
Lexicographic Labellings achieve fast
algorithms for
bump number,

cocomp hamiltonicity
and two-processor scheduling

Gara Pruesse
Vancouver Island University

Derek Corneil
Lalla Mouatadid

University of Toronto

Outline

Gara Pruesse.... Bump Number Algorithm

Posets = partially ordered sets

maxima

minima

Gara Pruesse.... Bump Number Algorithm

Hasse Diagram

Posets = partially ordered sets

u

v

Gara Pruesse.... Bump Number Algorithm

Hasse Diagram

u covers v
u is an upper cover of v
v is a lower cover of u
u v

Posets = partially ordered sets

u

v

Gara Pruesse.... Bump Number Algorithm

Hasse Diagram

u covers v
u is an upper cover of v
v is a lower cover of u
u v

w w > v
v < w
v and w are transitively related

Posets = partially ordered sets

u

v

Gara Pruesse.... Bump Number Algorithm

Hasse Diagram
-A compact representation of a set of relations
-i.e. can be O(n) representation of O(n2) relations

u covers v
u is an upper cover of v
v is a lower cover of u
u v

w w > v
v < w
v and w are transitively related

Bumps in linear extensions

a b

c d

e f g

h i

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b

c d

e f g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a

b

c d

e f g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b

c d

e f g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b

c

d

e f g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b cd

e f g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b cd

e

f

g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b cd

e

f g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b cd ef g

h i Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b cd ef g

h

i

Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bumps in linear extensions

a b cd ef g hi

Linear extension (showing bumps)

Gara Pruesse.... Bump Number Algorithm

Bump Number Problem

a b cd ef g hi

Given poset P, what is the least number of bumps
realized by a linear extension of P?

b(P)= bump# of P

Find an algorithm to compute b(P) and
construct a linear extension with fewest bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e.

a b

c d

e f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a

b

c d

e f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b

c d

e f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c

d

e f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c d

e f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c d e

f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c d e f

g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c d e f g

h i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c d e f g h

i Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

a b c d e f g h i

Linear extension (showing bumps)
Greedily selecting to avoid bumps

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?

Greedy + ? works for all posets?

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work? F&G’86

Greedy + ? works for all posets?

Gara Pruesse.... Bump Number Algorithm

Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work? F&G’86

Greedy + ? works for all posets? This talk

Gara Pruesse.... Bump Number Algorithm

Bump Number

•linear time algorithm – based on Gabow’s linear time 2-proc
scheduling algorithm Schäffer & Simons 1988

Gara Pruesse.... Bump Number Algorithm

• polynomial algorithms for interval order posets and for partial semiorder
posets – both are based on the greedy shelling algorithms

Fishburn and Gehrlein 1986

• polynomial algorithm for width=2 posets – not based on greedy shelling
Zaguia 1987

•

• polynomial algorithm for any poset – not based on shelling
 Habib, Möhring, Steiner 1988

Greedlex Algorithm does these quickly, simply

•linear time algorithm – based on Gabow’s linear time 2-proc
scheduling algorithm Schäffer & Simons 1988

Gara Pruesse.... Bump Number Algorithm

• polynomial algorithms for interval order posets and for partial semiorder
posets – both are based on the greedy shelling algorithms

Fishburn and Gehrlein 1986

• polynomial algorithm for width=2 posets – not based on greedy shelling
Zaguia 1987

•

• polynomial algorithm for any poset – not based on shelling
 Habib, Möhring, Steiner 1988

Linear Time Bump Number

relies on Gabow and Tarjan’s special case Union-
Find algorithm: union and find operations
known in advance

 O(n+m)

… relies on hybrid linked-list / array data
structure ... Switch to array representation of tree for subtrees that are
small enough…

Gara Pruesse.... Bump Number Algorithm

Algorithm, proof of correctness, and
analysis

• Spread across several papers
• Proofs long and case-ridden
• Analysis complex

Question:
 a simple algorithm
with a short proof
that can be made efficient (linear time) without

recourse to Special Case of Union-Find?

Gara Pruesse.... Bump Number Algorithm

E

Algorithm, proof of correctness, and
analysis

• Spread across several papers
• Proofs long and case-ridden
• Analysis complex

Question:
 a simple algorithm YES
with a short proof YES
that can be made efficient (linear time) without

recourse to Special Case of Union-Find? I think
so.

Gara Pruesse.... Bump Number Algorithm

E

Posets & comparability graphs

Gara Pruesse.... Bump Number Algorithm

Posets & comparability graphs

Gara Pruesse.... Bump Number Algorithm

Posets & cocomparability graphs

Gara Pruesse.... Bump Number Algorithm

Posets & cocomparability graphs

When is there a Hamilton Path in
the cocomparability graph?

Gara Pruesse.... Bump Number Algorithm

Posets & cocomparability graphs

f

When is there a Hamilton Path in
the cocomparability graph?

a b

c
d

e

h i

g
When there is an ordering of the vertices so
that there is an edge between successive
vertices

…i.e., so that there is a non-edge in the
comparability graph

… i.e., so there is no bump between
successive vertices in the linear extension
(assuming your restrict to orderings that
obey the partial order).

Gara Pruesse.... Bump Number Algorithm

Posets & cocomparability graphs

f

When is there a Hamilton Path in
the cocomparability graph?

a b

c
d

e

h i

g
Of course, it is possible to trace the graph in
ways that are not obedient to the partial
order

a d e i h g c b

Exists Ham Path iff exists cocomp order that is a HamPath iff bump#=0

Exists k-path cover in cocomp graph iff bump# ≤ k

Gara Pruesse.... Bump Number Algorithm

Posets & cocomparability graphs

f

When is there a k-path cover in the
cocomparability graph?

a b

c
d

e

h i

g
Cocomp graph G many posets

Cocomp graph G + cocomp ordering
 one poset

Solve bump on the poset Solve min-path-cover on cocomp graph
Solve MPC on cocomp graph Solve bump on the unique underlying poset
using a cocomp order

Gara Pruesse.... Bump Number Algorithm

Hamiltonicity of Cocomp Graphs

Keil 1985

•Ham’n cycle in Interval graphs alg
Deogun Steiner 1990

•Poly-time Ham’n Cycle
Deogun Kratsch Steiner 1997

•1-tough cocomp graphs are hamiltonian –
Damaschke Deogun Kratsch Steiner 1991

•Hamilton Path in cocomps using bump number
algorithm
Corneil Dalton Habib 2013

•Min Path Cover Alg (certified) in Cocomp Graphs

Gara Pruesse.... Bump Number Algorithm

Recap:

• Definition of Bump Number
• Relationship (equivalency, up to data representation) to the

Minimum Path Cover/Hamiltonicity of Cocomp Graphs
• Is related to Two-Processor Scheduling

• Introduce Lexicographic Labelling
• Give the Greedlex Algorithm solving Bump
• Prove Greedlex is correct

– State the Lex-Yanking Lemma
– Show that the Lex-Yanking Lemma implies Greedlex is Correct
– Prove the Lex-Yanking Lemma

• How this work fits into previous results

Gara Pruesse.... Bump Number Algorithm

Greedy bump#

a

c d

e

b

h

f

g

Greedy Approach

d a … oops

Gara Pruesse.... Bump Number Algorithm

Greedy bump#

a

c d

e

b

h

f

g

Greedy Approach

d a … oops

a d b c h e f …oops

Gara Pruesse.... Bump Number Algorithm

Greedy bump#

a

c d

e

b

h

f

g

Greedy Approach

d a … oops

a d b c h e f …oops

a d c b f e h g

Gara Pruesse.... Bump Number Algorithm

a

c d

e

b

h

f

g

How can a bump be unavoidable

a d b c …

Now all minima e f g are upper covers of c

Gara Pruesse.... Bump Number Algorithm

e

b

d

g

a

h

c

f

a g e b c d f h

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

1 1 1 1

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1

{1,1} {1,1,1}
{1,1}

1

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1

{1,1} {1,1,1}
{1,1}

1

2 23

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1

{3,2,1}

1

2 23

{2}

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1

{3,2,1}

1

2 23

{2}
45

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1

{5}

1

2 23

{5,4}

45

{4,1}

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1

{5}

1

2 23

{5,4}

45

{4,1}
67 8

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that
lex(u)<lex(v) whenever
{lex(u’): u’covers u} <lexico

{lex(v’): v’ covers v}

1 1 1 1

2 23

45

67 8

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling

1 1 1 1

2 23

45

67 8

New: O(n+m) algorithm for lex-labelling

Gara Pruesse.... Bump Number Algorithm

(Sethi 1976 algorithm also acheives linear time)

Greedy + Lex = Greedlex

a

c d

e

b

h

f

g
11

22

4 33

5

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a

c d

e

b

h

f

g
11

2

4 33

5

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a

c d

e

b

h

f

g
11

22

4 33

5

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a

c d

e

b

h

f

g
11

22

4 33

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a

c

d

e

b

h

f

g
11

22

43

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a cd

e

b

h

f

g
11

22

3

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a cd

e

b

h

f

g
11

22

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a cd

e

b

h

f

g
11

2

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a cd eb

h

f

g
11

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a cd eb hf

g
1

Gara Pruesse.... Bump Number Algorithm

Greedy + Lex = Greedlex

a cd eb hf g

Gara Pruesse.... Bump Number Algorithm

Greedlex Alg for bump#

1. Lex label all v in V(P)

2. Shell P, always removing

 (a) a non-cover of last-shelled u, if exists

 (b) the highest lex-labelled v allowed by (a)

This always yields the min-bump l.e.!

Gara Pruesse.... Bump Number Algorithm

Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make
one bad selection, how many added bumps can that
introduce?

Gara Pruesse.... Bump Number Algorithm

Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make
one bad selection, how many added bumps can that
introduce?

Gara Pruesse.... Bump Number Algorithm

Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make
one bad selection, how many added bumps can that
introduce?

Gara Pruesse.... Bump Number Algorithm

Proof of Correctness

First, an observation:

When shelling to produce a low-bump l.e., if you make
one bad selection, how many added bumps can that
introduce?

greedy lex

Gara Pruesse.... Bump Number Algorithm

 b xxx..x a xx…x has k bumps and a is min

Lex-Yanking Lemma

l.e. a x’x’x’…b…x’

E

with k or fewer bumps

Gara Pruesse.... Bump Number Algorithm

(Balloon size indicates relative Lex value)

Recap:

• Definition of Bump Number
• Relationship (equivalency, up to data representation) to the

Minimum Path Cover/Hamiltonicity of Cocomp Graphs
• Is related to Two-Processor Scheduling

• Introduce Lexicographic Labelling
• Give the Greedlex Algorithm solving Bump
• Prove Greedlex is correct

– State the Lex-Yanking Lemma
– Show that the Lex-Yanking Lemma implies Greedlex is Correct
– Prove the Lex-Yanking Lemma

• How this work fits into previous results

Gara Pruesse.... Bump Number Algorithm

100
90 88 65

40
 14 10 6

Gara Pruesse.... Bump Number Algorithm

The LexYanking Lemma implies Greedlex works:

100
90 88 65

40
 14 10 6

Greedy bump 1 1 1 0 0 1 0 0

Lex bump

Gara Pruesse.... Bump Number Algorithm

The LexYanking Lemma implies Greedlex works:

100
90 88 65

40
 14 10 6

Greedy bump 1 1 1 0 0 1 0 0

Lex bump 0

Gara Pruesse.... Bump Number Algorithm

First, let us note that the LexYanking Lemma implies Greedlex works:

100
90 88 65

40
 14 10 6

Greedy bump 1 1 1 0 0 1 0 0

Lex bump 0 0 0 0 0 0 0 0

Gara Pruesse.... Bump Number Algorithm

First, let us note that the LexYanking Lemma implies Greedlex works:

100
90 88 65

40
 14 10 6

Greedy bump 1 1 1 0 0 1 0 0

Lex bump 0 0 0 0 1 1 1 1

Gara Pruesse.... Bump Number Algorithm

First, let us note that the LexYanking Lemma implies Greedlex works:

100
90 88 65

40
 14 10 6

Greedy bump 1 1 1 0 0 1 0 0

Lex bump 0 

Gara Pruesse.... Bump Number Algorithm

First, let us note that the LexYanking Lemma implies Greedlex works:

100
90 88 65

40
 14 10 6

Greedy bump 1 1 1 0 0 1 0 0

Lex bump 0 

Gara Pruesse.... Bump Number Algorithm

First, let us note that the LexYanking Lemma implies Greedlex works:

Proof of LexYanking Lemma

b x x x a x x x has k bumps, lex(a) ≥ lex(b), a is minimal

 a x’x’x’ b x’x’x’ has ≤ k bumps

a b

edc
5

If lex(a)≥lex(b) and b has a private
neighbour…

Gara Pruesse.... Bump Number Algorithm

Proof of LexYanking Lemma

b x x x a x x x has k bumps, lex(a) ≥ lex(b), a is minimal

 a x’x’x’ b x’x’x’ has ≤ k bumps

a b

edc
5

f
≥5 If lex(a)≥lex(b) and b has a private

cover (not covering a)…

Then a has a private cover
with lex# at least as large.

Gara Pruesse.... Bump Number Algorithm

By induction on n=|V(P)|. Base cases n=0,1 are trivial.

Let P be a poset on n>1 elements, and suppose LexYanking
Lemma holds for all smaller posets. (Then also Greedlex works
on smaller posets.)

b xxx a xxxx a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

Gara Pruesse.... Bump Number Algorithm

b xxx a xxxx a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds,
and Greedlex produces a min-bump suffix to follow b

yyy a yyyy

All these elements have lex# > lex(a)

Gara Pruesse.... Bump Number Algorithm

b xxx a xxxx a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds,
and Greedlex produces a min-bump suffix to follow b

yyy a yyyy

All these elements have lex# > lex(a) ≥ lex(b)

Gara Pruesse.... Bump Number Algorithm

b xxx a xxxx a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds,
and Greedlex produces a min-bump suffix to follow b

All these elements have lex# > lex(a) ≥ lex(b)
Hence all are incomparable with b
They are also incomparable with a

Swap: a yyy b yyyy

Gara Pruesse.... Bump Number Algorithm

b xxx a xxxx a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds,
and Greedlex produces a min-bump suffix to follow b

All these elements have lex# > lex(a) ≥ lex(b)
Hence all are incomparable with b
They are also incomparable with a

Swap:
May have introduced a bump

 a yyy b yyyy

Gara Pruesse.... Bump Number Algorithm

Proof of LexYanking Lemma

a yyy b yyyy Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.

Gara Pruesse.... Bump Number Algorithm

Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.

Then y1 is a private cover of b (with respect to a).

Gara Pruesse.... Bump Number Algorithm

Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.

Then y1 is a private cover of b (with respect to a).

Then a has some private cover c (w.r.t. b), with lex(c)≥
lex(y1).

a yyy b y1y…c..y

Gara Pruesse.... Bump Number Algorithm

Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.

Then y1 is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with
lex(c)≥ lex(y1).

a yyy b y1y…c..y Then c can be yanked forward in the suffix,
by the Ind. Hyp., without increasing bumps

a yyy b c z…y1..z

Gara Pruesse.... Bump Number Algorithm

Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.

Then y1 is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with
lex(c)≥ lex(y1).

a yyy b y1y…c..y Then c can be yanked forward in the suffix,
by the Ind. Hyp., without increasing bumps
and destroying the bump after b.
[if c is not a min, take c’s descendent].

a yyy b c z…y1..z

Gara Pruesse.... Bump Number Algorithm

Where does this work fit in?

2PS FKN

Bump
Schaffer
Simons

Bump
HMS

2PS Gabow
2PS
Coffman-
Graham

Cocomp HamPath
DDKS

Cocomp HamPath
CorneilDaltonHabib

MPC for Interval
Graphs AR or K

Gara Pruesse.... Bump Number Algorithm

linear

linear

poly

linear
poly

poly

O(n2)
O(n4)

Linear in Transitive Closure

Where does this work fit in?

2PS FKN

Bump
Schaffer
Simons

Bump
HMS

2PS Gabow
2PS
Coffman-
Graham

Cocomp HamPath
DDKS

Cocomp HamPath
CorneilDaltonHabib

MPC for Interval
Graphs AR or K

Gara Pruesse.... Bump Number Algorithm

linear

linear

poly

linear
poly

poly

O(n2)
O(n4)

Linear in Transitive Closure

Bump
PCM

Further Work

Completed:
•Solve 2-Proc Sched using Greedlex
•Greedlex can work on either transitive closure or transitive reduction
•Greedlex can generate all min-bump linear extensions (all MinPath
Covers in Cocomp graphs)

Open:
•Terminal elements in the poset…. (see Garth Isaak’s work on Path
Partitions)
•What about representations that are in between transitive closure
and reduction?
•What about AT-free graphs?

– Contains the cocomp graphs

Gara Pruesse.... Bump Number Algorithm

Thank You!

Me:
Gara Pruesse

Vancouver Island University
Coauthors:

Derek Corneil
Lalla Mouatadid

University of Toronto

Gara Pruesse.... Bump Number Algorithm

2-Processor Schedules

a

d

b c

e f

a b c d e f g h

Gara Pruesse.... Bump Number Algorithm

Want to schedule these unit-length jobs
on two identical processor so that no job is
executed before all of its lower covers have
completed execution.

hg

2-Processor Schedules

a

d

b c

e f

a b c d e f g h

Gara Pruesse.... Bump Number Algorithm

Want to schedule these unit-length jobs
on two identical processor so that no job is
executed before all of its lower covers have
completed execution.

hg

2-Processor Schedules

a

d

b c

e f

a b c d e f g h

Gara Pruesse.... Bump Number Algorithm

Want to schedule these unit-length jobs
on two identical processor so that no job is
executed before all of its lower covers have
completed execution.

hg

g

e
c
a

h
f
d

b

Coffman-Graham Lexicographic Labelling

1 2 3 4

5 76

98

1110 12

Gara Pruesse.... Bump Number Algorithm

Coffman-Graham Lexicographic Labelling

1 2 3 4

5 76

98

1110 12

(Sethi, 1986) O(n+m) algorithm for
C-G lex labelling

Gara Pruesse.... Bump Number Algorithm

Lexicographic Labelling and 2PS

• Coffman and Graham ‘72 used it
for 2-proc scheduling O(n2)

• Sethi ’76 also used it for a 2PS;
lex labelling takes O(n + m)
though the remainder of the 2PS
alg takes O(n α(n) + m))

1 1 1 1

2 23

45

67 8

Gara Pruesse.... Bump Number Algorithm

	Lexicographic Labellings achieve fast algorithms for bump number, cocomp hamiltonicity and two-processor scheduling
	Outline
	Posets = partially ordered sets
	Slide 4
	Slide 5
	Slide 6
	Bumps in linear extensions
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Bump Number Problem
	Greedily seeking min-bump l.e.
	Greedily seeking min-bump l.e
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Bump Number
	Greedlex Algorithm does these quickly, simply
	Linear Time Bump Number
	Algorithm, proof of correctness, and analysis
	Slide 37
	Posets & comparability graphs
	Slide 39
	Posets & cocomparability graphs
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Hamiltonicity of Cocomp Graphs
	Recap:
	Greedy bump#
	Slide 48
	Slide 49
	How can a bump be unavoidable
	Slide 51
	Lexicographic Labelling
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Greedy + Lex = Greedlex
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Greedlex Alg for bump#
	Proof of Correctness
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Proof of LexYanking Lemma
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Where does this work fit in?
	Slide 99
	Further Work
	Thank You!
	2-Processor Schedules
	Slide 103
	Slide 104
	Coffman-Graham Lexicographic Labelling
	Slide 106
	Lexicographic Labelling and 2PS

