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Bump Number Proble

ven poset P, what is the least number of bt
ealized by a linear extension of P?

b(P)= bump# of P

Find an algorithm to compute b(P) and |
~construct a linear extension with fewest bun

b ™d ¢ f g e ih
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* polynomial algorithms for interval order posets and for parig
posets — both are based on the greedy shelling algorithms =
Fishburn and Gehrlein 1986

* polynomial algorithm for width=2 posets — not based on greedy shelling
Zaguia 1987

* polynomial algorithm for any poset — not based on shelling
Habib, M6hring, Steiner 1988

ar time algorithm — based on Gabow’s linear time 2-proc
ling algorithm Schaffer & Simons 1€
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Linear Time Bump Number

relies on Gabow and Tarjan’s special case
algorithm: and operations
known in advance

O(n+m)

... relies on hybrid linked-list / array data

Structure ... switch to array representation of tree for subtrees that are
small enough...




M, proof of correct
analysis

ead across several papers
0ofs long and case-ridden
\nalysis complex

Question:
simple algorithm
a short proof

1 be made efficient (linear time) withc
e to Special Case of Union-Find?
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When is there a Hamilton Path
the cocomparability graph?
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When is there a Hamilton Path i
the cocomparability graph?

When there is an ordering of the vertice
that there is an edge between successi
vertices

...i.e., so that there is a non-edge in the
comparability graph

... i.e., so there is no bump between
successive vertices in the linear exte
(assuming your restrict to ordering
obey the partial order).
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& COCOMpara

When is there a Hamilton Pa
the cocomparability graph?

Of course, it is possible to trace the gr
ways that are not obedient to the pa
order

adeihgch




When is there a k-path cover in
cocomparability graph?

Cocomp graph G 4ggpmany posets

Cocomp graph G + cocomp ordering

&gy ne poset

ump on the poset <% Solve min-path-cover on cocomg
on cocomp graph <= Solve bump on the unique und
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n cycle in Interval graphs alg
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Ilton Path in cocomps using bump number
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finition of Bump Number

elationship (equivalency, up to data representation) to the
inimum Path Cover/Hamiltonicity of Cocomp Graphs

Is related to Two-Processor Scheduling

Introduce Lexicographic Labelling
Give the Greedlex Algorithm solving Bump

Prove Greedlex is correct
State the Lex-Yanking Lemma
Show that the Lex-Yanking Lemma implies Greedlex is Correct
’rove the Lex-Yanking Lemma

1is work fits into previous results
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Greedy bump#

Greedy Approach
da .. 00ops

adbCth...oops
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sreedlex Alg for bumg

label all v in V(P)
ell P, always removing
(a) a non-cover of last-shelled u, if exists
(b) the highest lex-labelled v allowed by
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)ad selection, how many added bumps can that
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Proof of Correctnes

observation:

shelling to produce a low-bump l.e., if you make
oad selection, how many added bumps can that




observation:

shelling to produce a low-bump l.e., if you make
9ad selection, how many added bumps can that
duce?

greedy

'Qggcgggf\g >
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Lex-Yanking Lemma

XX..X @ XX...X has kbumpsand aist
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oof of LexYanking Lem

x x has k bumps, lex(a) > lex(b), a is

A XXX b x'x'x” has <k bumps

If lex(a)=lex(b) and b has a p
neighbour...
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’roof of LexYanking Lemmz
x x x has k bumps, lex(a) = lex(b), a is
ax'x'x' bx'x’x’ has < kbumps

= If lex(a)>lex(b) and b has a pri

e
cover (not covering a)...

3 Q €
NDA
| /\ Then a has a private cover

a b with lex# at least as large.

Nt
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Proof of LexYanking Lemma

By induction on n=|V(P)|. Base cases n=0,1 are trivial.

Let P be a poset on n>1 elements, and suppose LexYanking
Lemma holds for all smaller posets. (Then also Greedlex works
on smaller posets.)

a l.e. with k bumps, lex(a)=lex(b), a and b min
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xxx a l.e. with k bumps, lex(a)>lex(b), aand b

yset \ {b} is smaller, so by Ind. Hyp., LexYanking holds
sreedlex produces a min-bump suffix to follow b

b YYY.ayyyy
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Proof of LexYanking Lemma

b a a l.e. with k bumps, lex(a)=lex(b), a and b min

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds,
and Greedlex produces a min-bump suffix to follow b

byyy avyyyy

All these elements have lex# > lex(a) = lex(b)
Hence all are incomparable with b

< \ f They are also incomparable with a
7
a b

Swap: aYyy b yyyy
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b a a l.e. with k bumps, lex(a)=lex(b), a and b min

The poset \ {b} is smaller, so by Ind. Hyp., LexYanking holds,
and Greedlex produces a min-bump suffix to follow b

byyy avyyyy

All these elements have lex# > lex(a) = lex(b)
Hence all are incomparable with b

< \ f They are also incomparable with a
7
a b

Swap: aVYyy byyyy

May have introduced a bump
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of LexYankiné Le

Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.
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Suppose a bump was introduced after
the b, and there was no such bump
when a was in the same spot.

ayyyby yyy

Theny is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with
lex(c)> lex(y ).

Then c can be yanked forward in the suffix,

ayyybly y..c.y by the Ind. Hyp., without increasing bumps

ayyybcz.y ..z




Proof of LexYanking Lemma

Suppose a bump was introduced after
a b
e YYY the b, and there was no such bump

when a was in the same spot.

Theny is a private neighbour of b (with respect to a).

Then a has some private neighbour c (w.r.t. b), with
lex(c)> lex(y ).

1 b E Then c can be yanked forward in the suffix,
Ry Y---C y by the Ind. Hyp., without increasing bumps
d destroying the bump after b.
b cz..y .z 9" ying P
Yy L [if c is not a min, take ¢’s descendent]. %
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on two identical processor so that no
executed before all of its lower cove
completed execution.




el

Want to schedule these unit-length jc
on two identical processor so that no
executed before all of its lower cover
completed execution.
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an-Graham Lexicographic |

Give t minima €
1...t arbitrarily

Assign lex#s t+1...n so tf
lex(u)<lex(v) wheneve
{lex(u’): u’covers U} <o
{lex(v’): v’ covers v}, bre
ties arbitrarily
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Give t minima <
1...t arbitrarily

Assign lex#s t+1..nso t
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{lex(v’): v’ covers v}, brez
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ographic Labelling a

* Coffman and Graha
for 2-proc scheduling C

Sethi '76 also used it for
lex labelling takes O(n +
though the remainder of
alg takes O(n a(n) + m))
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