Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients

^{1,2}Keyue Ding, Ph.D.

Nov. 8, 2014

¹NCIC Clinical Trials Group, Kingston, Ontario, Canada ²Dept. Public Health Sciences, Queen's Univ. Kingston, Ontario, Canada

Outline

- Introduction: Rationale and Objectives
- Microarray Data
- Data preprocessing
 - Normalization
 - Adjusting batch effect
- Predictive gene signature selection
 - Statistical methods
 - Analysis procedure
 - Results

Summary

Introduction

- Early stage non-small cell lung cancer (NSCLC)
 - Surgery is standard treatment
 - >35-50% will relapse within 5 years even after complete resection
- Adjuvant chemotherapy
 - Clinical trials demonstrate modest benefit: 4-15% for 5-yr survival
 - >(Meta-analysis showed a 8.9% 5-yr survival benefit from cisplatinvinorelbine)
 - >Clinical trial results respect to treatment effect of entire population
 - > May only benefit to a group patients
 - > May cause serious adverse effects and detrimental effects

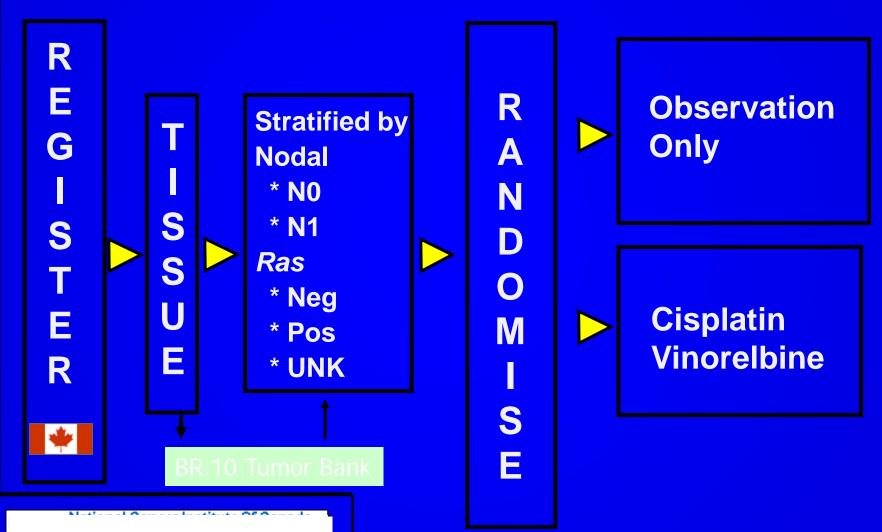
Introduction

- >Tumor sample routinely collected accompanying cancer clinical trials
- Pretreatment tumor sample profiles possess the information about the disease and its sensitivity to therapy
- >Affymetrix microarray: Genome-wide measurement of expression levels
- Statistical analysis can extract information to predict patients outcome and response to treatment

Objective

Using microarray gene expression profiling to identify a gene signature which classifies patients who benefit most from the chemotherapy in early stage resected NSCLC patients

NCIC CTG JBR.10



NCIC Clinical Trials Group NCIC Groupe des essais cliniques

Snap-frozen Tumor Samples Available for Microarray Studies Number of Patients Total In the trial 482 HR: 0.69, 95% C.I. (0.52, 0.91), p (240 obs. 242 **Chemo**) = 0.04. (IB: HR: 0.94, II, HR: 0.59) Available frozen tissue with 169 consent for future studies **Microarray studies completed** 133 **Observation = 62** Adjuvant chemo = 71 NCIC Clinical Trials Group

NCIC Cinical mais Group NCIC Groupe des essais cliniques

Gene microarray data

Microarrays:

- Tools used to measure the presence and abundance of gene expression in tissue.
- microarray technologies provide a powerful tool by which the expression patterns of *thousands* of genes can be monitored simultaneously

Gene Expression:

- The degree to which a gene is active in a certain tissue of the body, measured by the amount of mRNA in the tissue.
- Gene expression depends on environment!
- Gene expression varies with time !

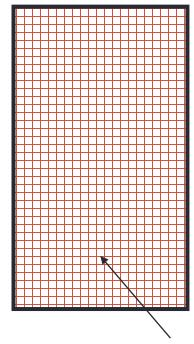
Gene Expression Matrices

- In a gene expression matrix, rows represent genes and columns represent measurements from different experimental conditions measured on individual arrays.
- The values at each position in the matrix characterise the expression level (absolute or relative) of a particular gene under a particular experimental condition.

Gene Expression Matrix

8

Samples



Genes

probesets

Gene expression levels

Microarray data preprocessing

Preprocessing

- Normalization
- >Adjusting batch effect
- Microarray samples
 - >BR10. clinical trial: 133 microarray samples
 - > Affymetrix U133A microarrays
 - > Each array chip contains ~ 20,000 gene probesets
 - >Processed from probe results file: '*.cel' file
- Analysis tools
 - >BRB-Array Tool (by NCI biometric research branch)
 - R based Bioconductor genome analysis packages

Normalization

• Why?

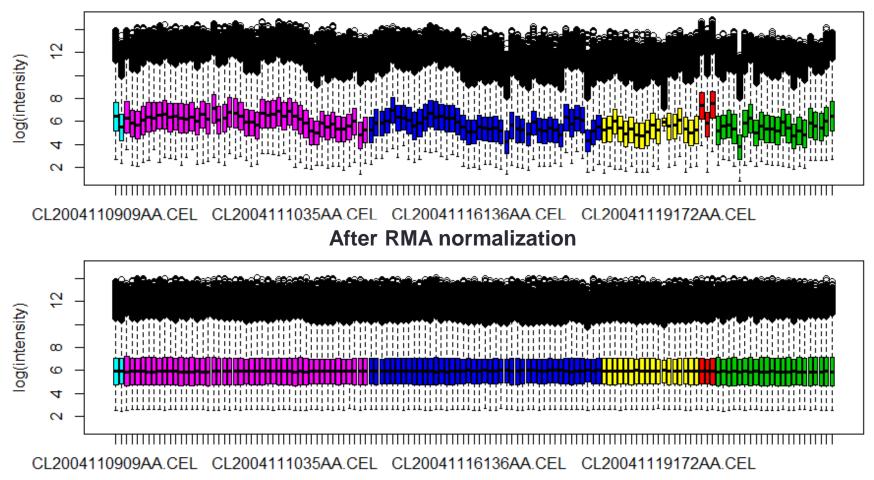
- Microarray data is highly noisy intensity imbalance between RNA samples
- > Due to technical reason, not biological difference of samples
- Purpose: adjust gene expression values of all genes so that the ones that are not really differentially expressed have similar values across the arrays
- Normalisation is a general term for a collection of methods that are directed at reasoning about and resolving the systematic errors and bias introduced by microarray experimental platforms

Steps

- >Background correction: remove local artifacts and noise
- >Normalization: remove array effects so the arrays are comparable
- Summarization: combines probe intensities across arrays
- Methods: RMA, GC-RMA, MAS 5.0

Normalization - single array boxplot

Before normalization



Batch effect

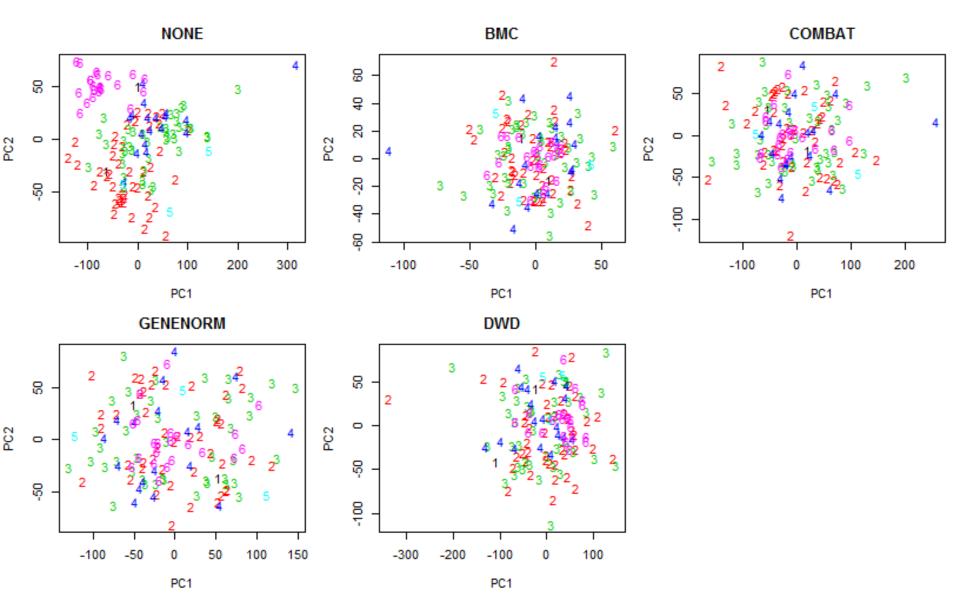
- Systematic technical differences when samples are processed and measured in different batches (e.g. processing dates)
- Unrelated to any biological variation, recorded during experiment
- Methods (Location-scale)
 - Apply models to adjust the gene probesets to have similar mean and variance in each batch

>BMC, COMBAT, GENENORM, DWD

Total 133 samples and 6 batches

Batch ID	1	2	3	4	5	6
Batch name	1109	1110	1116	1119	1130	0603
number of arrays	2	45	43	18	3	22

Batch effect – principal component plots



Predictive gene signature selection

- Purpose: Selection a group of genes that classify patients who are most benefit from the received treatment
- Main issues
 - High dimensional covariates (p >> n) ---variable selection
 - Treatment covariates interaction presence of main effects:
 - Increase the difficulty to detect treatment covariates interaction
 - Increase the number of covariates

Predictive gene signature selection

15

- Informative gene selection
- -- Non-informative filtering: exclude probesets that ave low variance, and low intensity (expression levels)
- -- Informative filtering: Uni-probeset, study treatment, and their interaction term included, keep probesets with predictive potential, with small p-value for the interaction term
- Multi-genes that are predictive of treatment effect: Rank probesets based on the predictive p-value (p-value of the interaction term) in uni-probeset analysis.
- Multi-genes signature selection: modified covariates without main effects (Tian et al, JASA accepted March, 2014).

Tian L, Alizadeh A, Gentles J, Tibshiran R. A Simple method for detecting interactions between a treatment and a large number of covariates. arXiv:1212.2995 [stat.ME]. Dec 2012

Introduction | Preprocessing | Gene signature selection | Summary | 16

Modified covariates method

- Modified covariate: $W(Z)^* = W(Z) \cdot \frac{T}{2}$
 - >*Z* : covariates
- W(Z): standardized Z

> T: treatment

- T = 1 chemotherapy
- T = -1 observation
- Cox regression model using modified covariate $h(t|Z,T) = h_0(t)e^{\gamma.W(Z)^*}$
- γ
 . W(z)* can be used to stratify patients for individualized treatment selection

Variable selection

- Least square model
 - \succ High variance, poor prediction, especially *p* is large
 - > instable, not suitable for p >> n cases
- L₁ penalized model Lasso (Tibshirani, 1996)
 - > Bias-variance trade off to improve prediction accuracy
 - > Provides sparse solutions: useful for variable selection in n << p case.

> Limitation

- Selects at most *n* variables before it saturates
- For a group of highly correlated variables, only select one variable from a group and ignore others
- L₂ penalized model Ridge regression
 - >- Removes the limitation on the number of selected variables;
 - >- Encourages grouping effect; select correlated variables
 - > Stabilizes the L₁ regularization path.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 1996; 58: 267–288

Variable selection

- Elastic net (Zou, 2005) $\hat{\beta} = \arg \min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1$
 - > L₁ penalty: generates a sparse model for variable selection
 - > L_2 penalty:
 - remove the limitation on number of selected variables
 - encourage group selection, and stabilized L₁
 - > Tuning parameters: (λ_2, α) where $\alpha = \frac{\lambda_1}{\lambda_1 + \lambda_2}, \alpha \in [0,1]$
 - \succ (λ_2 , α) : tuned by in a grid search with min cross validation error rule
 - $\succ \alpha$: (α = 0.1. was chosen).

Zou, Hui; Hastie, Trevor (2005). Regularization and variable selection via the elastic net. *J. Royal. Stat. Soci, Series B*: 301–320

Gene signature selection procedure

19

- Microarray preprocessing
 - RMA normalization / DWD adjusting batch effect
- Divide samples into training & test sets
 - Have similar survival experience (stratified by disease stage & histology)
 - Training set is used to select predictive gene signature
- Gene probesets pre-selection
 - Non-informative filtering: Filtered out 1/3 gene probesets with low variance across samples, and mean intensity < 4.</p>
 - Informative filtering: Fit Cox's model with modified covariate without main effect
 - Pre-select gene probesets with absolute estimate of interaction effect no less than 0.4. (662 gene probesets remain)

Gene signature selection

- Predictive gene signature selection
 - Fit multivariable Cox's model with modified covariates based on preselected gene probesets
 - Elastic net for variable selection
 - Bootstrap samples and fit above model 1000 times, and rank probe according the frequency they appeared in the model
 - PCA to synthesize information of the most often selected probesets (k from 1 to 150).

21

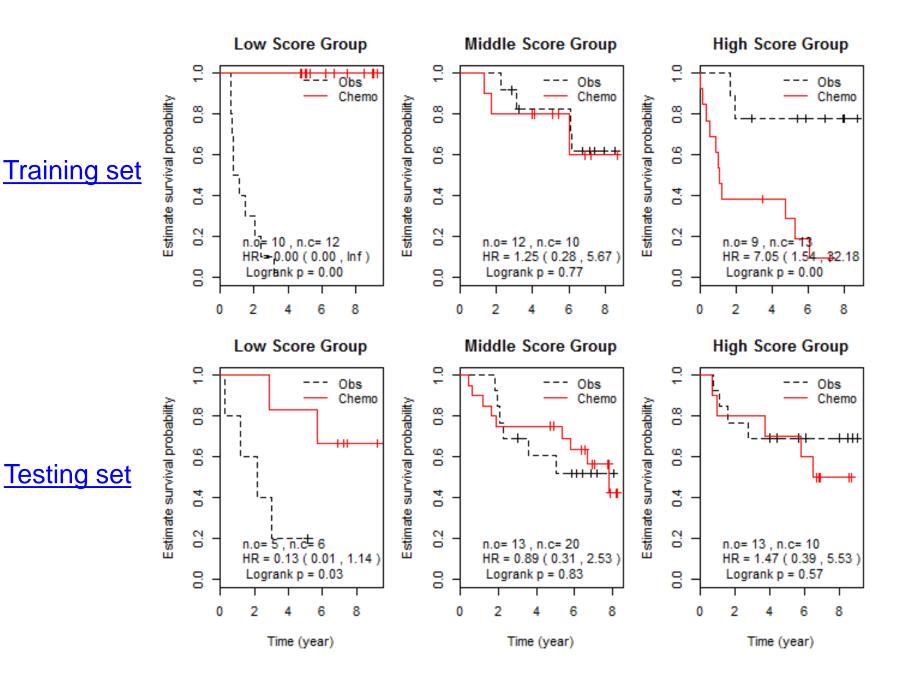
Gene signature selection

- ≻10 folds cross-validation
- ➢Fit Cox's model with treatment, PC1 and their interaction terms, and generate cross validation predictive scores: B1+B3*PC1
 - B1: coefficient of treatment estimate
 - B3: coefficient of treatment and PC1 interaction estimate
- Classify patients into low, middle and high groups using CV predictive score
- Predictive gene signature: a group a gene probsets that best separate low score group of patients by treatment arms (min p-value)
 34-gene probesets were selected.

Predict treatment effect

Validate the signature in the testing set

- Generate predictive scores of patients in training set based on selected gene signature using (B3*PC1)
- Classify patients into low, middle and high predictive score groups using 1/3 and 2/3 quantiles of predictive scores as cutoff points
- Generate predictive scores of patients in test data set based on the information in training set:
 - Coefficient of loading matrix of PC1
 - Estimate coefficient of the interaction term of treatment and PC1
- Classify test set patients into low, middle and high predictive score groups using the cut-off points in the training set
- >Low predictive score group benefits from chemo therapy



Overall survival of 133 patients in predictive score groups based on 34-gene signature

Loading matrix of training dataset

Probeset	PC1 loading coef.	Probeset	PC1 loading coef.
Probeset_1	0.135	Probeset_18	-0.066
Probeset_2	0.153	Probeset_19	-0.083
Probeset_3	0.236	Probeset_20	0.197
Probeset_4	-0.185	Probeset_21	0.262
Probeset_5	-0.080	Probeset_22	-0.169
Probeset_6	0.120	Probeset_23	0.185
Probeset_7	-0.071	Probeset_24	0.206
Probeset_8	-0.199	Probeset_25	0.254
Probeset_9	-0.145	Probeset_26	0.132
Probeset_10	-0.091	Probeset_27	-0.034
Probeset_11	-0.075	Probeset_28	-0.131
Probeset_12	0.235	Probeset_29	-0.072
Probeset_13	0.148	Probeset_30	0.159
Probeset_14	0.108	Probeset_31	-0.208
Probeset_15	0.171	Probeset_32	0.264
Probeset_16	0.250	Probeset_33	-0.212
Probeset_17	-0.215	Probeset_34	0.170

Predictive score = 0.816 X PC1

Cut-off points:

1/3 quantile:	-0.734
2/3 quantile:	0.810

Summary

- Microarray raw data of 133 BR10. samples were preprocessed by normalization and adjusting batch effect.
- Predictive gene probesets were selected using Cox's model fitted by modified covariates of bootstrap samples without main effect, and elastic net for variable selection.
- A 34-gene signature separates patients in low predictive score group between two treatment arms, and the patients in low score group are benefit to chemotherapy.

Acknowledge:

This is the joint work with Ms. Li Liu