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The following is a report on a project concerning mathematical logic and
operator algebras that took place as a part of the Fields Institute Undergrad-
uate Summer Research Program in July and August 2013. A group of nine
students participated in the project under the supervision of Dr. Bradd Hart
and Dr. Ilijas Farah. The group worked on two seperate problems throughout
the summer. The material covered in this report is introductory material as
well as a description of the problems that were worked on. We would like to
thank the Fields Institute and Mitacs and our supervisors.
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1 C*-algebras

Basics of C*-algebras

Definition: C*-algebra
A C*-algebra A is an algebra over C with a norm a→ ‖a‖ and an involution
a→ a∗ such that A is complete with respect to the norm, and such that
‖ab‖ ≤ ‖a‖‖b‖ and ‖a∗a‖ = ‖a‖2 for every a, b ∈ A.

A unital C*-algebra is a C*-algebra with a multiplicative identity.

Example
Mn(C) with usual operations forms a unital C*-algebra.

Finite Dimensional Algebras

Finite dimensional algebras are in some sense a generalization of matrix
algebras and will play a key role in what will follow.

Definition: Finite Dimensional C*-algebra
A C*-algebra is finite dimensional if it is finite dimensional when considered
as a complex vector space.

Definition: Direct Sum
The direct sum of two C*-algebras A, B is given by pairs (a,b) with pointwise
operations and norm defined by ‖(a, b)‖ = max{‖a‖,‖b‖}.

A key result about finite dimensional algebras is the following:

Every finite dimensional C*-algebra is isomorphic to a direct sum of full matrix
algebras.

Example
M2(C)

⊕
M3(C)

⊕
M5(C)

Homomorphisms

Definition: *-homomorphism
A *-homomorphism φ : A→ B between two C*-algebras is a homormorphism
that satisfies φ(a∗) = φ(a)∗. A *-homomorphism between two unital
C*-algebras is called unital if it preserves the unit of the algebra.

Definition: Conjugate *-homomorphisms
Two homomorphisms Φ,Ψ from A to B are conjugate if Φ = uΨu∗ for some
unitary u ∈ B. (A unitary element of an algebra satisfies the property
uu∗ = u∗u = 1)

We will now completely describe *-homomophisms between two matrix
algebras and hence obtain the form of all *-homomorphisms between finite
dimensional algebras. We start with the following lemma:
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There is a unital *-homomorphism from Mn(C) to Mk(C) if and only if n divides
k. All unital *-homomorphisms from Mn(C) to Mk(C) are conjugate.

Up to conjugacy, these homomorphisms are described by the following map
Φ : A→ B

Φ(a) =


a 0 . . . 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a


All non-unital *-homomorphisms between matrix algebras are determined up
to conjugacy by how many copies of a are put along the diagonal. Using this
information we can construct all possible *-homomorphisms between finite
dimensional algebras up to conjugacy. That is, any *-homomorphism between
finite dimensional algebras is conjugate to a *-homomorphism which takes
tuples of matrices and sends them to a tuple of matrices with copies of the
original matrices along their diagonals. We will now present an example of a
*-homomorphism between two finite dimensional algebras to make this idea
more clear.

Example
A unital *-homomorphism from M2(C)

⊕
M3(C) to

M6(C)
⊕
M5(C)

⊕
M6(C) is described by the following map

Φ((a,b)) =

a 0 0
0 a 0
0 0 a

 , [a 0
0 b

]
,

[
b 0
0 b

]
Bratteli Diagrams Bratteli Diagrams are a useful tool for pictorially
describing *-homomorphisms between finite dimensional algebras. They will
be used in the analysis of the work presented later in the paper. For a given
*-homomorphism between finite dimensional algebras the diagram is
constructed as follows:

• 1) The domain can be written as a direct sum of matrix algebras. The
numbers corresponding to the dimensions of the matrix summands are
placed on the left hand side of the diagram.

• 2) The range can be written as a direct sum of matrix algebras. The
numbers corresponding to the dimensions of the matrix summands are
placed on the right hand side of the diagram.

• 3) Lines are drawn from the numbers on the left to the numbers on the
right. The number of lines from one number to another corresponds to
the number of times a matrix in the domain is sent into a matrix in the
range by putting copies of the original matrix along the diagonal.
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The Bratteli Diagram that corresponds to the above example is the following:

Traces

A continuous linear functional φ : A→ C is positive if φ(a) ≥ 0 for every
positive a ∈ A. (An element of A is positive if it is of the form a = b∗b for
some b ∈ A)

Definition: Trace
A trace is a continuous linear positive functional τ : A→ C such that τ(1) = 1
and τ(ab) = τ(ba).

The usual trace of a matrix from linear algebra is a trace on a matrix algebra
if it is normalized by dividing by the dimension of the matrix. This is called
the normalized trace. It can be shown that any trace on a matrix algebra is
actually the normalized trace and hence matrix algebras have unique trace.

Using the above fact we have the following lemma concerning traces on finite
dimensional algebras:

Suppose A is a finite dimensional algebra of the form:

Mn1(C)
⊕

Mn2(C)
⊕
· · ·

⊕
Mnk

(C)

Traces on A are all of the form:

tr(a) = α1τn1
+ α2τn2

+ · · · + αkτnk

where τni is the unique trace on Mni(C), αi > 0 and α1 + α2 + · · ·+ αk = 1

Inductive Limits

Let {(Ai, φij) : i ≤ j} be an inductive system of C∗-algebras.

Definiton: Inductive Limit
The algebraic inductive limit or direct limit of the above inductive system is

denoted by limi→∞(Ai, φij) or limi→∞Ai, and is defined as
⋃

i∈I Ai

/
∼,

where xi ∼ φij(xi) for all j ≥ i for xi ∈ Ai.

6



There is a canonical seminorm on algebraic direct limits of C∗-algebras given
as follows:
‖a‖ ≡ limj>i ‖φij(a)‖ = infj>i ‖φij(a)‖ .

The completion of limi→∞Ai with elements of seminorm 0 divided out is a
C∗-algebra.

UHF Algebras

Definition: UHF Algebras
Uniformly hyperfinite (UHF) algebras are infinite tensor products of full
matrix algebras. For seperable C*-algebras this is equivalent to being a direct
limit of full matrix algebras.

For example, the canonical anticommutation relations algebra (CAR
algebra), denoted M2∞ , may be defined as the direct limit of the direct
system illustrated below, where the unital embeddings are of the form

A 7→
(
A 0
0 A

)
:

M2(C) ↪→M4(C) ↪→M8(C) ↪→ . . .

2∞ is the generalized integer associated to the CAR algebra.

Similarly, 3∞ is the generalized integer (or supernatural number) associated to
the UHF algebra M3∞ .

Observe that M2∞ � M3∞ .

Two separable UHF algebras are isomorphic iff they have the same generalized
integer.

Consequently, there are uncountable infinite isomorphism classes of UHF
algebras.

AF Algebras

Definition: AF Algebra
A C∗-algebra is approximately finite (AF) iff it is an inductive limit of
finite-dimensional C∗-algebras.

For example, UHF algebras are AF algebras.

Bratteli diagrams of finite-dimensional C∗-algebras naturally generalize to
unital AF algebras. Simply concatenate the Bratteli digrams corresponding to
the unital embeddings An ↪→ An+1 for a direct limit of the form limn→∞An.

Again consider the unital embedding M2 ↪→M4 given by A 7→
(
A 0
0 A

)
.

7



The multiplicity of this embedding is 2, and thus corresponds to the
following Bratteli diagram:

So the Bratteli diagram for the CAR algebra, given by the unital inductive
system of the form M2 ↪→M4 ↪→M8 ↪→ . . ., is of the following form:

2 Project 1

2.1 K-Theory

In this section, we only consider unital AF C*-algebras.

Murray-von Neumann equivalence of projections.
We define projections and their equivalence relation.
Definition. p ∈ A is a projection if p2 = p∗ = p.
Definition. Two projections p, q ∈ A are Murray-von Neumann equivalent if
there exists v ∈ A such that p = v∗v, q = vv∗.
Example. Consider projections in M2(C) such as(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1
2

√
3
2√

3
2

1
2

)
, . . .

One can observe that any projection is equivalent to exactly one of the
following: (

0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
.

In general, two projections are Murray-von Neumann equivalent if and only if
their ranges have the same dimension, which is their rank in matrix algebra
case.

K0 groups of unital C*-algebras.
Denote limn→∞Mn(A) by M∞(A), where the connecting maps are given
naturally:

a ∈Mn(A) 7−→
(
a 0
0 0

)
∈Mn+1(A).

Let P(M∞(A)) be the set of all projections in M∞(A), and define
V (A) = P(M∞(A))/ ∼.

Next, we define addition on V (A). For [p], [q] ∈ V (A), define
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[p]⊕ [q] =

[(
p 0
0 q

)]
.

Since(
p 0
0 q

)
=

(
0 q
p 0

)∗(
0 q
p 0

)
∼
(

0 q
p 0

)(
0 q
p 0

)∗
=

(
q 0
0 p

)
,

V (A) is an abelian semigroup.

Definition. K0(A) is the Grothendieck group of (V (A),⊕).
Grothendieck group construction allows extending the addition on V (A) to an
abelian group operation. Indeed, roughly, K0(A) = V (A)− V (A).
In fact, K0(A) is an ordered group (K0(A),K0(A)+, [1A]) with K0(A)+ being
the image of V (A) and [1A] the order unit.

Example. Here are some K0 groups in simple cases, given explicitly.

(1)K0(C) ∼= (Z,Z≥0, 1) and K0(Mn(C)) ∼= (Z,Z≥0, n). In K0(C), a projection
with rank n corresponds to the nonnegative integer n. Hence V (C) ∼= Z≥0, and
by the description above, K0(C) ∼= Z≥0 − Z≥0 = Z. Since the multiplicative
unit In in (Mn(C) has rank n, the order unit of K0(Mn(C)) is n.

(2)K0 can be viewed as a functor between C*-algebras and abelian groups.
One important property is that K0(limn→∞An) = limn→∞K0(An), which is
useful when computing K0 groups of UHF algebras.

(3)K0(M2∞) ∼= {m2k | m ∈ Z, k ∈ N} and K0(M3∞) ∼= {m3k | m ∈ Z, k ∈ N}. In
general, for a UHF algebra A with generalized integer k,
K0(A) ∼= {ml | m ∈ Z, l | k}.

The following essential theorem demonstrates that K0 can be a powerful
invariant in specific cases.

Theorem (Elliott, 1976) Two separable unital AF algebras are isomorphic
iff their ordered K0 groups are isomorphic.

The proof to Elliott’s theorem uses the so-called intertwining argument, which
appears frequently throughout mathematics and logic.

2.2 Continuous Model Theory

The first notion to define is that of a metric structure:

Given a metric space M, we have the following types of functions:

1) A predicate P : Mn → R is a uniformly continous function, where the
natural number n is called the arity of P.
2) A function f : Mk →M is a uniformly continuous function, where the
natural number k is called the arity of f. A constant is a funtion with arity 0.

Definition: Signature
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A signature L is a triple (Pi, fj , ck), i ∈ Ij ∈ J, k ∈ K where I, J and K are
index sets and the P ′is are predicates, the f ′js functions and the c′ks are
constants. The predicates, formulas and constants are to be thought of
formally as abstract symbols. These symbols are waiting to be interpreted (i.e.
given a domain and range). A signature is also assigned a countably infinite
set of variables.

Definition: Metric Structure
A metric structure M is a triple(Xs, L, I) where each Xs is a complete metric
space and s in some index set S, L is a signature and I is an interpretation
function. Each Xs is commonly referred to as a sort. An interpretation
function takes a symbol from the signature L and sends it to a uniformly
continuous function whose domain is some product of sorts specified in the
metric structure.

That is, f → fM , P → PM , c→ cM . For example I(p) = PM : X1 . . . Xn → R.
This is a uniformly continous function. Metric structures assign meaning (or
interpret) the symbols within the signature in this way.

A C*-algebra is a metric structure for which the sorts are just balls. Note that
in the signature L, for a C*-algebra A, there is a symbol for the norm,
‖ − ‖ : A→ R≥0.

Terms, Formulas and Sentences

Given a signature L, one can now define what terms, formulas and sentences
are. For our purposes, however, these notions will only be defined in the
context of C*-algebras.

Suppose that we have a C* algebra A = (Xs, L, I), which is nothing but a
metric structure. We now use L to generate some more purely syntactical
objects:

Definition: Term
A term in the signature is just a *-polynomial in the variables
x1, . . . , xn, n ∈ N .

Defintion: Formula
Formulas are defined inductively as follows:
1) Atomic formulas are of the form ‖t‖ where t is a term.
2) If Φ1, . . .Φn are formulas and f : [0,∞)n → [0,∞) is continous then
f(Φ1, . . .Φn) is a formula.
3) If Φ is a formula and x is a variable then inf

x
Φ and sup

x
Φ are formulas.

Example
Φ(x) = ‖x− x∗‖+ ‖x− x2‖

All formulas get interpreted (in a metric structure) as uniformly continous
functions. Given a C*-algebra A, the above example is interpreted in A as the
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uniformly continous funcion ΦA(x) = ‖x− x∗‖+ ‖x− x2‖. Formulas, under
interpretation, are evaluated to real numbers in this way.

A variable inside a function is said to be free if it is not quantified by a
sup/inf.

Definition: Sentence
A sentence is a formula with no free variables.
σ(x) = inf

x
‖x− x∗‖+ ‖x− x2‖is an example of a sentence because the only

variable is quantified by the infimum.

A sentence σ evaluates to a number which is denoted by σA.
Note that the zero set of ΦA above is exactly the set of projections in the
C*-algebra. Since 0 is a projection for any algebra A, σA = 0.

Definition: Theory
The theory of a C*-algebra, denoted Th(A), is the set of all sentences which
evaluate to zero. That is, Th(A) = {σ : σA = 0}.

Two C*-algebras A and B are said to be elementarily equivalent (denoted
A ≡ B) if Th(A) = Th(B).

Ehrenfeucht-Fräıssé (EF) Games

Given two C*-algebras, how do we determine if they are elementarily
equivalent? EF games can provide an answer to this question. An EF game is
a game between two players. Given two algebras A and B the game works in
the following way:

• The following are given at the beginning of the game: length of game
n ∈ N, k formulas of the form ‖p1(x1, . . . , xn)‖, . . . , ‖pk(x1, . . . , xn)‖
where each pi is a *-polynomial, and ε > 0.

• Player 1 picks an element from either A or B.

• Player 2 picks an element from the other algebra.

• After n rounds there are 2 sequences (a1, . . . , an) and (b1, . . . , bn).

• Player 2 wins if |‖pAi (a1, . . . , an)‖ − ‖pBi (b1, . . . , bn)‖| ≤ ε for all i.

The following theorem was of great importance to the first project:

Theorem
A ≡ B ⇔ Player 2 has a winning strategy for all EF games.

2.3 The Project

We are now ready to discuss the first of two projects attempted this summer.

The Crazy Conjecture
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Project one was an attempt to prove the following conjecture:
Conjecture. If A and B are separable unital AF-algebras with
K0(A) ≡ K0(B) then A ≡ B.
The conjecture still remains open.

Many of examples of equivalent ordered abelian groups (e.g.Q ≡ Q(
√

2)) are
known. A concrete example of nonisomorphic equivalent AF-algebras is not
known (the existence of such a pair is known).

K0(A) ≡ K0(B) implies that A and B are “locally” isomorphic.
For example if D is a finite-dimensional subalgebra of A then B contains an
isomorphic copy of D.
If D1 ⊂ D2, D1 ⊂ D3 are finite dimensional subalgebras of A then B has
isomorphic copies of D1, D2, D3 such that D′1 ⊂ D′2, D′1 ⊂ D′3 and types of
corresponding embeddings are the same.
The same is true for any tree of finite-dimensional subalgebras.

Profiles and EF-games

Let’s fix the setup for EF-game: polynomials ϕ1, ..., ϕn and ε.

During the project the following theorem was proved:
Theorem. There exists a combinatorial invariant of C∗-algebras (called
“profile”) such that:
If A and B are AF algebras with the same profiles then the ϕ1, ..., ϕn, ε
EF-game can be won.

There are finitely many different possible profiles.

Using this technique we showed that for one-sided EF-games (i.e. the games in
which player one always plays in the same algebra) there is a strategy for the
second player.

3 Project 2

3.1 Fräıssé limits

In this section, we develop the theory of Fraisse class and limit in the discrete
case, with a mind towards the goal of introducing the rudiments of the theory
in the continuous logic case and discussing the connections to our work with
particular classes of C∗-algebras.
The Fraisse construction, originally introduced in the discrete logic setting in
the 1950s, is summarily a construction technique in model theory which takes
a countable collection K of finitistic structures of a language, and melds them
together in a particular way to form a unique limit object Of countable
cardinality which satisfies the additional property of ultrahomogeneity.
Throughout, we limit ourselves to the case of models of a countable language
L. Definitions follow.
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Definition. A category K of finitely-generated models M of signature L is
called a Fraisse class if it satisfies to following properties:

• Hereditary Property (HP) K is closed under the process of taking
substructures.

• Joint Embedding Property (JEP) For any two objects A,B ∈ Ob(K),
there is an additional object C and two morphism f, g with sources A
and B respectively and target C. A and B are jointly embedded into C.

• Amalgation Property (AP) For objects A,B,C of K, and for morphisms
f ∈ Hom(A,B), g ∈ Hom(A,C), there exists an object D in K and
further morphisms f ′ ∈ Hom(B,D), g′ ∈ Hom(C,D) such that the
associated paths commute: f ′ ◦ f = g′ ◦ g.

We will throughout restrict ourselves to the case where the morphisms of the
category are required to be embeddings of the structures of the category.
Under these circumstances, AP simply states that embeddings of a base object
A into two others B,C can be made to meet back by means of embeddings
into a further structure D. As we shall see, this property is fundamental to the
construction of our limit object, the Fraisse limit.

Example. The category G of finite graphs with morphisms all graph
embeddings between them is a Fraisse class. HP and JEP are trivially verified,
while to see AP, simply observe that images of two embeddings f, g can be
brought together in the upper object D, and the elements of B,C not in the
images of f, g can be sent to new elements of D. The result is a finite graph.

We now define an easy notion of mostly abbreviational value.
Definition. By the age of a model M of signature L, we mean the collection
of finitely-generated substructures of M .
Thus, the age of some structure can be regarded as the class of finitistic
objects it contains. We will be interested in the relation of a Fraisse class to
the age of its Fraisse limit.

We finally define the ultrahomogeneity property we demand of our limit object.
Definition. A structure M is said to be ultrahomogeous (UH) if every
isomorphism of finitely-generated substructures of M extends to an
automorphism of M .

We now relate the previous notions with a classical result of model theory.
Theorem (Fraisse, 1954). For any countable Fraisse class K over a
countable language L, there is a unique (to isomorphism) structure F of
signature L such that

• F is at most countable.

• The age of F is K (modulo isomorphisms of structures of K).

• F is ultrahomogeneous.
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A sufficient amount of staring at the theorem will convince the reader that the
Fraisse limit is in fact a special object. It collects the entirety of K into one, in
such a way that yields a tremendous amount of symmetry in the limit object
F (UH), such that only K is contained in F , and in the unique way of the
countable cardinality.

Example. For the Fraisse class G of finite graphs described earlier, the
Fraisse limit structure is the generic Rado graph R, well known in graph
theory. This countable has (for instance), the remarkable property that it is
isomorphic to any countable extension of itself.
While we will not attempt to prove the theorem, we briefly indicate the
method of construction of F . The key observation is that there are only
countable many morphisms f between any two objects of the category. Thus
we can order them. We will plan to form a chain of L-structures {Bn}n∈ω,
such that for every morphism f : A→ A′, if A can be embedded at some step
of the chain Bj , then we will choose a higher up Bk such that such that A′ will
embed into Bk in a way that extends the embedding of A into Bj . Not
worrying to much about details, by the countability of our set of morphisms,
we can ensure that every embedding f is put in the chain in this way at some
step Bn. We furthermore, observe that the existence of the structures Bn in
our class K is a consequence of the amalgamation property, which is thereby
fundamental.
From here, it’s clear that we can take F to be the direct limit

⋃
n∈ω Bn.

Fraisse goes on to prove that this object satisfies our demands.
We now transfer the theory of Fraisse limits of Fraisse classes to the
continuous model theory settings. The development is mired in details. We do
not attempt to describe it in detail, rather we give the basic modification and
notions necessary, and refer readers looking for depth to ben Yaacov.

Definition. A category K of finitely-generated continuous structures is said
to be an incomplete Fraisse class if it satisifies HP and JEP, and the following:

• Near Amalgamation Property (NAP) For every ε > 0, and for A,B,C
objects and f, g morphisms in the category as before, we can be find
object D and morphisms f ′, g′ with source and targets as before, such
that the composite maps f ′ ◦ f and g′ ◦ g meet in D up to ε. In other
words, for all x ∈ A, d(f ′f(x), g′g(x)) < ε.

• Polish Property (PP) The metric of each object in the category is
separable.

• Cauchy Continuous Property (CCP) Every symbol of the signature is
Cauchy continuous on the metric space of each model (it carries Cauchy
sequences to Cauchy sequences).

Definition. A continuous structure M is said to be approximately
ultrahomogoneous (AUH) if for every ε > 0 and every isomorphism φ0 of
finitely-generated substructures of M , there is an automorphism φ of M which
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is within ε of φ0. In other words, for all x ∈ dom(φ0), we have
d(φ0(x), φ(x)) < ε.

We finish with the theorem of ben Yaacov, leaving the many details obscured.
Theorem. (ben Yaacov) An countable incomplete Fraisse class K admits a
unique up to isomorphism separable continuous structure F , called the Fraisse
limit of K, such that the age of F is K, and such that F is approximately
ultrahomogeneous.

Our desire was, as we shall see, to show that certain categories of dimension
drop algebras form incomplete Fraisse classes (by showing that they would
amalgamate), and thereby to show that the Jiang-Su algebra, for instance, can
be expressed as a Fraisse limit.

3.2 Dimension-drop algebras

The algebra of continuous functions C([0, 1],C) is frequently studied in
mathematics. This algebra is generalized in the same sense as the square
matrices generalize the complex numbers when we consider C([0, 1],Mn(C)).
Recall that we may define addition, multiplication, and the ∗-involution
pointwise on C([0, 1],Mn(C)). Furthermore, the C∗-identity holds, as for all
f ∈ C([0, 1],Mn(C)), we have

‖f∗f‖ = sup
x∈[0,1]

|f∗(x)f(x)| = sup
x∈[0,1]

|f(x)|2 = ‖f‖2

So these algebras are indeed C∗-algebras.

One class of algebras of this form that we will draw particular attention to is
the class of dimension-drop algebras. Recall that for any given p, q ∈ N, we
have Mp(C)⊗Mq(C) ∼= Mpq(C).

Definition 1 (Dimension-drop algebra). A ⊂ C([0, 1],Mpq(C)) is a
dimension-drop algebra if every f ∈ A is such that f(0) ∈Mp(C)⊗ 1q and
f(1) ∈ 1p ⊗Mq(C). We then denote A = Zpq.

Notice that for all f, g ∈ Zpq,

1. (f + g)(0) = f(0) + g(0) ∈Mp ⊗ 1q and
(f + g)(1) = f(1) + g(1) ∈ 1p ⊗Mq

2. (fg)(0) = f(0)g(0) ∈Mp ⊗ 1q and (fg)(1) = f(1)g(1) ∈ 1p ⊗Mq

3. f∗(0) = f(0)∗ ∈Mp ⊗ 1q and f∗(1) = f(1)∗ ∈ 1q ⊗Mq

So Zpq is a C∗-subalgebra of C([0, 1],Mpq(C)).

Definition 2 (Prime dimension-drop algebra). If we have gcd(p, q) = 1, then
we call the resulting dimension-drop algebra Zpq prime.
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Jiang and Su, in their paper [1], define morphisms (which we will henceforth
refer to as Jiang-Su morphisms) as follows. For a given prime dimension-drop
algebra Zpq, choose integers kp, kq so that

kpp, kqq > 2pq and (kpp, kqq) = 1

Let p1 = kpp and q1 = kqq, and write k = kpkq.
We then embed Zpq unitally into Zp1q1 by the map f 7→ diagk(f, ..., f). It is
shown in the paper of Jiang and Su that the direct limit of any system of
prime dimension drop algebras with connecting Jiang-Su morphisms forms a
simple unital C∗-algebra with trivial projections and an unique trace, usually
denoted Z. In particular, the trace is the one induced by the Lebesgue
measure by the Riesz-Markov representation theorem, i.e.

τ(f) =

∫ 1

0

f(x)dµ(x)

where µ denotes Lebesgue measure.
One goal of our project was to show that the Jiang-Su algebra Z is a Fräıssé
limit of a particular class of dimension-drop algebras and connecting
morphisms.
We spent some time attempting to demonstrate the NAP when the category is
taken to be the class of prime-dimension drop algebras where the connecting
morphisms are exactly of Jiang-Su type.

Suppose we have Jiang-Su embeddings φi : Zp,q ↪→ Zpi,qi , i ∈ {1, 2}. Up to
unitary equivalence, morphisms of Jiang-Su type are specified by a choice of
integers. Choose kip, k

i
q ∈ Z (corresponding to the morphism φi) such that

kipp, k
i
qq > 2pq

Let ki = kipk
i
q. The images of the φi contain some number of copies of

compositions of a given input a ∈ Zpq with functions ξj , 1 ≤ j ≤ ki, where
ξj(x) ∈ {f1(x), f2(x), f3(x)} = {x2 ,

1
2 ,

1+x
2 } depends on functions of kip, k

i
q. We

can write φi : a 7→ diag(a ◦ ξ1, ..., a ◦ ξki).

Under φ1, let’s say we have α1 copies of a ◦ f1, α2 copies of a ◦ f2, and α3

copies of a ◦ f3. These α’s are defined via integers that Jiang and Su call r0, r1,
and depend only on the choice of kip, k

i
q.

On the other hand, under φ2 we have βj copies of a ◦ fj , for j ∈ {1, 2, 3}.

We can amalgamate if we can find morphisms ψi of Jiang-Su type such that
ψ1 ◦ φ1 = ψ2 ◦ φ2. These morphisms make some number of copies of
compositions of a given element of Zpi,qi with some fi, as it was with the φ’s.
Let γj correspond to ψ1 and δj correspond to ψ2.
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So for i, j ∈ {1, 2, 3}, αiγj is the number of copies of a ◦ fi ◦ fj given by the
composition ψ1 ◦ φ1, while βiδj is the number of such copies given by ψ2 ◦ φ2.
So amalgamation is equivalent to there existing δ’s and γ’s such that
αiγj = βiδj for any α’s and β’s constructed as above.

This leaves plenty of future work to be done. In particular, we would like to
resolve the present situation with amalgamating prime dimension-drop
algebras with Jiang-Su connecting morphisms. Assuming such a resolution, we
would then like to consider whether all unital morphisms of prime
dimension-drop algebras can be approximately unitarily represented by
morphisms of Jiang-Su type. Additionally, we thought about the case when
the category was chosen to be precisely those prime dimension-drop algebras
and connecting morphisms where the trace induced by the Lebesgue measure
is preserved, but did not have time to work much on this particular branch of
the project.
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