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Posets = partially ordered sets 
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Hasse Diagram
-A compact representation of a set of relations
-i.e. can be O(n) representation of O(n2) relations

u covers v
u is an upper cover of v
v is a lower cover of u
u      v   

w w > v
v < w
v and w are transitively related



Bumps in linear extensions
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Bumps in linear extensions
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Bumps in linear extensions

a b cd ef g hi

Linear extension (showing bumps)
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Bump Number Problem

a b cd ef g hi

Given poset P, what is the least number of bumps
realized by a linear extension of P?

b(P)= bump# of P 

Find an algorithm to compute b(P) and
construct a linear extension with fewest bumps
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Greedily seeking min-bump l.e.
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Greedily seeking min-bump l.e

a b c d e f g h i

Linear extension (showing bumps)
Greedily selecting to avoid bumps
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Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves 
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?  

Gara Pruesse.... Bump Number Algorithm



Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves 
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?  

Greedy + ? works for all posets?  

Gara Pruesse.... Bump Number Algorithm



Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves 
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?  F&G’86

Greedy + ? works for all posets? 

Gara Pruesse.... Bump Number Algorithm



Greedily seeking min-bump l.e

There is always some greedy l.e. that achieves 
minimum bump (Fishburn & Gehrlein, ‘86).

For which posets does greedy always work?  F&G’86

Greedy + ? works for all posets?  This talk
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Bump Number

•linear time algorithm – based on Gabow’s linear time 2-proc 
scheduling algorithm                                         Schäffer & Simons 1988
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• polynomial algorithms for interval order posets and for partial semiorder 
posets – both are based on the greedy  shelling algorithms                          

Fishburn and Gehrlein 1986 

• polynomial algorithm for width=2 posets – not based on greedy shelling 
Zaguia 1987

•                                                                                                                               

• polynomial algorithm for any poset – not based on shelling
                                                                                   Habib, Möhring, Steiner 1988



Greedlex Algorithm does these quickly, simply 

•linear time algorithm – based on Gabow’s linear time 2-proc 
scheduling algorithm                                         Schäffer & Simons 1988
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• polynomial algorithms for interval order posets and for partial semiorder 
posets – both are based on the greedy  shelling algorithms                          

Fishburn and Gehrlein 1986 

• polynomial algorithm for width=2 posets – not based on greedy shelling 
Zaguia 1987

•                                                                                                                               

• polynomial algorithm for any poset – not based on shelling
                                                                                   Habib, Möhring, Steiner 1988



Linear Time Bump Number

relies on Gabow and Tarjan’s special case Union-
Find algorithm: union and find operations 
known in advance             

 O(n+m)

… relies on hybrid linked-list / array data 
structure ... Switch to array representation of tree for subtrees that are 
small enough…
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Algorithm, proof of correctness, and 
analysis

• Spread across several papers
• Proofs long and case-ridden
• Analysis complex

Question: 
    a simple algorithm 
with a short proof 
that can be made efficient (linear time) without 

recourse to Special Case of Union-Find?
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Algorithm, proof of correctness, and 
analysis

• Spread across several papers
• Proofs long and case-ridden
• Analysis complex

Question: 
    a simple algorithm         YES
with a short proof              YES
that can be made efficient (linear time) without 

recourse to Special Case of Union-Find?  I think 
so.
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Posets & cocomparability graphs
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Posets & cocomparability graphs

When is there a Hamilton Path in 
the cocomparability graph?
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Posets & cocomparability graphs

f

When is there a Hamilton Path in 
the cocomparability graph?

a b

c
d

e

h i

g
When there is an ordering of the vertices so 
that  there is an edge between successive 
vertices

…i.e., so that there is a non-edge in the 
comparability graph

… i.e., so there is no bump between 
successive vertices in the linear extension
(assuming your restrict to orderings that 
obey the partial order).
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Posets & cocomparability graphs

f

When is there a Hamilton Path in 
the cocomparability graph?

a b

c
d

e

h i

g
Of course, it is possible to trace the graph in 
ways that are not obedient to the partial 
order

a d e i h g c b 

Exists Ham Path iff exists cocomp order that is a HamPath iff bump#=0

Exists k-path cover in cocomp graph iff bump# ≤ k
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Posets & cocomparability graphs

f

When is there a k-path cover in the 
cocomparability graph?

a b

c
d

e

h i

g
Cocomp graph G          many posets 

Cocomp graph G + cocomp ordering 
         one poset

Solve bump on the poset                 Solve min-path-cover on cocomp graph
Solve MPC on cocomp graph           Solve bump on the unique underlying poset
using a cocomp order        
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Hamiltonicity of Cocomp Graphs

Keil 1985

•Ham’n cycle in Interval graphs alg  
Deogun Steiner 1990

•Poly-time Ham’n Cycle 
Deogun Kratsch Steiner 1997

•1-tough cocomp graphs are hamiltonian – 
Damaschke Deogun Kratsch Steiner 1991

•Hamilton Path in cocomps using bump number 
algorithm 
Corneil Dalton Habib 2013

•Min Path Cover Alg (certified) in Cocomp Graphs
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Recap:

• Definition of Bump Number
• Relationship (equivalency, up to data representation) to the 

Minimum Path Cover/Hamiltonicity of Cocomp Graphs
• Is related to Two-Processor Scheduling

• Introduce Lexicographic Labelling
• Give the Greedlex Algorithm solving Bump
• Prove Greedlex is correct

– State the Lex-Yanking Lemma
– Show that the Lex-Yanking Lemma implies Greedlex is Correct
– Prove the Lex-Yanking Lemma

• How this work fits into previous results

Gara Pruesse.... Bump Number Algorithm



Greedy bump#

a

c d

e

b

h

f

g

Greedy Approach   

d  a  … oops

Gara Pruesse.... Bump Number Algorithm



Greedy bump#

a

c d

e

b

h

f

g

Greedy Approach   

d  a  … oops

a  d  b  c  h  e  f  …oops

Gara Pruesse.... Bump Number Algorithm



Greedy bump#

a

c d

e

b

h

f

g

Greedy Approach   

d  a  … oops

a  d  b  c  h  e  f  …oops

a  d  c  b  f  e  h  g
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a

c d

e

b

h

f

g

How can a bump be unavoidable

a d b c …

Now all minima e f g are upper covers of c 
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e

b

d

g

a

h

c

f

a  g  e  b  c d  f  h
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Lexicographic Labelling

• Give minima arbitrary lex#

1 1 1 1
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Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that    
lex(u)<lex(v)    whenever 
{lex(u’): u’covers u} <lexico 

{lex(v’): v’ covers v}                     
                   

1 1 1

{1,1} {1,1,1}
{1,1}

1
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Lexicographic Labelling
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Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that    
lex(u)<lex(v)    whenever 
{lex(u’): u’covers u} <lexico 

{lex(v’): v’ covers v}                     
                   

1 1 1

{3,2,1}

1

2 23

{2}
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Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that    
lex(u)<lex(v)    whenever 
{lex(u’): u’covers u} <lexico 

{lex(v’): v’ covers v}                     
                   

1 1 1

{3,2,1}

1

2 23

{2}
45
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Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that    
lex(u)<lex(v)    whenever 
{lex(u’): u’covers u} <lexico 

{lex(v’): v’ covers v}                     
                   

1 1 1

{5}

1

2 23

{5,4}

45

{4,1}
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Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that    
lex(u)<lex(v)    whenever 
{lex(u’): u’covers u} <lexico 

{lex(v’): v’ covers v}                     
                   

1 1 1

{5}

1

2 23

{5,4}

45

{4,1}
67 8
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Lexicographic Labelling

• Give minima arbitrary lex#

• Assign lex# so that    
lex(u)<lex(v)    whenever 
{lex(u’): u’covers u} <lexico 

{lex(v’): v’ covers v}                     
                   

1 1 1 1

2 23

45

67 8
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Lexicographic Labelling

1 1 1 1

2 23

45

67 8

New:  O(n+m) algorithm for lex-labelling

Gara Pruesse.... Bump Number Algorithm

(Sethi  1976 algorithm also acheives linear time)



Greedy + Lex = Greedlex

a

c d

e

b

h

f

g
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Greedy + Lex = Greedlex

a

c

d

e

b

h

f

g
11

22

43
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Greedy + Lex = Greedlex

a cd

e

b

h

f

g
11

22

3

Gara Pruesse.... Bump Number Algorithm



Greedy + Lex = Greedlex

a cd

e

b

h

f

g
11

22

Gara Pruesse.... Bump Number Algorithm



Greedy + Lex = Greedlex

a cd

e
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Greedy + Lex = Greedlex

a cd eb

h

f

g
11
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Greedy + Lex = Greedlex

a cd eb hf

g
1
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Greedy + Lex = Greedlex

a cd eb hf g
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Greedlex Alg for bump#

1. Lex label all v in V(P)

2. Shell P, always removing

          (a) a non-cover of last-shelled u, if exists

          (b) the highest lex-labelled v allowed by (a)

This always yields the min-bump l.e.!
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Proof of Correctness

First, an observation: 

When shelling to produce a low-bump l.e., if you make 
one bad selection, how many added bumps can that 
introduce?
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Proof of Correctness

First, an observation: 

When shelling to produce a low-bump l.e., if you make 
one bad selection, how many added bumps can that 
introduce?

greedy lex

Gara Pruesse.... Bump Number Algorithm



       b xxx..x a xx…x   has k bumps and a is min

Lex-Yanking Lemma

l.e.    a x’x’x’…b…x’

E

with k or fewer bumps

Gara Pruesse.... Bump Number Algorithm

(Balloon size indicates relative Lex value)



Recap:

• Definition of Bump Number
• Relationship (equivalency, up to data representation) to the 

Minimum Path Cover/Hamiltonicity of Cocomp Graphs
• Is related to Two-Processor Scheduling

• Introduce Lexicographic Labelling
• Give the Greedlex Algorithm solving Bump
• Prove Greedlex is correct

– State the Lex-Yanking Lemma
– Show that the Lex-Yanking Lemma implies Greedlex is Correct
– Prove the Lex-Yanking Lemma

• How this work fits into previous results
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The LexYanking Lemma implies Greedlex works:
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First, let us note that the LexYanking Lemma implies Greedlex works:



Proof of LexYanking Lemma

b x x x a x x x    has k bumps, lex(a) ≥ lex(b), a is minimal

          a x’x’x’ b x’x’x’    has ≤ k bumps

a b

edc
5

If lex(a)≥lex(b) and b has a private 
neighbour…
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Proof of LexYanking Lemma

b x x x a x x x    has k bumps, lex(a) ≥ lex(b), a is minimal

          a x’x’x’ b x’x’x’    has ≤ k bumps

a b

edc
5

f
≥5 If lex(a)≥lex(b) and b has a private 

cover (not covering a)…

Then a has a private cover 
with lex# at least as large.
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By induction on n=|V(P)|.  Base cases n=0,1 are trivial.

Let P be a poset on n>1 elements, and suppose LexYanking 
Lemma holds for all smaller posets. (Then also Greedlex works 
on smaller posets.)

b xxx a xxxx   a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b
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b xxx a xxxx   a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds, 
and Greedlex produces a min-bump suffix to follow b

yyy a yyyy

All these elements have lex# > lex(a)
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b xxx a xxxx   a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds, 
and Greedlex produces a min-bump suffix to follow b

yyy a yyyy

All these elements have lex# > lex(a) ≥ lex(b)
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b xxx a xxxx   a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds, 
and Greedlex produces a min-bump suffix to follow b

All these elements have lex# > lex(a) ≥ lex(b)
Hence all are incomparable with b
They are also incomparable with a 

Swap:   a yyy b yyyy
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b xxx a xxxx   a l.e. with k bumps, lex(a)≥lex(b), a and b min

Proof of LexYanking Lemma

aa b

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds, 
and Greedlex produces a min-bump suffix to follow b

All these elements have lex# > lex(a) ≥ lex(b)
Hence all are incomparable with b
They are also incomparable with a 

Swap: 
May have introduced a bump

  a yyy b yyyy
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Proof of LexYanking Lemma

a yyy b yyyy Suppose a bump was introduced after 
the b, and there was no such bump 
when a was in the same spot.
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Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after 
the b, and there was no such bump 
when a was in the same spot.

Then y1 is a private cover of b (with respect to a).
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Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after 
the b, and there was no such bump 
when a was in the same spot.

Then y1 is a private cover of b (with respect to a).

Then a has some private cover c (w.r.t. b), with lex(c)≥ 
lex(y1).  

 

a yyy b y1y…c..y
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Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after 
the b, and there was no such bump 
when a was in the same spot.

Then y1 is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with 
lex(c)≥ lex(y1).

 

a yyy b y1y…c..y Then c can be yanked forward in the suffix,
by the Ind. Hyp., without increasing bumps

a yyy b c z…y1..z
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Proof of LexYanking Lemma

a yyy b y1yyy Suppose a bump was introduced after 
the b, and there was no such bump 
when a was in the same spot.

Then y1 is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with 
lex(c)≥ lex(y1).

 

a yyy b y1y…c..y Then c can be yanked forward in the suffix,
by the Ind. Hyp., without increasing bumps
and destroying the bump after b.
[if c is not a min, take c’s descendent]. 

a yyy b c z…y1..z

Gara Pruesse.... Bump Number Algorithm



Where does this work fit in?

2PS FKN

Bump 
Schaffer 
Simons

Bump 
HMS 

2PS Gabow
2PS 
Coffman- 
Graham

Cocomp HamPath
DDKS

Cocomp HamPath
CorneilDaltonHabib

MPC for Interval 
Graphs AR or K

Gara Pruesse.... Bump Number Algorithm
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O(n2)
O(n4)
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Schaffer 
Simons

Bump 
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2PS Gabow
2PS 
Coffman- 
Graham

Cocomp HamPath
DDKS

Cocomp HamPath
CorneilDaltonHabib

MPC for Interval 
Graphs AR or K
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linear

linear

poly

linear
poly

poly

O(n2)
O(n4)

Linear in Transitive Closure

Bump 
PCM



Further Work

Completed:
•Solve 2-Proc Sched using Greedlex
•Greedlex can work on either transitive closure or transitive reduction
•Greedlex can generate all min-bump linear extensions (all MinPath 
Covers in Cocomp graphs)

Open:
•Terminal elements in the poset…. (see Garth Isaak’s work on Path 
Partitions)
•What about representations that are in between transitive closure 
and reduction?
•What about AT-free graphs?

– Contains the cocomp graphs
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Thank You!

Me: 
Gara Pruesse 

Vancouver Island University
Coauthors: 

Derek Corneil  
Lalla Mouatadid  

University of Toronto
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2-Processor Schedules
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Want to schedule these unit-length jobs 
on two identical processor so that no job is
executed before all of its lower covers have 
completed execution.

hg



2-Processor Schedules

a

d

b c

e f

a   b   c   d   e   f   g  h

Gara Pruesse.... Bump Number Algorithm

Want to schedule these unit-length jobs 
on two identical processor so that no job is
executed before all of its lower covers have 
completed execution.

hg



2-Processor Schedules

a

d

b c

e f

a   b   c   d   e   f   g  h

Gara Pruesse.... Bump Number Algorithm

Want to schedule these unit-length jobs 
on two identical processor so that no job is
executed before all of its lower covers have 
completed execution.

hg

g 
 
e
c
a

h
f
d

b



Coffman-Graham Lexicographic Labelling

1 2 3 4
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Coffman-Graham Lexicographic Labelling

1 2 3 4

5 76

98

1110 12

(Sethi, 1986) O(n+m) algorithm for 
C-G lex labelling
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Lexicographic Labelling and 2PS

• Coffman and Graham ‘72 used it 
for 2-proc scheduling O(n2)

• Sethi ’76 also used it for a 2PS; 
lex labelling takes O(n + m) 
though the remainder of the 2PS 
alg takes O(n α(n) + m))

1 1 1 1

2 23

45

67 8
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