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Derek’s Primary Universe  

 The talk is not about this Derek 

 These footsteps are hard to follow 
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  collaborating with Derek  

o fast estimation of diameters  

o representing approximately graph distances with few tree 

distances  

  following Derek's footsteps  

o tree- and path-decompositions and new graph parameters  

o Approximating tree t-spanner problem using tree-breadth  

o  Approximating bandwidth using path-length  

o Approximating line-distortion using path-length  
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  collaborating with Derek  

o fast estimation of diameters 
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The Diameter Problem 
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o The eccentricity ecc 𝑣 = 𝑑𝑖𝑎𝑚 𝐺  

of a vertex 𝑣 is the maximum distance 

from 𝑣  to a vertex in 𝐺  

 

o The diameter 𝑑𝑖𝑎𝑚 𝐺  is the 

maximum eccentricity of a vertex of 𝐺  

 

o The diameter problem  

      (find a longest shortest path in a graph): 

 

find 𝑑𝑖𝑎𝑚 𝐺  and 𝑥, 𝑦 

such that 𝑑 𝑥, 𝑦 = 𝑑𝑖𝑎𝑚 𝐺  

(in other words, find a vertex of maximum 

eccentricity) 



Our Approach 
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  Examine the naïve algorithm of  

o  choosing a vertex  

o  performing some version of BFS from this vertex and then  

o  showing a nontrivial bound on the eccentricity of the last vertex visited in this search.  

   This approach has already received considerable attention 

o  (classical result [Handler’73]) for trees this method produces a vertex of maximum 

eccentricity  

o  [Dragan et al’ 97] if LexBFS is used for chordal graphs, then ecc(v) ≥ 𝑑𝑖𝑎𝑚 𝐺 − 1 

whereas for interval graphs and Ptolemaic graphs ecc v = 𝑑𝑖𝑎𝑚 𝐺  

o [Corneil et al’99] if LexBFS is used on AT-free graphs, then ecc(v) ≥ 𝑑𝑖𝑎𝑚 𝐺 − 1                          

o  [Dragan’99] if LexBFS is used, then ecc(v) ≥ 𝑑𝑖𝑎𝑚 𝐺 − 2 for HH-free graphs, 

ecc v ≥ 𝑑𝑖𝑎𝑚 𝐺 − 1  for HHD-free graphs and ecc v = 𝑑𝑖𝑎𝑚 𝐺  for HHD-free 

and AT-free graphs  

o  [Corneil et al’01] considered multi sweep LexBFSs … 



Variants of BFS used 
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Our Results on Restricted Families of Graphs 

No induced cycles of length >3 

No asteroidal triples 

No asteroidal triples and  

The intersection graph of 

intervals of a line 

No induced cycles of length >4 

asteroidal triple a,b,c 

b 
c 

a 
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Arbitrary k-Chordal graphs    
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 a graph is 𝑘-chordal if it has no induced cycles of length greater than 𝑘.  

o if 𝐿𝐿 is used for 𝑘-chordal graphs (𝑘 > 3), then ecc(v) ≥ 𝑑𝑖𝑎𝑚 𝐺 − 𝑘/2   

o 𝑘 = 4𝑙 
o 𝑑𝑖𝑎𝑚 𝐺 = 4𝑙 = 𝑘 = 𝑑(𝑎, 𝑏) 
o 𝑒𝑐𝑐 𝑣 = 2𝑙 + 1= 4𝑙−2𝑙+1 

= diam(G) − k/2+1 

o Full power of LBFS is not needed 

o Good bounds hold for other graph families 

 Conclusion: 



Hyperbolic graphs    
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o if 𝐿𝐿 is used for 𝛿-hyperbolic graphs, then ecc(v) ≥ 𝑑𝑖𝑎𝑚 𝐺 − 2𝛿 

• Chordal graphs: ℎ𝑏(𝐺) ≤ 1 [ Brinkmann, Koolen, Moulton: (2001) ] 

• k-Chordal graphs (k>3): ℎ𝑏(𝐺) ≤ 𝑘 4  [ Wu, Zhang: (2011) ]  

• ℎ𝑏 𝐺 = 0 iff 𝐺 is a block graph (metrically a tree)   
ℎ𝑏 𝑆4 = 1    

1
2  

ℎ𝑏 𝐾𝑛 = 0 (is a tree metrically)   

1
2  

1
2  

1
2  



Autonomous Systems 

Real-Life datasets   
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  collaborating with Derek  

o fast estimation of diameters 

o representing approximately graph distances with few tree 

distances  

 

 



                  G                                     multiplicative tree 4- and   

                                                               additive tree 3- spanner of G 

Tree t -Spanner Problem  

 Given unweighted undirected graph G=(V,E) and integers t, s.  

 Does G admit a spanning tree T =(V,E’) such that 
                

 ),(),(,, uvdisttuvdistVvu GT 

svudistvudistVvu GT  ),(),(,,

(a multiplicative tree t-spanner of G)  

or 

(an additive tree s-spanner of G)? 

14 

Defined this object 



Some known results for the tree spanner 

problem 

  general graphs [CC’95] 

 t  4 is NP-complete. (t=3 is still open, t  2  is P) 

  approximation algorithm for general graphs [EP’04] 

  O(logn) approximation algorithm  

 chordal graphs [BDLL’02] 

 t  4  is NP-complete. (t=3 is still open.) 

 planar graphs [FK’01] 

  t 4 is NP-complete. (t=3 is polynomial time solvable.) 

AT-free graphs and their subclasses 

 additive tree 3-spanner [Pr’99, PKLMW’03] 

 a permutation graph admits a multiplicative tree 3-spanner [MVP’96] 

 an interval graph admits an  additive tree 2-spanner  

(mostly multiplicative case) 

15 



Collective Additive Tree r -Spanners Problem   

 Given unweighted undirected graph G=(V,E) and integers  , r.   
 Does G admit a system of  collective additive tree r-spanners {T1, T2…, T}                          

such that 
                

 ),(),(,0, ruvdistuvdistiandVvu GTi
 

(a system of  collective additive tree r-spanners of G )? 

2 collective additive tree 2-spanners 

collective multiplicative tree 

t-spanners  

can be defined similarly 

, 

surplus 
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Collective Additive Tree r -Spanners Problem   

 Given unweighted undirected graph G=(V,E) and integers  , r.   
 Does G admit a system of  collective additive tree r-spanners {T1, T2…, T}                          

such that 
                

 ),(),(,0, ruvdistuvdistiandVvu GTi
 

(a system of  collective additive tree r-spanners of G )? 

2 collective additive tree 2-spanners 

, 



Collective Additive Tree r -Spanners Problem   

 Given unweighted undirected graph G=(V,E) and integers  , r.   
 Does G admit a system of  collective additive tree r-spanners {T1, T2…, T}                          

such that 
                

 ),(),(,0, ruvdistuvdistiandVvu GTi
 

(a system of  collective additive tree r-spanners of G )? 

2 collective additive tree 2-spanners 

, 



Collective Additive Tree r -Spanners Problem   

 Given unweighted undirected graph G=(V,E) and integers  , r.   
 Does G admit a system of  collective additive tree r-spanners {T1, T2…, T}                          

such that 
                

 ),(),(,0, ruvdistuvdistiandVvu GTi
 

(a system of  collective additive tree r-spanners of G )? 

2 collective additive tree 2-spanners 

, 
2 collective additive 

tree 0-spanners 

, 



Applications of Collective Tree Spanners 

 message routing in networks 
     Efficient  routing schemes are known for trees  

     but not for general graphs. For any two nodes, we can route 
the message between them in one of the trees which 
approximates the distance between them.  

      - ( log2n)-bit labels,  

      - O( ) initiation,  O(1) decision    

 

solution for sparse t-spanner problem 
     If a graph admits a system of  collective additive tree r-

spanners, then the graph admits a sparse additive r-spanner 

with at most (n-1) edges, where n is the number of nodes.  

 

 

2 collective tree 2-

spanners for G 
20 



 chordal graphs, chordal bipartite graphs 
 log n collective additive tree 2-spanners in polynomial time 

 Ώ(n1/2) or Ώ(n) trees necessary to get +1 

 no constant number of trees guaranties +2 (+3)  

 circular-arc graphs 
 2 collective additive tree 2-spanners in polynomial time 

 k-chordal graphs  

 log n collective additive tree 2 k/2 -spanners in polynomial time 

 interval graphs  
 log n collective additive tree 1-spanners in polynomial time 

 no constant number of trees guaranties +1  

Some results on collective tree spanners  

21 



AT-free graphs  

 include: interval, permutation, trapezoid, co-comparability 

 2 collective additive tree 2-spanners in linear time 

 an additive tree 3-spanner in linear time (before) 

 graphs with a dominating shortest path  

 an additive tree 4-spanner in polynomial time (before) 

 2 collective additive tree 3-spanners in polynomial time 

 5 collective additive tree 2-spanners in polynomial time 

 graphs with asteroidal number an(G)=k  

 k(k-1)/2 collective additive tree 4-spanners in polynomial time 

 k(k-1) collective additive tree 3-spanners in polynomial time 

Results for AT-free graphs 

22 



Results for AT-free graphs 

Any AT-free graph G admits an additive tree 

3-spanner [PKLMW’03]  

 

Thm: Any AT-free graph G admits a system 

of 2 collective additive tree 2-spanners 

which can be constructed in linear time.  

To get +2, one needs at least 2 spanning 

trees 

To get +1, one needs at least (n) spanning 

trees 

an AT-free graph with its backbone 

23 



 2 collective additive tree 2-spanners of G  

caterpillar-tree cactus-tree 

Results for AT-free graphs 

24 
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  collaborating with Derek  
o fast estimation of diameters  

o representing approximately graph distances with few tree distances 



Papers that influenced my (later) work 
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(among many others)  

  Graph searches and their algorithmic use 

 

 

 

 

  

AT-free graphs 



Papers that influenced my (later) work 
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(among many others)  

  Tree spanners, tree powers 

 

 

  Graph decompositions and their parameters 

 

 

 

  first paper that I got from Derek (long time ago)  



Papers that influenced my (later) work 
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(among many others)  

  Tree spanners, tree powers 

 

 

  Graph decompositions and their parameters 

 

 

 

  first paper that I got from Derek (long time ago)  



Following Derek's footsteps  
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LBFS 

 Derek’s journey 

 How I envision it  



Following Derek's footsteps  
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  collaborating with Derek  

o fast estimation of diameters  

o representing approximately graph distances with few tree 

distances  

  following Derek's footsteps  

o tree- and path-decompositions and new graph parameters  

o Approximating tree t-spanner problem using tree-breadth  

o  Approximating bandwidth using path-length  

o Approximating line-distortion using path-length  
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following Derek's footsteps  

o tree- and path-decompositions and new graph parameters  

o Approximating tree t-spanner problem using tree-breadth  

 

  Graph decompositions and their parameters   +  Tree spanners = 

= 



Tree-Decomposition 

 Tree-decomposition 𝑇(𝐺) of a graph 𝐺 = (𝑉, 𝐸) is a pair 
𝑋𝑖: 𝑖 ∈ 𝐼 , 𝑇 = (𝐼, 𝐹)  where 𝑋𝑖: 𝑖 ∈ 𝐼  is a collection of subset of V 

(bags) and 𝑇 is a tree whose nodes are the bags satisfying: 

 

1)  𝑋𝑖 = 𝑉𝑖∈𝐼  

2) ∀ 𝑢𝑣 ∈ 𝐸, ∃ 𝑖 ∈ 𝐼 𝑠. 𝑡.  𝑢, 𝑣 ∈ 𝑋𝑖  

3) ∀ 𝑣 ∈ 𝑉, 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑎𝑔𝑠 𝑖 ∈ 𝐼, 𝑣 ∈ 𝑋𝑖  𝑓𝑜𝑟𝑚 𝑎 𝑠𝑢𝑏𝑡𝑟𝑒𝑒 𝑇𝑣 𝑜𝑓 𝑇 

 

[ Robertson, Seymour ] 

33 



Tree-Decomposition and 

 Graph Parameters 

 Tree-width 𝒕𝒘(𝑮): 

 Width of 𝑇 𝐺  is max
𝑖∈𝐼

𝑋𝑖 − 1  

  𝒕𝒘(𝑮): minimum width over all tree-decompositions  

 Tree-length 𝒕𝒍(𝑮): 

 Length of  𝑇 𝐺  is max
𝑖∈𝐼

max
𝑢,𝑣∈𝑋𝑖

𝑑𝐺(𝑢, 𝑣) 

  𝒕𝒍(𝑮): minimum length over all tree-decompositions 

 Tree-breadth 𝒕𝒃(𝑮): 

 Breadth is minimum 𝑟 such that ∀𝑖 ∈ 𝐼, ∃𝑣𝑖  with 𝑋𝑖
⊆ 𝐷𝑟(𝑣𝑖 , 𝐺) 

 𝒕𝒃 𝑮 : minimum breadth over all tree-decompositions 

 
Tree-length was introduced in [ Dourisboure, Gavoille: DM (2007) ] and [ Dragan,Lomonosov: DAM (2007) ]  

Tree-breadth was introduced in [ Dragan,Lomonosov: DAM (2007) ] and [ Dragan, Köhler: APPROX (2011) ]   

(R,D)-acyclic clustering 34 



 Tree-width 𝒕𝒘(𝑮): 

 Width of 𝑇 𝐺  is max
𝑖∈𝐼

𝑋𝑖 − 1  

  𝒕𝒘(𝑮): minimum width over all tree-decompositions  

 Tree-length 𝒕𝒍(𝑮): 

 Length of  𝑇 𝐺  is max
𝑖∈𝐼

max
𝑢,𝑣∈𝑋𝑖

𝑑𝐺(𝑢, 𝑣) 

  𝒕𝒍(𝑮): minimum length over all tree-decompositions 

 Tree-breadth 𝒕𝒃(𝑮): 

 Breadth is minimum 𝑟 such that ∀𝑖 ∈ 𝐼, ∃𝑣𝑖  with 𝑋𝑖
⊆ 𝐷𝑟(𝑣𝑖 , 𝐺) 

 𝒕𝒃 𝑮 : minimum breadth over all tree-decompositions 

 
• ∀ 𝐺, 𝑡𝑏(𝐺) ≤ 𝑡𝑙(𝐺) ≤ 2𝑡𝑏(𝐺)        as  ∀ 𝑆𝑉(𝐺),  𝑟𝑎𝑑𝐺 𝑆 ≤ 𝑑𝑖𝑎𝑚𝐺 𝑆 ≤ 2𝑟𝑎𝑑𝐺 𝑆   
• 𝑡𝑤 𝐺  and 𝑡𝑙(𝐺) are not comparable (check cycles and cliques)  

𝑡𝑤(𝐶3𝑘) = 2, 𝑡𝑙(𝐶3𝑘) = 𝑘 
𝑡𝑤(𝐾𝑛) = 𝑛 − 1, 𝑡𝑙(𝐾𝑛) = 1 

Tree-Decomposition and 

 Graph Parameters 

35 



Tree-stretch vs tree-breadth 
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 Given unweighted undirected graph G=(V,E) and 
integer t.  

 Does G admit a spanning tree T =(V,E’) such that 
                

 ),(),(,, uvdisttuvdistVvu GT 

Tree t-spanner 

problem: 



Tree spanners in bounded tree-breadth graphs 

37 



Approximating tree t-spanner problem  

in general unweighted graphs 

38 



Our results vs known results 

39 



Autonomous Systems 

Real-Life datasets   

 

40 
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following Derek's footsteps  

o  Approximating bandwidth using path-length  

o Approximating line-distortion using path-length  

 

 Graph decompositions and their parameters   +  AT-free graphs = 

= 

[ F. Dragan, E. Köhler, A. Leitert: Line-distortion, Bandwidth and Path-length of a graph, SWAT 2014 ] 



Path-Decomposition 

 Path-decomposition 𝑃(𝐺) of a graph 𝐺 = (𝑉, 𝐸) is a pair 
𝑋𝑖: 𝑖 ∈ 𝐼 , 𝑃 = (𝐼, 𝐹)  where 𝑋𝑖: 𝑖 ∈ 𝐼  is a collection of subset of V 

(bags) and 𝑃 is a path whose nodes are the bags satisfying: 

 

1)  𝑋𝑖 = 𝑉𝑖∈𝐼  

2) ∀ 𝑢𝑣 ∈ 𝐸, ∃ 𝑖 ∈ 𝐼 𝑠. 𝑡.  𝑢, 𝑣 ∈ 𝑋𝑖  

3) ∀ 𝑣 ∈ 𝑉, 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑎𝑔𝑠 𝑖 ∈ 𝐼, 𝑣 ∈ 𝑋𝑖  𝑓𝑜𝑟𝑚 𝑎 𝑠𝑢𝑏𝑝𝑎𝑡ℎ 𝑜𝑓 𝑃 

 

[ Robertson, Seymour ] 

42 



Path-Decomposition and new 

 Graph Parameters 

 path-width 𝒑𝒘(𝑮): 

 Width of 𝑃 𝐺  is max
𝑖∈𝐼

𝑋𝑖 − 1  

  𝒑𝒘(𝑮): minimum width over all path-decompositions  

 path-length 𝒑𝒍(𝑮): 

 Length of  𝑃 𝐺  is max
𝑖∈𝐼

max
𝑢,𝑣∈𝑋𝑖

𝑑𝐺(𝑢, 𝑣) 

  𝒑𝒍(𝑮): minimum length over all path-decompositions 

 path-breadth 𝒑𝒃(𝑮): 

 Breadth is minimum 𝑟 such that ∀𝑖 ∈ 𝐼, ∃𝑣𝑖  with 𝑋𝑖 ⊆
 𝐷𝑟(𝑣𝑖 , 𝐺) 

 𝒑𝒃 𝑮 : minimum breadth over all path-decompositions 

 

43 



Line distortion and bandwidth 

 Line-distortion 𝒍𝒅 𝑮 :   𝒇:  𝑽 → 𝒍  with minimum k  such that ∀𝑥, 𝑦 𝜖 𝑉 

 Non-contractiveness: 𝑑𝐺 𝑥, 𝑦 ≤ |𝑓 𝑥 − 𝑓(𝑦)| 

 minimum distortion k :  |𝑓 𝑥 − 𝑓(𝑦)| ≤ 𝑘 𝑑𝐺 𝑥, 𝑦  

 

 

 

 

 

 Bandwidth  𝒃𝒘 𝑮 :   𝒃:  𝑽 → 𝑵  with minimum k  such that ∀𝑥𝑦 𝜖 𝐸 

 minimum bandwidth  k :  𝑏 𝑥 − 𝑏 𝑦 ≤ 𝑘 

a  b  c  d  e  f  g h 

a  b  c  d  e  f  g h 

6 

7 
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Line distortion and bandwidth 

 Line-distortion 𝒍𝒅 𝑮 :   𝒇:  𝑽 → 𝒍  with minimum k  such that ∀𝑥, 𝑦 𝜖 𝑉 

 Non-contractiveness: 𝑑𝐺 𝑥, 𝑦 ≤ |𝑓 𝑥 − 𝑓(𝑦)| 

 minimum distortion k :  |𝑓 𝑥 − 𝑓(𝑦)| ≤ 𝑘 𝑑𝐺 𝑥, 𝑦  

 

 

 

 

 

 Bandwidth  𝒃𝒘 𝑮 :   𝒃:  𝑽 → 𝑵  with minimum k  such that ∀𝑥𝑦 𝜖 𝐸 

 minimum bandwidth  k :  𝑏 𝑥 − 𝑏 𝑦 ≤ 𝑘 

a  b  c  d  e  f  g h 

a  b  c  d  e  f  g h 

6 

7 

𝑏𝑤 𝐺 ≤ 𝑙𝑑 𝐺  
𝑏𝑤 𝐶𝑘 = 2 
𝑙𝑑 𝐶𝑘 = 𝑘 − 1 

k=5 45 



Line distortion and bandwidth 

 Line-distortion 𝒍𝒅 𝑮 :   𝒇:  𝑽 → 𝒍  with minimum k  such that ∀𝑥, 𝑦 𝜖 𝑉 

 Non-contractiveness: 𝑑𝐺 𝑥, 𝑦 ≤ |𝑓 𝑥 − 𝑓(𝑦)| 

 minimum distortion k :  |𝑓 𝑥 − 𝑓(𝑦)| ≤ 𝑘 𝑑𝐺 𝑥, 𝑦  

 

 

 

 

 

 Bandwidth  𝒃𝒘 𝑮 :   𝒃:  𝑽 → 𝑵  with minimum k  such that ∀𝑥𝑦 𝜖 𝐸 

 minimum bandwidth  k :  𝑏 𝑥 − 𝑏 𝑦 ≤ 𝑘 

a  b  c  d  e  f  g h 

a  b  c  d  e  f  g h 

6 

7 
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Hard to approximate  
within a constant factor  

Hard to approximate  
within a constant factor  
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Line-distortion vs path-length 

   

   

 Line-distortion is hard to approximate within a constant factor  



Path-length and AT-free graphs  

48 

Line-distortion vs path-length 

   

   

   

   

 Line-distortion is hard to approximate within a constant factor  



Approximating line-distortion 

   

   

   

   

k ≤ 𝑝𝑙 𝐺 ≤ 𝑙𝑑 𝐺  

49 ([BDGRRRS: SODA’05]) 

hard to approximate  
within a constant factor  
in general graphs  



Bandwidth approximation 
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   

   

   

hard to approximate  
within a constant factor  
in general graphs  

k ≤ 𝑝𝑙 𝐺 ≤ 𝑙𝑑 𝐺  



AT-free graphs 

51 

   

   

   
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