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Abstract. We discuss a possible method for computing the Hasse-Weil zeta functions of Calabi-Yau three-
folds of Borcea-Voisin type over Q, up to finitely many Euler factors. Taking inspiration from the work

by Batyrev [1] on birational invariance of Betti numbers for Calabi-Yau manifolds, we speculate that the

zeta functions of a Borcea-Voisin threefold over Q may be obtained in certain cases by computing those of
a simpler Calabi-Yau threefold constructed using the “twist map,” which is amenable to explicit counting

and toric methods as shown by by Goto-Kloosterman-Yui [7].

1. Introduction

This is a brief report on aspects of Borcea-Voisin type Calabi-Yau threefolds, studied by the authors as
part of the Fields Undergraduate Research Program under the supervision of Noriko Yui. Collected here are
basic background and observations made by the authors in still-ongoing investigation.

Originating from string theory, the mirror symmetry conjecture for Calabi-Yau manifolds predicts an
intimate relationship between the symplectic geometry of a Calabi-Yau manifold and the complex geometry of
its “mirror” Calabi-Yau. Apart from the rich geometric ramifications, arithmetic aspects of this phenomenon
have also been studied in special cases, with interesting results (see for example [11]).

In general, given a Calabi-Yau manifold, it is a nontrivial task to construct a mirror manifold and to es-
tablish properties of the mirror pair. In this respect, the Borcea-Voisin construction of Calabi-Yau threefolds
is remarkable in that the family of Calabi-Yau threefolds obtained via this method is closed under the mirror
correspondence. Therefore, a detailed arithmetic study of the Borcea-Voisin threefolds would provide clues
towards the general form of arithmetic mirror symmetry.

With this in mind, we describe a possible method of computing the Hasse-Weil zeta functions of the
Borcea-Voisin threefolds defined over Q, at least up to finitely many Euler factors. Following the ideas of
Batyrev’s paper [1] on birational invariance of Betti numbers of Calabi-Yau manifolds, we speculate that
we may reduce the problem to computing the zeta functions of certain Calabi-Yau threefolds constructed
via “twist maps.” Varieties of this latter type were studied extensively by Goto-Kloosterman-Yui [7] using
methods of Jacobi sums and toric desingularization.

In section 2, we give a brief review of Calabi-Yau manifolds and the mirror symmetry conjecture in the
classical geometric setting. In section 3, we describe the Borcea-Voisin and the twist map construction. In
section 4, we review some notions from arithmetic geometry, in particular the Hasse-Weil zeta function. We
also discuss how the methods employed in the paper of Batyrev [1] may be used in our computation of the
zeta functions for Bocrea-Voisin threefolds.

Acknowledgements. The authors would like to thank the Fields Institute for organizing and hosting the
Fields Undergraduate Research Program, and Professor Noriko Yui for supervising the project and providing
helpful suggestions along the way.

2. Calabi-Yau manifolds and (topological) mirror symmetry

In this section, we recall the definition of a Calabi-Yau manifold and describe its Hodge diamond in the
case of low dimension. We then give a simplified account of mirror symmetry and consider its implications
on the Hodge diamonds of Calabi-Yau manifolds.
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Throughout this paper, all manifolds and varieties will be assumed connected unless otherwise stated.
Given a complex manifold X, we shall denote by TX (resp. ΩX) the holomorphic tangent bundle (resp. holo-
morphic cotangent bundle) of X. We keep the same notation for the algebraic counterparts of the bundles
if X is a smooth projective variety over a field k.

Definition 1. Let X be a smooth projective variety over a field k (or a compact Kähler complex manifold)
of dimension d. We say that X is a Calabi-Yau manifold if its canonical bundle KX = ΩdX is trivial and
Hi(X,OX) = 0 for 0 < i < d.

In this section, we look at the transcendental (Hodge-theoretic) aspects of algebraic varieties, and focus
on the case where X is a compact Kähler manifold. From Hodge theory, we know that each of the de Rham
cohomology groups Hk(X,C) of any compact Kähler manifold admits a direct sum decomposition as follows:

Hk(X,C) =
⊕
p+q=k

0≤p,q≤d

Hp,q(X),

where each Hp,q(X) is the subspace spanned by the de Rham classes of closed (p, q)-forms on X, and is
canonically isomorphic to Hq(X,ΩpX). As the spaces Hk(X,C) are finite-dimensional, so are Hp,q(X). We
record the Hodge numbers hp,q := dimCH

p,q(X) of X conveniently in the Hodge diamond of X as follows:

h0,0

h1,0
... h0,1

. .
. ...

...
. . .

hd,0 · · ·
... · · · h0,d

. . .
...

... . .
.

hd,d−1
... hd−1,d

hd,d

The Hodge diamond of a compact Kähler manifold satisfies horizontal and vertical symmetries hp,q = hq,p

and hp,q = hd−q,d−p, for all integers p, q. Horizontal symmetry follows from the complex conjugation property
Hp,q(X) = Hq,p(X) of the Hodge decomposition, and vertical symmetry follows from the Hard Lefschetz
theorem.

We describe the general shape of the Hodge diamond of a Calabi-Yau manifold in low dimension. Let X
be a Calabi-Yau manifold. If dimX = 1, then X is an elliptic curve, and its Hodge diamond is given as

1
1 1

1

If dimX = 2, then X is a K3 surface, with Hodge diamond

1
0 0

1 20 1
0 0

1

If dimX = 3, then X is called a Calabi-Yau threefold. Its Hodge diamond takes the following form

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1
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We now give a brief account of mirror symmetry. Let X be a Calabi-Yau threefold, where we assume that
H0(X,TX) = 0; this implies that the (holomorphic) automorphism group of X is discrete. For simplicity,
we also assume that H2,0(X) = 0 (this excludes the case of K3 surfaces only). By the Bogomolov-Tian-
Todorov theorem, the complex deformation theory of X is unobstructed, and hence the moduli space Def(X)
of complex deformations of X is a smooth complex manifold, with tangent space at the moduli point [X]
isomorphic to H1(X,TX) via the Kodaira-Spencer map.

There is another type of moduli attached to a Calabi-Yau manifoldX (with fixed complex structure), called
the complexified Kähler moduli. We define the moduli spaceK(X) to be the open subset ofH2(X,C)/H2(X,Z)
consisting of classes of the form

α = β + iω,

where β, ω ∈ H2(X,R) and ω is a Kähler class for the complex structure on X. (The form β arises from
considerations in physics.) It is obvious that the tangent space toK(X) at any point is canonically isomorphic
to H2(X,C) = H1(X,ΩX); recall that we assumed H2,0(X) = 0.

In its most basic form, the mirror symmetry conjecture can be stated as follows:

Conjecture 2. Let X be a Calabi-Yau manifold. Then there exists another Calabi-Yau manifold X∨, called
the mirror of X, of the same dimension and such that we have local isomorphisms

K(X)←→ Def(X∨) and Def(X)←→ K(X∨).

In particular, comparing tangent spaces to the moduli spaces, we must have H1(X,ΩX) ∼= H1(X∨, TX∨).
More generally, one expects in mirror symmetry that

Hq(X,ΩpX) ∼= Hq(X∨,ΛpTX∨) ∼= Hq(X∨,Ωd−pX∨ ), ∀ 0 ≤ p ≤ d,

where d = dimX = dimX∨ and the last isomorphism follows by interior product with a holomorphic volume
form on X∨. This indicates that the Hodge diamond of X∨ is obtained by a “flip” of the Hodge diamond
of X along a certain diagonal, as shown in the following example for Calabi-Yau threefolds. If the Hodge
diamond of a Calabi-Yau threefold X is given by

1
0 0

0 h1,1(X) 0
1 h2,1(X) h2,1(X) 1

0 h1,1(X) 0
0 0

1

then the Hodge diamond of X∨ should take the form

1
0 0

0 h1,1(X) 0
1 h2,1(X) h2,1(X) 1

0 h1,1(X) 0
0 0

1

Remark. Note that the conjecture as stated above cannot be true for all Calabi-Yau manifolds. Indeed, if X
is a rigid Calabi-Yau threefold, meaning that h2,1(X) = 0, then its mirror in the above sense would have to
satisfy h1,1(X∨) = h2,1(X) = 0. But this is impossible if X∨ is to be a compact Kähler manifold. Indeed,
the exterior power 1

d!ω
d of a Kähler form ω is the volume form of X for the Riemannian metric it induces,

and therefore we must have
1

d!

∫
ωd = vol(X) > 0,

which is impossible by Stokes’ theorem if ω is exact.
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In reality, mirror symmetry is much more extensive than the “topological” version described above. For
example, the local isomorphism between K(X) and Def(X∨) should identify certain trilinear forms defined
on these spaces, called the Yukawa couplings. Classically, this allowed Candelas et al. [3] to make predictions
about the number of rational curves (defined using Gromov-Witten invariants) on a quintic threefold X by
studying the structure (period integrals) of the deformation space Def(X∨) of its mirror. This prediction
was confirmed rigorously and in greater generality by Givental [6]. See [4] for an introductory account of
classcial mirror symmetry.

3. The Borcea-Voisin Construction

In general, it is very difficult to find and work with explicit mirror pairs. The mirror correspondence is
closed in the family of Borcea-Voisin threefolds, and so these varieties are a great testing ground for the
conjectures in mirror symmetry on Calabi-Yau threefolds. We briefly describe the Borcea-Voisin construction
now.

Let E be an elliptic curve with canonical involution ι (we are working in characteristic 0), and let S be a
K3 surface with (non-symplectic) involution σ acting by −1 on H2,0(S). Then a crepant resolution

XBV = ˜E × S/ι× σ
of the diagonal quotient E × S/ι× σ yields a Calabi-Yau threefold, which we call a Borcea-Voisin threefold.
(See [2], [12] for details of the construction.)

To motivate the study of Borcea-Voisin threefolds, we mention a result due to Voisin below (Proposition
3), which gives explicit formulas for their middle Hodge numbers using information about the fixed locus Sσ

of S under σ. To begin with, in order to resolve the quotient threefold E × S/ι× σ we must find the fixed
locus of ι × σ on E × S. It is well known that an involution has four fixed points on an elliptic curve, say
P1, . . . , P4. It can also be shown that the fixed locus of a non-symplectic involution on S is a disjoint union
of curves. Hence, we may write

Sσ = C1 ∪ C2 ∪ · · · ∪ CN ,
where each curve Ci has genus gi. Thus, the singularities on the threefold are the products Pj × Ci where
1 ≤ j ≤ 4 and 1 ≤ i ≤ N . Using this information, one can look for classes in the respective cohomology
groups and show the following.

Proposition 3 (Voisin [12]). Let XBV = ˜E × S/ι× σ be a Borcea-Voisin threefold. Then

h1,1(XBV ) = 11 + 5N −N ′,
h2,1(XBV ) = 11 + 5N ′ −N,

where N is the number of curves in the fixed locus Sσ and N ′ =
∑
gi is the sum of their genera.

Remark. Given a Borcea-Voisin threefold XBV constructed from elliptic curve E and K3 surface S, the
(topological) mirror threefold X∨BV is obtained by applying the same Borcea-Voisin construction to a suitable
“mirror” K3 surface S∨ (see [12] for details).

Considerations of [8] show that the Borcea-Voisin threefolds may be defined over Q, at least for certain ex-
amples whose constituent varieties E and S have defining equations with rational coefficients and involutions
are given as multiplication by −1 on one of the variables.

We now consider a different construction of Calabi-Yau threefolds, using the so-called “twist map.” This
construction will be useful for finding a birational model of the Borcea-Voisin threefold over Q which is
computationally more feasible. For this, we first review the notion of weighted projective space.

Definition 4. Let (w0, . . . , wn) be an (n + 1)-tuple of positive integers, and let k be a field. Assume that
each wi is coprime to the characteristic of k. We define the weighted projective space P(w0, . . . , wn) over k
with weights (w0, . . . , wn) to be the variety Proj k[x0, · · · , xn], where we set deg xi = wi.

In case k = C, we may informally consider P(w0, . . . , wn) as the quotient Cn+1/∼, where the equivalence
∼ is generated by (x0, x1, . . . , xn) ∼ (λw0x0, λ

w1x1, . . . , λ
wnxn) for all λ ∈ C∗. From the above definition,

we automatically have
Pn(1, 1, . . . , 1) ' Pn
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for all n. Without loss of generality, we can always assume our weights are normalized, in that

gcd(w0, . . . , wi−1, wi+1, . . . , wn) = 1

for all i, 0 ≤ i ≤ n. This is follows from the observation that Pn(aw0, aw1, . . . , awn) ' Pn(w0, w1, . . . , wn)
for any positive integer a, and that moreover, setting

di = gcd(w0, . . . , wi−1, wi+1, . . . , wn),

ai = lcm(d0, . . . , di−1, di+1, dn),

we have the isomorphism

Pn(w0, w1, . . . , wn) ' Pn(w0/a0, w1/a1, . . . , wn/an).

See Dolgachev [5] for more details, including proofs of the above claims.
Yonemura [15] classifiedK3 surfaces S with non-symplectic involutions in (normalized) weighted projective

space, defined over Q. It is not too difficult to find defining equations for elliptic curves in weighted projective
spaces, also defined over Q (see [7]). Now, suppose our elliptic curve and K3 surface have defining equations

E : x2
0 + f(x1, x2) = 0 ⊂ P2(w0, w1, w2),

S : y2
0 + g(y1, y2, y3) = 0 ⊂ P3(v0, v1, v2, v3),

with gcd(w0, v0) = 1. Then there exist integers s0 and t0 such that s0w0 + t0v0 = −1. Moreover, we can
assume 0 ≤ s0 < v0 and 0 ≤ t0 < w0. Then s = (s0w0 + 1)/v0 and t = (t0v0 + 1)/w0 are both non-zero
integers by assumption. The twist map is the rational map Φ : P2(w0, w1, w2) × P3(v0, v1, v2, v3) − − →
P4(v0w1, v0w2, w0v1, w0v2, w0v3) given by

((x0, x1, x2), (y0, y1, y2, y3)) 7→ (xs0w1
0 ytw1

0 x1, . . . , x
s0w2
0 ytw2

0 x2, x
sv1
0 yt0v10 y1, . . . , x

sv3
0 yt0v30 y3).

Restricted to E × S, the map is generically 2-to-1 onto the variety

X = {f(z1, z2)− g(u1, u2, u3) = 0} ⊂ P4(v0w1, v0w2, w0v1, w0v2, w0v3).

This variety is defined over Q if both f and g (i.e., E and S) are, and moreover, X is birational to the

quotient E×S/ι×σ over Q. (See [8, Section 7] for details.) Let X̃ be a smooth resolution of X. Combining
this with the Borcea-Voisin construction described above, we have a commutative diagram

E × S

�� $$JJJJJJJJJJJ

XBV = ˜E × S/ι× σ // E × S/ι× σ //___ X X̃oo

in which the bottom horizontal arrows are birational maps (defined over Q under certain conditions), and

hence X̃ is birationally equivalent to the Borcea-Voisin threefold XBV defined by E and S. Now, in weighted

projective space, a sufficient condition for the resolution X̃ to be Calabi-Yau is that (cf. [7, Proposition 3.2]):

2w0v0 = w0

3∑
i=1

vi + v0

2∑
j=1

wj .

Therefore, under the appropriate conditions mentioned above, one obtains a Calabi-Yau threefold over Q
which is obtained by resolving singularities of a weighted projective hypersurface and which is birational
over Q to the Borcea-Voisin threefold under consideration.

Remark. The twist map can be defined more generally, for varieties

V1 : {x`0 + f(x1, . . . , xn) = 0} ⊂ Pn(w0, . . . , wn),

V2 : {y`0 + g(y1, . . . , ym) = 0} ⊂ Pm(v0, . . . , vm),

similar to the work above, giving a rational map

Pn(w0, . . . , wn)× Pm(v0, . . . , vm)−− → Pn+m−1(v0w1, . . . , v0wn, w0v1, . . . , w0vm).
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4. Arithmetic Geometry and Batyrev’s theorem

In this section, we recall the notions of the (local and global) zeta functions defined on an algebraic variety
over Q. We then proceed to state and sketch the proof of Batyrev’s result on the birational invariance of
Betti numbers for Calabi-Yau varieties under birational equivalence, and comment on how the method may
be used in the computation of zeta functions for Borcea-Voisin threefolds over Q.

Note that, while the background below is presented for schemes over Q and Z, the theory is indeed valid
over any number field K and its ring of integers OK .

Let X be a scheme of finite type over SpecZ. For any x ∈ X , one can show that x is a closed point if and
only if the residue field k(x) of x is finite. We shall denote by X the set of closed points of X , and write
N(x) = |k(x)| for any x ∈ X .

Definition 5. The zeta function of X/Z is defined by the infinite product

ζ(X , s) =
∏
x∈X

(
1− 1

N(x)s

)−1

.

One can show that there are only a finite number of points x ∈ X of any given norm, and hence the above
product is given by a formal Dirichlet series

∑
an/n

s. In fact, denoting by dimX the dimension of X as a
noetherian topological space, we have the following convergence result (cf. [10]):

Theorem 6. The product ζ(X , s) converges absolutely for <(s) > dimX .

Remark. It is conjectured (and unknown in general) that, for any X of finite type, the function ζ(X , s) can
be analytically continued as a meromorphic function to the entire complex s-plane.

Since X can be written as a disjoint union X =
∐
p X p where each Xp = X ×Z Fp is the fibre over

p ∈ SpecZ, it follows that

ζ(X , s) =
∏
p

ζ(Xp, s).

The factors in the righthand product are called the Euler factors of the zeta function ζ(X , s). Defining

Zp(Xp, T ) = exp

( ∞∑
k=1

|Xp(Fpk)|
k

T k

)
,

a simple computation shows that we have ζ(Xp, s) = Zp(Xp, p−s).
Now, let X be an algebraic variety (i.e. reduced, separated scheme of finite type) over Q. Recall that

an integral model X/Z of X/Q is a scheme X flat, surjective, and of finite type over SpecZ having generic
fibre Xη ' X (isomorphism over Q). Näıvely, choosing an integral model amounts to choosing defining
polynomials with integer coefficients for the variety.

Lemma 7. If X and X ′ are two integral models of an algebraic variety X/Q, then

ζ(X , s) ∼ ζ(X ′, s),

where the symbol ∼ indicates equality up to finitely many Euler factors.

Proof. Since we have an isomorphism X ×Z Q ∼= X ∼= X ′ ×Z Q where Q = OSpecZ,(0), there exists an open
U ⊆ SpecZ such that X ×Z U ∼= X ′ ×Z U as schemes over U (cf. [9, Exercise 3.2.5]). Since U contains all
but finitely many primes, we have the desired result. �

In view of the above lemma, we may define, up to finitely many Euler factors, the Hasse-Weil zeta function
ζ(X, s) of the variety X/Q by

ζ(X, s) ∼ ζ(X , s)
for any integral model X/Z of X.

Assume now that X/Q is a smooth projective variety of dimension d, and let X/Z be a smooth, projective
integral model of X. Then the projective variety Xp is smooth over Fp for almost all primes p. If Xp is
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smooth, then the Weil conjectures imply that the corresponding Euler factor ζ(Xp, s) = Zp(Xp, p−s) of the
Hasse-Weil zeta function has a particularly nice form. More precisely,

Zp(Xp, T ) =

2d∏
k=0

Pk,p(Xp, T )(−1)k+1

,

where each

Pk,p(Xp, T ) = det(1− TF−1
p |Hk

ét(Xp ⊗ Fp,Q`)) (` 6= p)

is the characteristic polynomial of the Frobenius Fp = (x 7→ xp) ∈ Gal(Fp/Fp) acting on Xp ⊗ Fp by

idXp × F ∗p and hence on Hk
ét(Xp ⊗ Fp,Q`). It is a consequence of the Weil conjectures that each Pk,p(Xp, T )

is a polynomial with integer coefficients and its reciprocal roots have absolute value pk/2.
We now state Batyrev’s theorem [1] and sketch its proof.

Theorem 8 (Batyrev [1]). Let X and Y be birationally equivalent projective Calabi-Yau threefolds over C.
Then they have the same Betti numbers, i.e., dimHn(X,C) = dimHn(Y,C) for all integers n.

Sketch of proof. By a standard procedure, there exists a finitely generated Z-subalgebra R of C and regular
projective schemes X and Y over SpecR such that X = X ×SpecR SpecC and Y = Y ×SpecR SpecC. One
may further impose additional conditions on these schemes X and Y, special to Calabi-Yau varieties; in
particular, they imply certain identification of p-adic measures on X and Y.

For all but finitely many primes p, there exists a closed point π ∈ Spec(R ⊗Z Zp) coming from a prime
of SpecR such that reduction of X and Y modulo π yields smooth varieties over some finite field F of
characteristic p. Using p-adic analysis and Weil’s results [14] relating p-adic integrals fo the number of rational
points in these reductions, one obtains that |X (F )| = |Y(F )|. Applying this procedure to certain extensions
of R, one can show that in fact X and Y have the same local zeta function. From the Weil conjectures
and the comparison theorem in cohomology, one deduces by comparing polynomials with reciprocal roots of
equal absolute value in the decomposition of the zeta functions that X and Y have the same Betti numbers,
as desired. �

It is speculated that, in the case whereX and Y are Calabi-Yau varieties defined over Q and are birationally
equivalent over Q, the Z-algebra R in the above proof may be taken to be a suitable localization Z[1/N ] of
Z itself for some nonzero integer N . Applying the above argument for each prime p ∈ SpecZ[1/N ] of good
reduction, it may thus be possible to show that X and Y have the same Hasse-Weil zeta function, at least
up to finitely many Euler factors.

In the previous section, for each Calabi-Yau threefold XBV of Borcea-Voisin type over Q we associated

a Calabi-Yau threefold X̃ arising as a resolution of a weighted projective hypersurface. Applying the above
speculation to this situation, we see that the zeta function of XBV over Q may be obtained by computing

that of X̃, which can be done using Weil’s method and toric geometry methods, see [7].
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