) be a separative partial order, set for A ⊆ P

$$\downarrow A = \{q : \exists p \in A q \le p\}$$

and let

$$\tau = \{\downarrow A : A \subseteq P\}.$$

Definition

Let (X, τ) be a topological space.

- $A \subseteq X$ is a regular open set if $A = \overline{A}$.
- (X, τ) is an *interesting for this talk* (IFTT) topological space if it has a base of regular open sets.
- $RO(X, \tau)$ denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

- T₃ spaces (thus all compact Haussdorff spaces),
- Spaces given by the order topology induced by a partial order: Let (P, ≤) be a separative partial order, set for A ⊆ P

$$\downarrow A = \{q : \exists p \in A q \le p\}$$

and let

$$\tau = \{\downarrow A : A \subseteq P\}.$$

Definition

Let (X, τ) be a topological space.

- $A \subseteq X$ is a regular open set if $A = \overline{A}$.
- (X, τ) is an *interesting for this talk* (IFTT) topological space if it has a base of regular open sets.
- $RO(X, \tau)$ denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

- T₃ spaces (thus all compact Haussdorff spaces),
- Spaces given by the order topology induced by a partial order: Let (P, ≤) be a separative partial order, set for A ⊆ P

$$\downarrow A = \{q : \exists p \in A \, q \le p\}$$

and let

$$\tau = \{ \downarrow A : A \subseteq P \}.$$

Definition

Let (X, τ) be a topological space.

- $A \subseteq X$ is a regular open set if $A = \overline{A}$.
- (X, τ) is an *interesting for this talk* (IFTT) topological space if it has a base of regular open sets.
- $\operatorname{RO}(X, \tau)$ denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

- T₃ spaces (thus all compact Haussdorff spaces),
- Spaces given by the order topology induced by a partial order: Let (P, ≤) be a separative partial order, set for A ⊆ P

$$\downarrow A = \{q : \exists p \in A \, q \leq p\}$$

and let

$$\tau = \{\downarrow A : A \subseteq P\}.$$

Definition

Let (X, τ) be a topological space.

- $A \subseteq X$ is a regular open set if $A = \overline{A}$.
- (X, τ) is an *interesting for this talk* (IFTT) topological space if it has a base of regular open sets.
- $RO(X, \tau)$ denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

- T₃ spaces (thus all compact Haussdorff spaces),
- Spaces given by the order topology induced by a partial order: Let (P, ≤) be a separative partial order, set for A ⊆ P

$$\downarrow A = \{q : \exists p \in A \, q \leq p\}$$

and let

$$\tau = \{\downarrow A : A \subseteq P\}.$$

Definition

Let (X, τ) be a topological space.

- $A \subseteq X$ is a regular open set if $A = \overline{A}$.
- (X, τ) is an *interesting for this talk* (IFTT) topological space if it has a base of regular open sets.
- $RO(X, \tau)$ denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

- T₃ spaces (thus all compact Haussdorff spaces),
- Spaces given by the order topology induced by a partial order: Let (P, ≤) be a separative partial order, set for A ⊆ P

$$\downarrow A = \{q : \exists p \in A \, q \leq p\}$$

and let

$$\tau = \{\downarrow A : A \subseteq P\}.$$

Recall the following:

Proposition

Assume (X, τ) is any topological space, then $RO(X, \tau)$ with operations given by

- $\neg A = X \setminus \overline{A}$,
- $\bigwedge_{i \in I} A_i = \bigcap \{A_i : i \in I\},$ $\bigvee_{i \in I} A_i = \overline{\bigcup \{A_i : i \in I\}}$

is a complete boolean algebra.

Given (X, τ) a topological space, $CL(X, \tau)$ denotes the clopen subsets of (X, τ) . $CL(X, \tau)$ is a subalgebra of $RO(X, \tau)$.

Definition

- Let (X, τ) be a topological space.
 - X is 0-dimensional if $CL(X, \tau)$ is a base for τ ,
 - X is extremely disconnected if $CL(X, \tau) = RO(X, \tau)$.

Given (X, τ) a topological space, $CL(X, \tau)$ denotes the clopen subsets of (X, τ) . $CL(X, \tau)$ is a subalgebra of $RO(X, \tau)$.

Definition

Let (X, τ) be a topological space.

• X is 0-dimensional if $CL(X, \tau)$ is a base for τ ,

• X is extremely disconnected if $CL(X, \tau) = RO(X, \tau)$.

Given (X, τ) a topological space, $CL(X, \tau)$ denotes the clopen subsets of (X, τ) . $CL(X, \tau)$ is a subalgebra of $RO(X, \tau)$.

Definition

Let (X, τ) be a topological space.

- X is 0-dimensional if $CL(X, \tau)$ is a base for τ ,
- X is extremely disconnected if $CL(X, \tau) = RO(X, \tau)$.

Stone duality

Definition

Let B be a boolean algebra. St(B) is its space of ultrafilters with topology τ_B given by the basis of clopen sets

 $N_b = \{G \in \mathtt{St}(\mathsf{B}) : b \in G\}.$

Theorem (Stone Duality)

The following holds:

- $(St(B), \tau_B)$ is a 0-dimensional compact Haussdorff space and B can be identified with the clopen sets of this space.
- $(St(B), \tau_B))$ is extremely disconnected iff B is complete.
- A compact space (X, τ) is extremely disconnected iff CL(τ) = RO(τ) is a complete boolean algebra.

Stone duality

Definition

Let B be a boolean algebra. St(B) is its space of ultrafilters with topology τ_B given by the basis of clopen sets

 $N_b = \{G \in \mathtt{St}(\mathsf{B}) : b \in G\}.$

Theorem (Stone Duality)

The following holds:

- $(St(B), \tau_B))$ is a 0-dimensional compact Haussdorff space and B can be identified with the clopen sets of this space.
- $(St(B), \tau_B))$ is extremely disconnected iff B is complete.
- A compact space (X, τ) is extremely disconnected iff CL(τ) = RO(τ) is a complete boolean algebra.

Weak universality of extremely disconnected compact spaces

Let (X, τ) be an IFTT space (X has a base of regular open sets). Then we can define a (partial) projection map

$$\pi_X : \operatorname{St}(\operatorname{RO}(X, \tau)) o X$$

 $\mathcal{G} \mapsto x_\mathcal{G}$

where x_G (if defined) is the unique point in X such that the neighboorhood filter of regular open sets around x_G is contained in G.

(If $X = \mathbb{R}$ and $G \supseteq \{(a, +\infty) : a \in \mathbb{R}\}, x_G = +\infty \notin \mathbb{R}\}$).

Theorem

Let (X, τ) be an IFTT space. Then for every compact topological space (Z, σ) and any continuous

 $f: X \to Z$

there is a continuous $ar{f}: St(\mathsf{RO}(X, au)) o Z$ such that $f \circ \pi_X = ar{f}$.

Weak universality of extremely disconnected compact spaces

Let (X, τ) be an IFTT space (X has a base of regular open sets). Then we can define a (partial) projection map

$$\pi_X : \operatorname{St}(\operatorname{RO}(X, \tau)) \to X$$
 $G \mapsto x_G$

where x_G (if defined) is the unique point in X such that the neighboorhood filter of regular open sets around x_G is contained in G. (If $X = \mathbb{R}$ and $G \supseteq \{(a, +\infty) : a \in \mathbb{R}\}, x_G = +\infty \notin \mathbb{R}$).

Theorem

Let (X, au) be an IFTT space. Then for every compact topological space (Z, σ) and any continuous

 $f: X \to Z$

there is a continuous $ar{f}: St({
m RO}(X, au)) o Z$ such that $f\circ\pi_X=ar{f}$.

Weak universality of extremely disconnected compact spaces

Let (X, τ) be an IFTT space (X has a base of regular open sets). Then we can define a (partial) projection map

$$\pi_X : \operatorname{St}(\operatorname{RO}(X, \tau)) o X$$
 $G \mapsto x_G$

where x_G (if defined) is the unique point in X such that the neighboorhood filter of regular open sets around x_G is contained in G. (If $X = \mathbb{R}$ and $G \supseteq \{(a, +\infty) : a \in \mathbb{R}\}, x_G = +\infty \notin \mathbb{R}$).

Theorem

Let (X, τ) be an IFTT space. Then for every compact topological space (Z, σ) and any continuous

$$f: X \to Z$$

there is a continuous \overline{f} : $St(RO(X, \tau)) \rightarrow Z$ such that $f \circ \pi_X = \overline{f}$.

In particular if our aim is to study all possible preimages of continuous function with range in say 2^{ω} , we can just focus on continuous functions whose domain is a compact and extremely disconnected topological space.

We work with the boolean valued models approach to forcing. Let B be a complete boolean algebra and $\sigma \in V^{B}$ be such that

$$\llbracket \sigma \in 2^{\omega} \rrbracket = 1_{\mathsf{B}}.$$

Then

$$\sigma \approx \{ \langle (n,i), a_{n,i} \rangle : n \in \omega, i < 2 \}$$

with $a_{n,0} = \neg a_{n,1}$ for all n, i.

We naturally identify σ with a continuous $f_{\sigma} : St(B) \to 2^{\omega}$ (where 2^{ω} is given the product topology) letting

$$\sigma \mapsto f_{\sigma} = \{ \langle G, x \rangle : G \in \mathtt{St}(\mathsf{B}), \, x \in 2^{\omega}, \, x(n) = i \Leftrightarrow a_{n,i} \in G \}.$$

Conversely let $f : St(B) \rightarrow 2^{\omega}$ be a continuous function. Then we identify it with the B-name

$$\sigma_f = \{ \langle (n,i), f^{-1}[N_{n,i}] \rangle : n \in \omega, i < 2 \}$$

where

$$N_{n,i} = \{x \in 2^{\omega} : x(n) = i\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

10/31

is clopen in 2^{ω} .

We naturally identify σ with a continuous $f_{\sigma} : St(B) \to 2^{\omega}$ (where 2^{ω} is given the product topology) letting

$$\sigma \mapsto f_{\sigma} = \{ \langle G, x \rangle : G \in \mathtt{St}(\mathsf{B}), \, x \in 2^{\omega}, \, x(n) = i \Leftrightarrow a_{n,i} \in G \}.$$

Conversely let $f : St(B) \rightarrow 2^{\omega}$ be a continuous function. Then we identify it with the B-name

$$\sigma_f = \{ \langle (n,i), f^{-1}[N_{n,i}] \rangle : n \in \omega, i < 2 \}$$

where

$$N_{n,i} = \{x \in 2^{\omega} : x(n) = i\}$$

10/31

is clopen in 2^{ω} .

Fact

Let B be a complete boolean algebra, $f : St(B) \to 2^{\omega}$ be a continuous function and $\sigma \in V^B$ be such that

$$\llbracket \sigma \in 2^{\omega} \rrbracket = 1_{\mathsf{B}}.$$

Then

•
$$\llbracket \sigma_{f_{\sigma}} = \sigma \rrbracket = 1_{\mathsf{B}},$$

•
$$f_{\sigma_f} = f$$

We get that the for any cba B the new name for elements in 2^{ω} correspond to continuous functions $f_{\sigma} : St(B) \to 2^{\omega}$.

We chose 2^{ω} but we could have chosen any Polish space to implement this translation (some extra care is needed for this general case).

If we chose \mathbb{C} we would be looking at commutative unital C^* -algebras of the form C(X) with X extremely disconnected.

More precisely we would be looking at the space

 $\{f: X \to \mathbb{C} \cup \{\infty\} = \mathbb{S}^2 : f \text{ is continuous and } f^{-1}[\{\infty\}] \text{ is closed nowhere dense}\}.$

We get that the for any cba B the new name for elements in 2^{ω} correspond to continuous functions f_{σ} : St(B) $\rightarrow 2^{\omega}$.

We chose 2^{ω} but we could have chosen any Polish space to implement this translation (some extra care is needed for this general case).

If we chose \mathbb{C} we would be looking at commutative unital C^* -algebras of the form C(X) with X extremely disconnected.

More precisely we would be looking at the space

 $\{f: X \to \mathbb{C} \cup \{\infty\} = \mathbb{S}^2 : f \text{ is continuous and } f^{-1}[\{\infty\}] \text{ is closed nowhere dense}\}.$

We get that the for any cba B the new name for elements in 2^{ω} correspond to continuous functions $f_{\sigma} : St(B) \to 2^{\omega}$.

We chose 2^{ω} but we could have chosen any Polish space to implement this translation (some extra care is needed for this general case).

If we chose \mathbb{C} we would be looking at commutative unital C^* -algebras of the form C(X) with X extremely disconnected.

More precisely we would be looking at the space

 $\{f: X \to \mathbb{C} \cup \{\infty\} = \mathbb{S}^2 : f \text{ is continuous and } f^{-1}[\{\infty\}] \text{ is closed nowhere dense}\}.$

We get that the for any cba B the new name for elements in 2^{ω} correspond to continuous functions f_{σ} : St(B) $\rightarrow 2^{\omega}$.

We chose 2^{ω} but we could have chosen any Polish space to implement this translation (some extra care is needed for this general case).

If we chose \mathbb{C} we would be looking at commutative unital C^* -algebras of the form C(X) with X extremely disconnected.

More precisely we would be looking at the space

 $\{f: X \to \mathbb{C} \cup \{\infty\} = \mathbb{S}^2 : f \text{ is continuous and } f^{-1}[\{\infty\}] \text{ is closed nowhere dense}\}.$

We get that the for any cba B the new name for elements in 2^{ω} correspond to continuous functions $f_{\sigma} : St(B) \to 2^{\omega}$.

We chose 2^{ω} but we could have chosen any Polish space to implement this translation (some extra care is needed for this general case).

If we chose \mathbb{C} we would be looking at commutative unital C^* -algebras of the form C(X) with X extremely disconnected.

More precisely we would be looking at the space

 $\{f: X \to \mathbb{C} \cup \{\infty\} = \mathbb{S}^2 : f \text{ is continuous and } f^{-1}[\{\infty\}] \text{ is closed nowhere dense}\}.$

- $A \subseteq X$ is nowhere dense if \overline{A} has a dense open complement.
- *A* ⊆ *X* is *meager* if it is contained in the countable union of nowhere dense sets.
- $A \subseteq X$ has the Baire property if there is a unique regular open set $U \in \tau$ such that $A \Delta U$ is meager.

Definition (Feng, Magidor, Woodin)

 $A \subseteq 2^{\omega}$ is universally Baire UB if for any cba B and any continuous function $f : \operatorname{St}(B) \to 2^{\omega}$. $f^{-1}[A]$ has the Baire property in $\operatorname{St}(B)$.

Equivalently A is UB if $f^{-1}[A]$ has the Baire property in X for any continuous $f: X \to 2^{\omega}$ with X compact Hausdorff.

- $A \subseteq X$ is nowhere dense if \overline{A} has a dense open complement.
- *A* ⊆ *X* is *meager* if it is contained in the countable union of nowhere dense sets.
- $A \subseteq X$ has the Baire property if there is a unique regular open set $U \in \tau$ such that $A \Delta U$ is meager.

Definition (Feng, Magidor, Woodin)

 $A \subseteq 2^{\omega}$ is universally Baire UB if for any cba B and any continuous function $f : \operatorname{St}(B) \to 2^{\omega}$. $f^{-1}[A]$ has the Baire property in $\operatorname{St}(B)$.

Equivalently A is UB if $f^{-1}[A]$ has the Baire property in X for any continuous $f: X \to 2^{\omega}$ with X compact Hausdorff.

- $A \subseteq X$ is nowhere dense if \overline{A} has a dense open complement.
- *A* ⊆ *X* is *meager* if it is contained in the countable union of nowhere dense sets.
- $A \subseteq X$ has the Baire property if there is a unique regular open set $U \in \tau$ such that $A \Delta U$ is meager.

Definition (Feng, Magidor, Woodin)

 $A \subseteq 2^{\omega}$ is universally Baire UB if for any cba B and any continuous function $f : \operatorname{St}(B) \to 2^{\omega}$. $f^{-1}[A]$ has the Baire property in $\operatorname{St}(B)$.

Equivalently A is UB if $f^{-1}[A]$ has the Baire property in X for any continuous $f: X \to 2^{\omega}$ with X compact Hausdorff.

- $A \subseteq X$ is nowhere dense if \overline{A} has a dense open complement.
- *A* ⊆ *X* is *meager* if it is contained in the countable union of nowhere dense sets.
- $A \subseteq X$ has the Baire property if there is a unique regular open set $U \in \tau$ such that $A \Delta U$ is meager.

Definition (Feng, Magidor, Woodin)

 $A \subseteq 2^{\omega}$ is universally Baire UB if for any cba B and any continuous function $f : \operatorname{St}(B) \to 2^{\omega}$. $f^{-1}[A]$ has the Baire property in $\operatorname{St}(B)$.

Equivalently A is UB if $f^{-1}[A]$ has the Baire property in X for any continuous $f: X \to 2^{\omega}$ with X compact Hausdorff.

It is immediate to see that open and closed sets are universally Baire and slightly less immediate to check that Borel sets are also universally Baire. Σ_1^1 -sets are also universally Baire.

It is immediate to see that open and closed sets are universally Baire and slightly less immediate to check that Borel sets are also universally Baire. Σ_{1}^{1} -sets are also universally Baire.

It is immediate to see that open and closed sets are universally Baire and slightly less immediate to check that Borel sets are also universally Baire. Σ_1^1 -sets are also universally Baire.

It is immediate to see that open and closed sets are universally Baire and slightly less immediate to check that Borel sets are also universally Baire. Σ_1^1 -sets are also universally Baire.

Let $A \subseteq 2^{\omega}$ be universally Baire and B be a cba.

For any $X \subseteq St(B)$ with the Baire property, let U_X be the unique regular open (clopen) set such that $X\Delta U_X$ is meager. Set

$$\dot{A} = \{ \langle \tau, U_{f_{\tau}^{-1}[A]} \rangle : \llbracket \tau \in 2^{\omega} \rrbracket = 1_{\mathsf{B}} \}.$$

We can easily check that for all V-generic filters $G \stackrel{\circ}{A}_G \cap V = A$. But much more is true about $\stackrel{\circ}{A}$.
Let $A \subseteq 2^{\omega}$ be universally Baire and B be a cba.

For any $X \subseteq St(B)$ with the Baire property, let U_X be the unique regular open (clopen) set such that $X \Delta U_X$ is meager. Set

$$\dot{A} = \{ \langle \tau, U_{f_{\tau}^{-1}[A]} \rangle : \llbracket \tau \in 2^{\omega} \rrbracket = 1_{\mathsf{B}} \}.$$

We can easily check that for all V-generic filters $G \stackrel{\cdot}{A}_G \cap V = A$. But much more is true about $\stackrel{\cdot}{A}$.

Given a cba B and $G \in St(B)$, $\tau, \sigma \in V^{B}$, set for R among =, \in :

•
$$\tau R_G \sigma$$
 iff $\llbracket \tau R \sigma \rrbracket \in G$,

•
$$[\tau]_{\mathcal{G}} = \{ \sigma : \sigma =_{\mathcal{G}} \tau \}.$$

• $V^{\mathsf{B}}/G = \{ [\tau]_{\mathsf{G}} : \tau \in V^{\mathsf{B}} \}.$

Theorem (Cohen's forcing theorem)

Assume V is amodel of ZFC, B is a cba in V, $G \in St(B)$. Then $(V^B/G, \in_G)$ is a Tarski model of ZFC and

 $V^{\mathsf{B}}/G \models \phi \Leftrightarrow \llbracket \phi \rrbracket \in G.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given a cba B and $G \in St(B)$, $\tau, \sigma \in V^{B}$, set for R among =, \in :

- $\tau R_G \sigma$ iff $\llbracket \tau R \sigma \rrbracket \in G$,
- $[\tau]_G = \{ \sigma : \sigma =_G \tau \}.$
- $V^{\mathsf{B}}/G = \{[\tau]_{G} : \tau \in V^{\mathsf{B}}\}.$

Theorem (Cohen's forcing theorem)

Assume V is amodel of ZFC, B is a cba in V, $G \in St(B)$. Then $(V^B/G, \in_G)$ is a Tarski model of ZFC and

$$V^{\mathsf{B}}/G \models \phi \Leftrightarrow \llbracket \phi \rrbracket \in G.$$

(日) (部) (注) (注) (言)

16/31

Theorem (Shoenfield's absoluteness)

```
Let A \in UB, B be a cba, G \in St(B).
Then
```

$$(H_{\omega_1}, \in, A) \prec_{\Sigma_1} (H_{\omega_1}^{V^{\mathsf{B}}/G}, \in_G, [\dot{A}]_G).$$

Theorem (Woodin's absoluteness)

Let V be any model of ZFC+ there exists class many Woodin limit of Woodins. Then

- UB^V is a boolean algebra contained in P(2^{\u03c6}) containing all projective sets and much more.
- For any $B \in V$ which is a cba for V and any $A \in UB^V$ and any $G \in St(B)$

 $(L(Ord^{\omega}, A), \in) \prec ((L(Ord^{\omega}, [\dot{A}]_G)^{V^{\mathsf{B}}/G}, \in_G).$

Theorem (Shoenfield's absoluteness)

```
Let A \in UB, B be a cba, G \in St(B).
Then
```

$$(H_{\omega_1}, \in, A) \prec_{\Sigma_1} (H_{\omega_1}^{V^{\mathsf{B}}/G}, \in_G, [\dot{A}]_G).$$

Theorem (Woodin's absoluteness)

Let V be any model of ZFC+ there exists class many Woodin limit of Woodins. Then

- UB^V is a boolean algebra contained in P(2^{\u03cd}) containing all projective sets and much more.
- For any $B \in V$ which is a cba for V and any $A \in UB^V$ and any $G \in St(B)$

$$(L(Ord^{\omega}, A), \in) \prec ((L(Ord^{\omega}, [\dot{A}]_G)^{V^{\mathsf{B}}/G}, \in_G).$$

We aim to find:

- The correct topological counterpart of the notion of B-name for a subset of κ .
- The correct notion of a property defining a subset of κ which has a definition whose meaning is unaffected by forcing.

We have already set up a language which will make the first task simple.

We have already seen that the extension of the class UB depends very much on the set theory we work in: in L there are few such sets, assuming large cardinals there are plenty of such sets.

We aim to find:

- The correct topological counterpart of the notion of B-name for a subset of κ .
- The correct notion of a property defining a subset of κ which has a definition whose meaning is unaffected by forcing.

We have already set up a language which will make the first task simple.

We have already seen that the extension of the class UB depends very much on the set theory we work in: in L there are few such sets, assuming large cardinals there are plenty of such sets.

We aim to find:

- The correct topological counterpart of the notion of B-name for a subset of κ .
- The correct notion of a property defining a subset of κ which has a definition whose meaning is unaffected by forcing.

We have already set up a language which will make the first task simple.

We have already seen that the extension of the class UB depends very much on the set theory we work in: in L there are few such sets, assuming large cardinals there are plenty of such sets.

We aim to find:

- The correct topological counterpart of the notion of B-name for a subset of κ .
- The correct notion of a property defining a subset of κ which has a definition whose meaning is unaffected by forcing.

We have already set up a language which will make the first task simple.

We have already seen that the extension of the class UB depends very much on the set theory we work in: in L there are few such sets, assuming large cardinals there are plenty of such sets.

Fact

Let B be a complete boolean algebra. There is a natural correspondence between B-names for elements of 2^{κ} and continuous functions $f : St(B) \rightarrow 2^{\kappa}$, where 2^{κ} is endowed with the PRODUCT topology.

Definition

- Let (X, τ) be a topological space.
 - A ⊆ X is κ-meager if it is contained in the union of κ-many closed nowhere dense sets.
 - A ⊆ X has the κ-Baire property if it has a κ-meager difference with a regular open set in τ.

Fact

Let B be a complete boolean algebra. There is a natural correspondence between B-names for elements of 2^{κ} and continuous functions $f : St(B) \rightarrow 2^{\kappa}$, where 2^{κ} is endowed with the PRODUCT topology.

Definition

- Let (X, τ) be a topological space.
 - A ⊆ X is κ-meager if it is contained in the union of κ-many closed nowhere dense sets.
 - A ⊆ X has the κ-Baire property if it has a κ-meager difference with a regular open set in τ.

Definition (V., Ikegami)

Let Γ be a class of complete boolean algebras. $A \subseteq 2^{\kappa}$ is in UB_{κ}^{Γ} if $f^{-1}[A]$ has the κ -Baire property for all $B \in \Gamma$ and all continuous $f : St(B) \to 2^{\kappa}$.

Definition

Let B be a complete boolean algebra. $FA_{\kappa}(B)$ holds if

 $\bigcap \{ D_{\alpha} : \alpha < \kappa \} \neq \emptyset$

for all collections $\{D_{\alpha} : \alpha < \kappa\}$ of dense open subsets of $\mathtt{St}(\mathsf{B})$. Γ_{κ} is the class of all B satisfying $\mathsf{FA}_{\kappa}(\mathsf{B})$.

We shall analyze just UB_{κ}^{Γ} -sets with $\Gamma \subseteq \Gamma_{\kappa}$.

<ロ > < 合 > < 言 > < 言 > こ き > こ の Q (や 21/31)

Definition

Let B be a complete boolean algebra. $\mathsf{FA}_\kappa(\mathsf{B})$ holds if

 $\bigcap \{ D_{\alpha} : \alpha < \kappa \} \neq \emptyset$

for all collections $\{D_{\alpha} : \alpha < \kappa\}$ of dense open subsets of St(B). Γ_{κ} is the class of all B satisfying FA_{κ}(B).

We shall analyze just UB_{κ}^{Γ} -sets with $\Gamma \subseteq \Gamma_{\kappa}$.

Definition

Let B be a complete boolean algebra. $\mathsf{FA}_\kappa(\mathsf{B})$ holds if

$$\bigcap \{ D_{\alpha} : \alpha < \kappa \} \neq \emptyset$$

for all collections $\{D_{\alpha} : \alpha < \kappa\}$ of dense open subsets of St(B). Γ_{κ} is the class of all B satisfying FA_{κ}(B).

We shall analyze just UB_{κ}^{Γ} -sets with $\Gamma \subseteq \Gamma_{\kappa}$.

Definition

Let B be a complete boolean algebra. $\mathsf{FA}_\kappa(\mathsf{B})$ holds if

$$\bigcap \{ D_{\alpha} : \alpha < \kappa \} \neq \emptyset$$

for all collections $\{D_{\alpha} : \alpha < \kappa\}$ of dense open subsets of St(B). Γ_{κ} is the class of all B satisfying FA_{κ}(B).

We shall analyze just UB_{κ}^{Γ} -sets with $\Gamma \subseteq \Gamma_{\kappa}$.

The restriction on cbas in Γ_{κ} is *natural, necessary and harmless*:

Fact

Assume $FA_{\kappa}(B)$ fails, then St(B) is a κ -meager topological space, in particular any subset of St(B) vacuously has the κ -Baire property.

In particular for any class of cbas Γ all cbas such that $FA_{\kappa}(B)$ fails will not be able to detect a subset of 2^{κ} which may not be in in UB_{κ}^{Γ} .

The restriction on cbas in Γ_{κ} is *natural, necessary and harmless*:

Fact

Assume $FA_{\kappa}(B)$ fails, then St(B) is a κ -meager topological space, in particular any subset of St(B) vacuously has the κ -Baire property.

In particular for any class of cbas Γ all cbas such that $FA_{\kappa}(B)$ fails will not be able to detect a subset of 2^{κ} which may not be in in UB_{κ}^{Γ} .

The restriction on cbas in Γ_{κ} is *natural, necessary and harmless*:

Fact

Assume $FA_{\kappa}(B)$ fails, then St(B) is a κ -meager topological space, in particular any subset of St(B) vacuously has the κ -Baire property.

In particular for any class of cbas Γ all cbas such that FA_{κ}(B) fails will not be able to detect a subset of 2^{κ} which may not be in in UB^{Γ}_{κ}.

Definition

Let $Fun(\kappa, X)$ denote the family of finite partial functions from κ to X.

- T ⊆ Fun(κ, X) is a tree^κ on X if for all s ∈ T and t ⊆ s, t ∈ T, and for all z finite subset of κ there is some s ∈ T with domain z.
- A total $f : \kappa \to X$ is a branch of T if $f \upharpoonright z \in T$ for all z finite subset of κ .

• [*T*] is the body of *T* consisting of all its branches.

 Assume T is a tree^κ on X × Y. p[T] is the set of all g : κ → Y such that (f,g) ∈ [T] for some f : κ → X.

Definition

Let $Fun(\kappa, X)$ denote the family of finite partial functions from κ to X.

- T ⊆ Fun(κ, X) is a tree^κ on X if for all s ∈ T and t ⊆ s, t ∈ T, and for all z finite subset of κ there is some s ∈ T with domain z.
- A total $f : \kappa \to X$ is a branch of T if $f \upharpoonright z \in T$ for all z finite subset of κ .
- [T] is the body of T consisting of all its branches.
- Assume T is a tree^{κ} on X × Y. p[T] is the set of all $g : \kappa \to Y$ such that $(f,g) \in [T]$ for some $f : \kappa \to X$.

Theorem (V., Ikegami) *TFAE* for $A \subseteq 2^{\kappa}$ and $\Gamma \subseteq \Gamma_{\kappa}$: **a** $A \in UB_{\kappa}^{\Gamma}$. **b** *There are tree*^{κ} sets S, U on $2 \times V$ such that: **b** p[S] = A, **c** for any $B \in \Gamma$ we have that

$[\![p[U] = 2^{\kappa} \setminus p[S]]\!] = 1_{\mathsf{B}},$

Notice that there can be non-universally Baire subsets of 2^{ω} which are in UB_{κ}^{Γ} , (here we require the projection operation ρ to behave nicely only for forcings in Γ).

Notice that there can be non-universally Baire subsets of 2^{ω} which are in UB_{κ}^{Γ} , (here we require the projection operation p to behave nicely only for forcings in Γ).

 $T_{\kappa,B}$ is the set of all $M \prec H_{\theta}$ (for some large enough θ) such that

- $|M| = \kappa \subseteq M$ and $B \in M$,
- there exists $G \in St(B)$ such that $G \cap D \cap M$ for all $D \in M$ dense open subset of B⁺ (i.e. $\pi_M[G]$ is $\pi_M[M] = N_M$ -generic for $\pi_M(B)$).

Ultrafilters G as above are called M-generic ultrafilters.

Theorem (Woodin)

- $FA_{\kappa}(B)$,
- **2** $T_{\kappa,B}$ is stationary.

 $T_{\kappa,B}$ is the set of all $M \prec H_{\theta}$ (for some large enough θ) such that

- $|M| = \kappa \subseteq M$ and $B \in M$,
- there exists $G \in St(B)$ such that $G \cap D \cap M$ for all $D \in M$ dense open subset of B⁺ (i.e. $\pi_M[G]$ is $\pi_M[M] = N_M$ -generic for $\pi_M(B)$).

Ultrafilters G as above are called M-generic ultrafilters.

Theorem (Woodin)

- $FA_{\kappa}(B)$,
- **2** $T_{\kappa,B}$ is stationary.

 $T_{\kappa,B}$ is the set of all $M \prec H_{\theta}$ (for some large enough θ) such that

- $|M| = \kappa \subseteq M$ and $B \in M$,
- there exists $G \in St(B)$ such that $G \cap D \cap M$ for all $D \in M$ dense open subset of B⁺ (i.e. $\pi_M[G]$ is $\pi_M[M] = N_M$ -generic for $\pi_M(B)$).

Ultrafilters G as above are called M-generic ultrafilters.

Theorem (Woodin)

- $FA_{\kappa}(B)$,
- **2** $T_{\kappa,B}$ is stationary.

 $T_{\kappa,B}$ is the set of all $M \prec H_{\theta}$ (for some large enough θ) such that

- $|M| = \kappa \subseteq M$ and $B \in M$,
- there exists $G \in St(B)$ such that $G \cap D \cap M$ for all $D \in M$ dense open subset of B⁺ (i.e. $\pi_M[G]$ is $\pi_M[M] = N_M$ -generic for $\pi_M(B)$).

Ultrafilters G as above are called M-generic ultrafilters.

```
Theorem (Woodin)
```

TFAE for a cba B:

• $FA_{\kappa}(B)$,

a $T_{\kappa,B}$ is stationary.

 $T_{\kappa,B}$ is the set of all $M \prec H_{\theta}$ (for some large enough θ) such that

- $|M| = \kappa \subseteq M$ and $B \in M$,
- there exists $G \in St(B)$ such that $G \cap D \cap M$ for all $D \in M$ dense open subset of B⁺ (i.e. $\pi_M[G]$ is $\pi_M[M] = N_M$ -generic for $\pi_M(B)$).

Ultrafilters G as above are called M-generic ultrafilters.

```
Theorem (Woodin)
```

TFAE for a cba B:

• $FA_{\kappa}(B)$,

a $T_{\kappa,B}$ is stationary.

For any *M* let $\pi_M : M \to N_M$ be its Mostowski collapsing map.

 $T_{\kappa,B}$ is the set of all $M \prec H_{\theta}$ (for some large enough θ) such that

- $|M| = \kappa \subseteq M$ and $B \in M$,
- there exists $G \in St(B)$ such that $G \cap D \cap M$ for all $D \in M$ dense open subset of B⁺ (i.e. $\pi_M[G]$ is $\pi_M[M] = N_M$ -generic for $\pi_M(B)$).

Ultrafilters G as above are called M-generic ultrafilters.

Theorem (Woodin)

- Image: FA_κ(B),
- **2** $T_{\kappa,B}$ is stationary.

Theorem (V., Ikegami)
TFAE for
$$A \subseteq 2^{\kappa}$$
 and $\Gamma \subseteq \Gamma_{\kappa}$:
a $A \in UB_{\kappa}^{\Gamma}$.
b for any $B \in \Gamma$ there is a B-name \dot{A} such that
 $\pi_{M}(\dot{A})_{\pi_{M}[G]} = \{\pi_{M}(\tau)_{\pi_{M}[G]} : \tau \in M \text{ and } [\![\tau \in \dot{A}]\!] \in G\} = A \cap N_{M}[\pi_{M}[G]]$
for a club of $M \in T_{\kappa,B}$ and for all M-generic filters G.

(here
$$\pi_M(\tau)_{\pi_M[G]} = \{(\alpha, i) : \llbracket \tau(\alpha) = i \rrbracket \in G\}$$
)

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへの

26 / 31

Theorem (V., Ikegami)
TFAE for
$$A \subseteq 2^{\kappa}$$
 and $\Gamma \subseteq \Gamma_{\kappa}$:
a $A \in \bigcup B_{\kappa}^{\Gamma}$.
b for any $B \in \Gamma$ there is a B-name \dot{A} such that
 $\pi_{M}(\dot{A})_{\pi_{M}[G]} = \{\pi_{M}(\tau)_{\pi_{M}[G]} : \tau \in M \text{ and } [\![\tau \in \dot{A}]\!] \in G\} = A \cap N_{M}[\pi_{M}[G]]$
for a club of $M \in T_{\kappa,B}$ and for all M-generic filters G.

(here
$$\pi_M(\tau)_{\pi_M[G]} = \{(\alpha, i) : \llbracket \tau(\alpha) = i \rrbracket \in G\}$$
)

< □ > < □ > < □ > < 壹 > < 壹 > < 亘 > □ ≥ < ○ Q (?) 26/31 UB_{κ}^{I} -sets Forcing axioms and $UB_{\omega_{1}}^{I}$ -sets

What sets are $UB_{\omega_1}^{I}$?

Theorem (Moore, Todorčevič, Veličkovič-Caicedo, Aspero...)

Assume BMM holds in V and T = ZFC + BMM. Then there is a well ordering of $P(\omega_1)$ which is $UB_{\omega_1}^{\Gamma}$, where $\Gamma \subseteq \Gamma_{\omega_1}$ is the class of forcing notions preserving T.

In particular we have plenty of $UB_{\omega_1}^{\Gamma}$ -sets for such a Γ .

What sets are $UB_{\omega_1}^{I}$?

Theorem (Moore, Todorčevič, Veličkovič-Caicedo, Aspero...)

Assume BMM holds in V and T = ZFC + BMM. Then there is a well ordering of $P(\omega_1)$ which is $UB_{\omega_1}^{\Gamma}$, where $\Gamma \subseteq \Gamma_{\omega_1}$ is the class of forcing notions preserving T.

(日) (部) (注) (注) (言)

In particular we have plenty of $UB_{\omega_1}^{\Gamma}$ -sets for such a Γ .

Theorem (V.)

Assume MM^{+++} and $\Gamma \subseteq \Gamma_{\omega_1}$ be the class of all SSP-forcings which preserve MM^{+++} . Then for all $B \in \Gamma$ and all $A \in UB_{\omega_1}^{\Gamma}$ there is $\dot{A} \in V^B$ such that for all $G \in St(B)$

$$L(Ord^{\omega_1}, A) \prec L(Ord^{\omega_1}, [\dot{A}]_G)^{V^{\mathsf{B}}/\mathsf{G}}.$$

In particular combining the two results we get that all sets in $L(P(\omega_1))$ are in $UB_{\omega_1}^{\Gamma}$ assuming MM⁺⁺⁺.

The theory MM^{+++} makes the class of $UB_{\Gamma}^{\omega_1}$ -sets extremely large and generically invariant exactly as it occurs for the Universally Baire sets of 2^{ω} assuming large cardinals.

Theorem (V.)

Assume MM^{+++} and $\Gamma \subseteq \Gamma_{\omega_1}$ be the class of all SSP-forcings which preserve MM^{+++} . Then for all $B \in \Gamma$ and all $A \in UB_{\omega_1}^{\Gamma}$ there is $\dot{A} \in V^B$ such that for all $G \in St(B)$

 $L(Ord^{\omega_1}, A) \prec L(Ord^{\omega_1}, [\dot{A}]_G)^{V^{\mathbb{B}}/G}.$

In particular combining the two results we get that all sets in $L(P(\omega_1))$ are in $UB_{\omega_1}^{\Gamma}$ assuming MM^{+++} .

The theory MM^{+++} makes the class of $UB_{\Gamma}^{\omega_1}$ -sets extremely large and generically invariant exactly as it occurs for the Universally Baire sets of 2^{ω} assuming large cardinals.

Theorem (V.)

Assume MM^{+++} and $\Gamma \subseteq \Gamma_{\omega_1}$ be the class of all SSP-forcings which preserve MM^{+++} . Then for all $B \in \Gamma$ and all $A \in UB_{\omega_1}^{\Gamma}$ there is $\dot{A} \in V^B$ such that for all $G \in St(B)$

 $L(Ord^{\omega_1}, A) \prec L(Ord^{\omega_1}, [\dot{A}]_G)^{V^{\mathbb{B}}/G}.$

In particular combining the two results we get that all sets in $L(P(\omega_1))$ are in $UB_{\omega_1}^{\Gamma}$ assuming MM^{+++} .

The theory MM^{+++} makes the class of $UB_{\Gamma}^{\omega_1}$ -sets extremely large and generically invariant exactly as it occurs for the Universally Baire sets of 2^{ω} assuming large cardinals.
- Assume MM⁺⁺⁺. Let Γ be as before. Can there exists a subset of 2^{ω_1} which is not in UB^{Γ}_{ω_1}?
- We can also give (in the presence of MM^{+++}) the characterization of $UB_{\omega_1}^{\Gamma}$ in terms of generic elementary embeddings in analogy with what is done by means of generic stationary tower forcing for universally Baire sets (Theorem 3.3.7 of Larson's book on the stationary tower).
- With Giorgio Audrito, Joel Hamkins, and Thomas Johnstone we are isolating a boldface iterated resurrection axioms which strenghten bounded forcing axioms yielding various forms of generic absoluteness results with $(H(\omega_2), A)$ in the place of $L(Ord^{\omega_1}, A)$ (and at the prize of less large cardinal strength).
- We hope to have soon a preprint with Daisuke of what I've been presenting you today.

- Assume MM⁺⁺⁺. Let Γ be as before. Can there exists a subset of 2^{ω1} which is not in UB^Γ_{ω1}?
- We can also give (in the presence of MM^{+++}) the characterization of $UB_{\omega_1}^{\Gamma}$ in terms of generic elementary embeddings in analogy with what is done by means of generic stationary tower forcing for universally Baire sets (Theorem 3.3.7 of Larson's book on the stationary tower).
- With Giorgio Audrito, Joel Hamkins, and Thomas Johnstone we are isolating a boldface iterated resurrection axioms which strenghten bounded forcing axioms yielding various forms of generic absoluteness results with $(H(\omega_2), A)$ in the place of $L(Ord^{\omega_1}, A)$ (and at the prize of less large cardinal strength).
- We hope to have soon a preprint with Daisuke of what I've been presenting you today.

- Assume MM⁺⁺⁺. Let Γ be as before. Can there exists a subset of 2^{ω1} which is not in UB^Γ_{ω1}?
- We can also give (in the presence of MM^{+++}) the characterization of $UB_{\omega_1}^{\Gamma}$ in terms of generic elementary embeddings in analogy with what is done by means of generic stationary tower forcing for universally Baire sets (Theorem 3.3.7 of Larson's book on the stationary tower).
- With Giorgio Audrito, Joel Hamkins, and Thomas Johnstone we are isolating a boldface iterated resurrection axioms which strenghten bounded forcing axioms yielding various forms of generic absoluteness results with $(H(\omega_2), A)$ in the place of $L(Ord^{\omega_1}, A)$ (and at the prize of less large cardinal strength).
- We hope to have soon a preprint with Daisuke of what I've been presenting you today.

- Assume MM⁺⁺⁺. Let Γ be as before. Can there exists a subset of 2^{ω1} which is not in UB^Γ_{ω1}?
- We can also give (in the presence of MM^{+++}) the characterization of $UB_{\omega_1}^{\Gamma}$ in terms of generic elementary embeddings in analogy with what is done by means of generic stationary tower forcing for universally Baire sets (Theorem 3.3.7 of Larson's book on the stationary tower).
- With Giorgio Audrito, Joel Hamkins, and Thomas Johnstone we are isolating a boldface iterated resurrection axioms which strenghten bounded forcing axioms yielding various forms of generic absoluteness results with $(H(\omega_2), A)$ in the place of $L(Ord^{\omega_1}, A)$ (and at the prize of less large cardinal strength).
- We hope to have soon a preprint with Daisuke of what I've been presenting you today.

Bibliography I

Giorgio Audrito, Joel David Hamkins, Thomas A. Johnstone, and Matteo Viale.

The boldface iterated resurrection axioms and the $\alpha\text{-superstrongly unfoldable cardinals.}$

in preparation, 2015.

D. Ikegami and M. Viale.
Universally baire subsets of 2^κ.
in preparation, 2015.

Matteo Viale.

Category forcings, MM⁺⁺⁺, and generic absoluteness for the theory of strong forcing axioms.

arXiv:1305.2058, to appear in Journal of the American Mathematical Society, 2013.

Thanks for your attention!