Lie groupoids for space robots

Yael Karshon

University of Toronto

November 2014

Anecdotes from an interesting collaboration

with Robin Chhabra and Reza Emami

A UNIFIED GEOMETRIC FRAMEWORK FOR KINEMATICS, DYNAMICS AND CONCURRENT CONTROL OF FRIE-BASE, OPEN-CHAIN MULTI-BODY SYSTEMS WITH HOLDWORK AND NONRIDONOMIC CONSTRAINTS

by

Robin Chhabra

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Aerospace Science and Engineering University of Toronto

© Copyright 2013 by Robin Chhabra

V.I. Arnold

Mathematical Methods of Classical Mechanics

Second Edition

MONOGRAPHS IN COMPUTER SCIENCE

GEOMETRIC FUNDAMENTALS OF ROBOTICS

J.M. Selig

Second Edition

4	Lie Groups 1							
	2.1	Definitions and Examples	12					
	2.2	More Examples — Matrix Groups	15					
		2.2.1 The Orthogonal Group O(n)	15					
		2.2.2 The Special Orthogonal Group SO(n)	16					
		2.2.3 The Symplectic Group $Sp(2n, \mathbb{R})$	17					
		2.2.4 The Unitary Group U(n)	18					
		2.2.5 The Special Unitary Group SU(n)	18					
	2.3	.3 Homomorphisms						
	2.4	Actions and Products	21					
	2.5 The Proper Euclidean Group							
		2.5.1 Isometries	23					
		2.5.2 Chasles's Theorem	25					
		2.5.3 Coordinate Frames	27					
3	Sub	groups	31					
	3.1	The Homomorphism Theorems	31					
	3.2	Quotients and Normal Subgroups	34					
	3.3	Group Actions Again	36					
	3.4	Matrix Normal Forms	37					
	3.5	Subgroups of $SE(3)$	41					
	3.6	Reuleaux's Lower Pairs	44					
	3.7	Robot Kinematics	46					
4	Lie Algebra							
	4.1	Tangent Vectors	51					
	4.2	The Adjoint Representation	54					
	4.3	Commutators	57					
	4.4	4 The Exponential Mapping						
		4.4.1 The Exponential of Rotation Matrices						
	4.4.2 The Exponential in the Standard Benresentation of SE(3)							
4.4.3 The Exponential in the Adjoint Representation of SE(3)								
	4.5	Robot Jacobians and Derivatives	71					
		4.5.1 The Jacobian of a Robot	71					
		4.5.2 Derivatives in Lie Groups	73					
		4.5.3 Angular Velocity	75					
		4.5.4 The Velocity Screw	76					
	4.6	Subalgebras, Homomorphisms and Ideals	77					
	4.7	The Killing Form	80					
	4.8	The Campbell-Baker-Hausdorff Formula	81					
		-						

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Robot arm with six joints

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Euclidean motions:

$$\mathsf{SE}(3) = \{q \colon x \mapsto Ax + b\}$$

 $x \in \mathbb{R}^3$, $A \in SO(3)$, $b \in \mathbb{R}^3$.

$$1 \longrightarrow \mathbb{R}^{3} \hookrightarrow SE(3) \xrightarrow{\pi} SO(3) \longrightarrow 1$$
$$q \cap \mathbb{R}^{3}_{affine} \xrightarrow{\pi} \pi(q) \cap \mathbb{R}^{3}_{linear}$$

"macro": $\pi(q)$ is "q viewed from far away".

"micro": $\forall x \ T_x \mathbb{R}^3_{affine} = \mathbb{R}^3_{linear}; \ \pi(q) = dq|_x.$

Lower Reuleaux pairs: spherical, planar, cylindrical, revolute, prismatic, screw

Connected subgroups G of SE(3):

・ロト・日本・モート モー うへぐ

Table 2.1: Categories of displacement subgroups [38, 71]							
Dim.	Subgro	oups of $SE(3)/display$	acement subgroups				
6	$\begin{array}{l} SE(3) = SO(3) \ltimes \mathbb{R}^3 \\ \mathrm{free}^a \end{array}$						
4	$SE(2) \times \mathbb{R}$ planar+prismatic ^b						
3	$SE(2) = SO(2) \ltimes \mathbb{R}^2$	SO(3)	\mathbb{R}^{3}	$H_p \ltimes \mathbb{R}^2$			
	planar	ball (spherical)	3-d.o.f. prismatic	helical + 2-d.o.f.	$\operatorname{prismatic}^{c}$		
2	$SO(2) \times \mathbb{R}$	\mathbb{R}^2					
	cylindrical ^d	2-d.o.f. prismatic					
1	SO(2)	R	H_p				
	revolute	prismatic	helical				
0	$\{e\}$	-					
	$fixed^a$						

^{*a*} These two subgroups are the trivial subgroups of SE(3).

^b The axis of the prismatic joint is always perpendicular to the plane of the planar joint.

^c The axis of the helical joint is always perpendicular to the plane of the 2-d.o.f. prismatic joint.

(日) (日) (日) (日) (日) (日) (日) (日)

^d The axis of the revolute and prismatic joints are always aligned.

One parameter subgroups

$$(\mathbb{R},+) \longrightarrow \mathsf{SE}(3)$$

THEORY OF SCREWS:

A STUDY IN THE DYNAMICS OF A RIGID BODY.

BY

ROBERT STAWELL BALL, LL.D., F.R.S., ANDREWS' PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF DUBLIN, AND ROYAL ASTRONOMORY OF IRELAND.

DUBLIN: HODGES, FOSTER, AND CO., GRAFTON-STREET. BOOKSELLERS TO THE UNIVERSITY.

1876.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\left\{\begin{matrix} \mathsf{one-parameter \ subgroups} \\ (\mathbb{R},+) \to \mathsf{SE}(3) \end{matrix}\right\} = \left\{\mathsf{screws}\right\}$$

$$\mathfrak{se}(3) = \{ \mathsf{twists} \}$$

 $\mathfrak{se}(3)^* = \{ \mathsf{wrenches} \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Chasles's Theorem:

Every Euclidean motion in 3-d is a screw motion.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Proof of Chasles's theorem.

$$q \in \mathsf{SE}(3) \qquad \mapsto \qquad \pi(q) \in \mathsf{SO}(3).$$

 $\begin{aligned} \pi(q) &= \mathsf{Id} \quad \Rightarrow \quad q \text{ is a translation.} \\ \pi(q) &\neq \mathsf{Id} \quad \stackrel{\mathsf{Euler}}{\Rightarrow} \quad \pi(q) \text{ is a rotation about line } \ell \subset \mathbb{R}^3_{\mathsf{linear}} \\ &\Rightarrow \quad q \text{ descends to } \left(\overline{q} \subset \mathbb{R}^3_{\mathsf{affine}} / \ell \right) \in \mathsf{SO}(2); \\ \overline{q} \text{ is a rotation about } \overline{x} = x + \ell \in \mathbb{R}^3_{\mathsf{affine}} / \ell \\ &\Rightarrow q \text{ is a screw motion about } x + \ell \subset \mathbb{R}^3_{\mathsf{affine}}. \end{aligned}$

Dynamics.

Configuration space: $Q = \{q\}$. Velocity phase space: $TQ = \{(q, \dot{q})\}, \quad \dot{q} \in T_qQ$.

Lagrangian: $TQ \rightarrow \mathbb{R}$.

Time evolution:
$$\{q_t\}_{a \le t \le b}$$
, path in Q .
 $\xrightarrow{}_{\text{prolongation}} \{(q_t, \dot{q}_t)\}_{a \le t \le b}$, path in TQ .

Principle of stationary action: $\delta \int_a^b L(q, \dot{q}) dt = 0$

 $\Rightarrow \mathsf{Euler}\mathsf{-}\mathsf{Lagrange} \ \mathsf{equations}$

$$\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rigid body.

Configuration space: $Q \cong SE(3)$

infinitesimal motion: $\dot{q} \in T_eSE(3) = \mathfrak{se}(3)$, a vector field on \mathbb{R}^3 :

$$\dot{q}|_{x} = \dot{x}.$$

Kinetic energy
$$= \frac{1}{2} \int_{x \in body} |\dot{x}|^2 \underbrace{d\rho(x)}_{\text{mass density}} \left(= "\sum_{\text{particles}} \frac{mv^2}{2}"\right)$$
$$= K(\dot{q}, \dot{q})$$

where
$$\mathcal{K}(\dot{q}_1,\dot{q}_2)=\int_{x\in\mathsf{body}}\langle\dot{q}_1ert_x,\dot{q}_2ert_x
angle d
ho(x)$$

 $Q \cong SE(3)$; Kinetic energy = $K(\dot{q}, \dot{q})$;

 $K(\cdot, \cdot)$ an inner product on $\mathfrak{se}(3)$ \longrightarrow 6×6 "generalized inertia matrix";

Lagrangian = norm-squared: $TQ \rightarrow \mathbb{R}$

for left invariant Riemannian metric.

Lie groupoid.

 G_0 objects G_1 arrows manifolds

 $s: G_1
ightarrow G_0$ source map $t: G_1
ightarrow G_0$ target map $\left.
ight.
ight.$ submersions

 $h, g \mapsto h \cdot g$ multiplication on G_1 defined when t(g) = s(h) associative

units: $G_0 \to G_1$, $a \mapsto 1_a$ inverses: $G_1 \to G_1$, $g \mapsto g^{-1}$ } smooth

Multibody system

Objects: the bodies B_1, \ldots, B_N .

 A_i an affine space "attached to B_i ".

Arrows from *i* to *j*:
$$\{r_i^j: A_i \xrightarrow{\text{Euclidean}} A_j\}$$

= { relative poses of B_i with respect to B_j }
 $\stackrel{\text{"homing"}}{\cong}$ SE(3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?