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Metric triples

(X , ρ, µ) - metric (Gromov) triples or mm-space.
Admissible triples:

1)(X , ρ) separable metric space (or semi-metric space.)
2)(X ,A, µ) – standard measure space (main case -with continuous
measure);
3)A generated with Borel sigma-field (in the sense of metric
topology);
Main idea — to fix measure µ, and to change metric (or
semi-metric) ρ.
Thus the axioms are the following:
1. Pair (X ,Aµ) is standard measure space with continuous
measure);
2. Metric ρ is measurable function of two variables which subtract
to usual axioms on metric, but (!) as measurable function.
3.For each ε > 0 the σ-field A generated by the set of all balls of
radius ε.
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Space of metrics, dynamics of Metrics

(equivalent)
4. For each ε > 0 a set Xε : µXε > 1− ε is precompact.
5. Lemma: If ρ satisfies to metric axioms as measurable functions
w.r.t. µ× µ, µ× µ× µ then there exists a set of measure 1 and
true metric on it which is a.e. coincide with ρ.
Cone K(X ,µ) of all admissible metrics on the standard measure
spaces.
Norm and topology on the space of admissible metrics: L1-norm
and M-norm. Compactness in and entropy.

Lemma (Equivalence of topology)

Let ρ1 ρ2 — two admissible metrics on (X , µ). Then for each
ε > 0 there a measurable set K ⊂ X , µ(K ) > 1− ε s.t. topology
generated by metrics ρ1 and ρ2 on K are coincided.
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Classification of admissible triples

(X , µ, ρ) ∼ (X ′, µ′, ρ′) iff

∃T : X → X ′; T∗µ = µ′ ρ′(Tx ,Ty) = ρ(x , y)

(T — measure preserving isometry).

Theorem
(Gromov-V.) Define the map:

Fρ : X∞ × X∞ → M∞(R) Fρ({xi}i , {yj}j) = {ρ(xi , yj)}i ,j ,

define X∞ ×X∞, a product (Bernoulli) measure µ∞ × µ∞ ≡ µ2∞.
Then the image of measure µ2∞ under the map: Fρ∗(µ

2∞) ≡ Dρ,
which called MATRIX DISTRIBUTION OF THE METRIC ρ with
respect to measure µ
is the complete invariant of the equivalence of metric triple.

Roughly speaking the random metric on N is an invariant of metric
on continuous space.
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Generic metric space

Theorem
(V-1997;2008)
1.Generic metric on the countable set (N) has property:
completion of the set w.r.t. metric is universal Urysohn space.
2.Generic admissible triple is
either
the standard (Lebesgue) measure space with continuous measure
and a metric of Universal Urysohn space, — if we fix a measure;
or
Universal Urysohn space with non-degenerated (=all nonempty
open set have positive measure) continuous measure, — if we fixed
a generic metric.

Here ”generic” means the element of everywhere dense Gδ-set of
the space of all admissible triples with respect to natural topology.
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Virtually continuous functions
. Let f (·, ·) be a measurable function of two variables. Then
Luzin’s theorem analogue (continuity on the product X ′ × Y ′ of
sets of measure > 1− ε with respect to given metric
ρ[(x1, y1), (x2, y2)] = ρX (x1, x2) + ρY (y1, y2)) is not in general
true. This leads to the following key notion of this work.

Definition
Measurable function f (·, ·) on the product (X , µ)× (Y , ν) of
standard spaces is called virtually continuous, if for any ε > 0 there
exist sets X ′ ⊂ X ,Y ′ ⊂ Y , each of which having measure 1− ε,
and admissible semi-metrics ρX , ρY on X ′,Y ′ respectively such
that function f is continuous on (X ′ × Y ′, ρX × ρY ). virtual
functions of several variables are defined in the same way.

Main theorem: Virtually continuous function can be integrated
over special kind of singular (with respect to product measure)
measures. For example over ”diagonal” or sub-manifolds. .

Theorem
Any admissible metric is virtually continuous function.



Dynamics of the admissible metrics and new entropy-type
invariants

Let G is a countable group which acts on the space X with
invariant measure µ. The metric ρ is admissible on (X , µ). Define
the dynamics of ρ:

ρn(x , y) =
1

|Gn|
∑
g∈Gn

ρ(gx , gy),

Gn ⊂ G -here is set of element of the group G with length not
greater than n (in some generators).
The metric ρn is again admissible and asymptotic properties of
(X , µ, ρn), which does not depend on initial metric ρ supply the
invariants of the action of G .
The first invariant is — scaling entropy — generalization of
Kolmogorov entropy.
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Scaling entropy

Main definition

Define a sequence of positive numbers

H(X , ρn, ε), n = 1 . . . ,

as ε-entropy of the triple (X , µ, ρn), .., logarithm of minimal
number of points in the ε-net over all measurable compact sets
Xε ⊂ X , of measure > 1− ε with respect to metrics ρn.

Definition
Scaling sequence {cn,ε} is the sequence for which the following
condition is true

0 < lim inf
H(X , ρn, ε)

cn,ε
≤ lim sup

H(X , ρn, ε)

cn,ε
<∞

Two scaling sequences for given metric are equivalent (ratio tends
to 1 on infinity)
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Examples

Theorem
(AV-P.Zatitsky) The class of scaling sequences (if exists) for given
metric does not depend on initial metrics (even on initial
generating semi-metrics) and is invariant of the dynamical systems.

Theorem
1.The group G has discrete spectrum iff the class of scaling
sequence {cn} is bounded. (V.-Petrov-Zatitskiy; S.Ferenzi). This is
a criteria of discreteness of the spectra.
2.{cn} ∼ |Gn|, n ∈ N iff Kolmogorov entropy is positive.

Connection with theory of filtrations: 3.RWRS=Random walk on
Random Scenery:
cn ∼ (ln|Gn|)k for locally finite groups and for R ( Z) —
(Conjecturally horocycle-flow).
Connection: A.Kirillov-A.Kushnirenko sequential entropy,
S.Ferenci, A.Katok-J-P.Thouvenot (etc.) (V.St.Petersburg
Math.Journ. 2011, N1).
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Examples

Adic transformation as a source of new examples.
Bratelli-Vershik diagram and adic transformation
Graded graph, Numeration, Substitutions.
Pascal automorphism:
P :

∏∞
i=1{0; 1} �

0, . . ., 0︸ ︷︷ ︸
m1

1, . . ., 1︸ ︷︷ ︸
k1

∗∗ = 0m11k1 ∗ ∗.

Pascal automorphism can be written by the following formula:

x 7→ Px ; P(0m1k10 ∗ ∗) = 1k0m01 ∗ ∗, m, k = 0, 1 . . . .

The automorphism P−1 in a similar form:

P−1(1k0m01 ∗ ∗) = 0m1k10 ∗ ∗, m, k = 0, 1 . . . .



Examples
Adic transformation as a source of new examples.
Bratelli-Vershik diagram and adic transformation

Graded graph, Numeration, Substitutions.
Pascal automorphism:
P :

∏∞
i=1{0; 1} �

0, . . ., 0︸ ︷︷ ︸
m1

1, . . ., 1︸ ︷︷ ︸
k1

∗∗ = 0m11k1 ∗ ∗.

Pascal automorphism can be written by the following formula:

x 7→ Px ; P(0m1k10 ∗ ∗) = 1k0m01 ∗ ∗, m, k = 0, 1 . . . .

The automorphism P−1 in a similar form:

P−1(1k0m01 ∗ ∗) = 0m1k10 ∗ ∗, m, k = 0, 1 . . . .



Examples
Adic transformation as a source of new examples.
Bratelli-Vershik diagram and adic transformation
Graded graph, Numeration, Substitutions.
Pascal automorphism:
P :

∏∞
i=1{0; 1} �

0, . . ., 0︸ ︷︷ ︸
m1

1, . . ., 1︸ ︷︷ ︸
k1

∗∗ = 0m11k1 ∗ ∗.

Pascal automorphism can be written by the following formula:

x 7→ Px ; P(0m1k10 ∗ ∗) = 1k0m01 ∗ ∗, m, k = 0, 1 . . . .

The automorphism P−1 in a similar form:

P−1(1k0m01 ∗ ∗) = 0m1k10 ∗ ∗, m, k = 0, 1 . . . .



Examples
Adic transformation as a source of new examples.
Bratelli-Vershik diagram and adic transformation
Graded graph, Numeration, Substitutions.
Pascal automorphism:
P :

∏∞
i=1{0; 1} �

0, . . ., 0︸ ︷︷ ︸
m1

1, . . ., 1︸ ︷︷ ︸
k1

∗∗ = 0m11k1 ∗ ∗.

Pascal automorphism can be written by the following formula:

x 7→ Px ; P(0m1k10 ∗ ∗) = 1k0m01 ∗ ∗, m, k = 0, 1 . . . .

The automorphism P−1 in a similar form:

P−1(1k0m01 ∗ ∗) = 0m1k10 ∗ ∗, m, k = 0, 1 . . . .



Scaling entropy of Pascal automorphism

The scaling entropy of Pascal automorphism has the following
estimation from below:

ln n

ln ln n

Hint:Pascal has the same orbits as the action o infinite symmetric
group by permutations of the coordinates. The scaling sequence
for entropy of that action is ln n!

ln n .
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