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Derek’s Primary Universe

O The talk is not about this Derek
0 These footsteps are hard to follow
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d collaborating with Derek
o fast estimation of diameters
o representing approximately graph distances with few tree

distances

- following Derek's footsteps
o tree- and path-decompositions and new graph parameters
o Approximating tree t-spanner problem using tree-breadth
o Approximating bandwidth using path-length
o Approximating line-distortion using path-length




Talk outline

H collaborating with Derek

o fast estimation of diameters

| 2003

EI@ !Darek G. Corneil, Feodor F. Dragan, Ekkehard Edhler: On the power of BFS to determine a graph's diameter. Networks 42(4):209-222 (2003}

| 2002

EI@ !Darek G. Corneil, Feodor F. Dragan, Ekkehard Edhler: On the Power of BFS to Determine a Graphs Diameter. LATIN 2002:209-223

2001

MMathematics (DAM) 113(2-3):143-166 (2001)

Hﬁ Derek G. Corneil. Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter determination on restricted graph families. Discrete Applied

1098

EI@ IDarek . Corneil, Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter Determination on Restricted Graph Faminlies. WG 1998:192-202
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The Diameter Problem

O The eccentricity ecc(v) = diam(G)

of a vertex v is the maximum distance

from vV to a vertex in (o %IE\

o The diameter diam(G) is the //y

maximum eccentricity of a vertex of G /

X N

0 The diameter problem
(find a longest shortest path in a graph):

/)

find diam(G) and x, y
such that d(x,y) = diam(G)

(in other words, find a vertex of maximum diam(G) =d(x, y) = 20

eccentricity)

-, y




e
Our Approach

E@ IDerek G. Corneil Feodor F. Dragan. Ekkehard Edhler: On the power of BFS to determine a graph's diameter. Networks 42(4):209-222 (2003

[ Examine the naive algorithm of

o choosing a vertex

o performing some version of BFS from this vertex and then

o showing a nontrivial bound on the eccentricity of the last vertex visited in this search.
[ This approach has already received considerable attention

o (classical result [Handler’73]) for trees this method produces a vertex of maximum

eccentricity

o [Dragan et al’ 97] if LexBFS is used for chordal graphs, then ecc(v) = diam(G) — 1
whereas for interval graphs and Ptolemaic graphs ecc(v) = diam(G)

o [Corneil et al’99] if LexBFS is used on AT-free graphs, then ecc(v) = diam(G) — 1

o [Dragan’99] if LexBFS is used, then ecc(v) = diam(G) — 2 for HH-free graphs,
ecc(v) = diam(G) — 1 for HHD-free graphs and ecc(v) = diam(G) for HHD-free
and AT-free graphs

0 o [Corneil et al’01] considered multi sweep LexBFSs ...




4 I
Variants of BFS used

Algorithm BFS: Breadth First Search
Input: graph G(V, E) and vertex u
Qutput: vertex v, the last vertex visited by a BFS starting at « Can be

Initialize queue @ to be {u} and mark « as “visited”. |mp|emented to
while @ #* @ do run in linear

Let + be the first vertex of £} and remowve it from &2. time

Each unvisited neighbour of v is added to the end of £ and marked as “visited”. /

Algorithm LBFS: Lexicographic Breadth First Search

Input: graph G{V, E) and vertex u
Output: vertex v, the last vertex visited by an LBFS starting at () ()

Assign label @ to each vertex in V.

for i = downto 1 do (7) (7.6 7/5) (6)
Pick an unmarked vertex v+ with the largest (with respect to lexicographic order) label
Mark v “visited™.
For each unmarked neighbour 4 of v, add ¢ to the label of . 6

Algorithm LL: Last Layer
Input: graph G(V, E) and vertex u
Qutput: vertex v, a vertex in the last layer of u

Kun BFS to get the layering of V' with respect to u.
Choose + to be an arbitrary vertex in the last layer.

Algorithm LL+4: Last Layer, Minimum Degree
Input: graph G(V, E) and vertex u
e Output: vertex v, a vertex in the last layer of «, that has minimum degree with respect to the

vertices in the previous layer /




‘Our Results on Restricted Families of Graphs

[ GRAPH CLASS

chordal graphs No induced cycles of length >3

AT-free graphs No asteroidal triples

No asteroidal triples anc.l\f

The intersection graph of
intervals of a line

{ AT claw }-free graphs

interval graphs

hole-free graphs No induced cycles of length >4

v d b
a u c

(&

h E

igure 7: LBFS: u|cdalbv . :
asteroidal triple a,b,c
k Figure 8: LBFS: u|ghic|dfe|abv /




e
Arbitrary k-Chordal graphs

O a graph is k-chordal if it has no induced cycles of length greater than k.

EED erek G. Corneil, Feodor F. Dragan, Ekkehard Kdhler: On the power of BFS to determine a graph's diameter. Networks 42(4):200-222 (2003) ‘

o if LL is used for k-chordal graphs (k > 3), then ecc(v) = diam(G) — |k/2]

Ic o k=4I
2 I — f o diam(G) = 4l =k =d(a,b)
o ecc(v) =2l+1=4-21+1
hd =diam(G) — k/2+1

Figure 11: LBFS: u|... |acb|v

O Conclusion:

o Full power of LBFS is not needed
@ o Good bounds hold for other graph families




e
Hyperbolic graphs

d-Hyperbolicity (M. Gromov, 1987)

for any four points u, v,w,x of a metric space (X, d), the two larger of
the distance sums d(u,v) + d(w,x), d(u, w) + d(v,x),
d(u,x) + d(v,w) differ by at most 24.

hb(K,,) = 0 (is a tree metrically)

d-Hyperbolicity measures the local deviation of a metric from a tree
metric: a metric is a tree metric iff it is 0-hyperbolic.

. . . hb(S,) =1
* hb(G) = 0iff G is ablock graph (metrically a tree)

e Chordal graphs: hb(G) < 1 [ Brinkmann, Koolen, Moulton: (2001) ]
 k-Chordal graphs (k>3): hb(G) <%/, [ Wu, Zhang: (2011) ]

Wictor Chepoi, Feodor F. Dragan, Bertrand Estellon, Michel Habib, Yann Vaxes: Diameters, centers, and approximating trees of delta-
hyperbolicgeodesic spaces and graphs. S5oCG 2008:59-68

|l'1'1
53]

‘ 74

—

o If LL is used for §-hyperbolic graphs, then ecc(v) = diam(G) — 26
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e

Real-Life datasets

Autonomous Systems

| /
B
i wE Fiy
T

# of BFS scans|estimated radins
Graph n= m= |diameter| radius || needed to get | or ece(-) of a
G =(V,E) V| |E|  |diam(G)|rad(G) diam(() middle vertex
PPI 1458 | 1048 19 11 3 12 35
Yeast [14] 2224 | 6609 11 6 3 6 25
DutchElite 20 3621 | 4311 22 12 4 13 4
EPA [I] 4253 | 8953 10 6 2 7 25
EVA [57] 4475 | 4664 18 10 2 10 1
California 449 50925 | 15770 13 7 2 8 3
Erdos [10] 6927 | 11850 4 2 2 3 2
Routeview [2] 10515 | 21455 10 5 2 5 2.5
Homo release 3.2.99 16711 | 115406 10 5 2 6 2
AS_Caida 20071105 [15] 26475 | h3381 17 9 2 9 2.5
Dimes 3/2010 26424 | 00267 8 4 2 5 2
'Aqualab 12/2007- 09/2008 [T9]| 31845 [ 143383 | 9 5 2 5 2
" AS_Caida_20120601 [15] 41203 [ 121309 | 10 5 2 5 2
itdk0304 [17] 100014| 607610 | 26 14 2 15
DBLB-coauth [57] 317080[1049866, 23 12 2 14
Amazon [67] 334863| 925872 | 47 24 2 26

A

IEHE IMuad Abu-Ata, Feodor F Dragan: Metric tree-like structures in real-life networks: an empirical study. CoRR abs/1402.3364 (2014) ‘

(-




Talk outline

N collaborating with Derek
o fast estimation of diameters

o representing approximately graph distances with few tree

distances

2012

Discrete Applisd Mathematics (DAM) 1600(12%:1717-1728 (2012)

F’@ Feodor F. Dragan Derek G. Corneil, Ekkehard Kdhler, Yang Xiang: Collective additive tree spanners for circle graphs and polygonal graphs.

2008

E @ IFecrdc:-r F. Dragan, Derek G. Comneil, Ekkehard Edhler, Yang Xiang: Additive Spanners for Circle Graphs and Polygonal Graphs. WG 2008:110-121

| 2006

7|[EE [Feodor F. Dragan, Chenvyu Yan Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. J. Graph Algorithms Appl
(JGAA) 10({2):97-122 (2006)

| 2005

E @ ID erek G. Corneil, Feodor F. Dragan, Ekkehard Kéhler, Chenvu Yan: Collective Tree 1-Spanners for Interval Graphs. WG 2005:151-162

| 2004

E@IFendm F. Dragan Chenvu Yan Derek G. Comneil: Collective Tree Spanners and Eouting in AT-free Related Graphs. WG 2004:68-80
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/ AN
Tree t -Spanner Problem 7

E@ILEMEn Cai. Derek G. Comeil: Tree Spanners. STAM J. Dizcrete Math (STAMDM) 8(3):350-387 (10057 ‘

= Given unweighted undirected graph G=(V/E) and integers t, s.
= Does G admit a spanning tree T =(}/E’) such that

vu,veV, diStT (v,u) <tx diStG (v,u) (a multiplicative tree t-spanner of G)

or

vu,v eV, dist; (u,v)—dist; (U,v) <S (an additive tree s-spanner of G)?

G multiplicative tree 4- and

additive tree 3- spanner of G




" Some known results for the tree spanner
prOblem (mostly multiplicative case)

Q general graphs [CC’95]
® =4 is NP-complete. (=3 is still open, t <2 is P)
O approximation algorithm for general graphs [EP’04]
® O(logn) approximation algorithm
[ chordal graphs [BDLL02]
® =>4 is NP-complete. (t=3 is still open.)
d planar graphs [FK’01]
e >4 is NP-complete. (=3 is polynomial time solvable.)
O AT-free graphs and their subclasses
e additive tree 3-spanner [Pr’99, PKLMW’03]

® apermutation graph admits a multiplicative tree 3-spanner [MVP’96]

® an interval graph admits an additive tree 2-spanner

(-
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Collective Additive Tree r -Spanners Problem

Feodor F. Dragan, Chenvu Yan, Itina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

= Given unweighted undirected graph G=(J/E) and integers /i, r.

= Does G admit a system of £/ collective additive tree r-spanners {T,,T,..., T/}

such that

vu,veVand 30 <i< g, dist; (v,u)—distg (v,u) <r

(-

(a system of x collective additive tree r-spanners of G )? [

™~

surplus

collective multiplicative tree
t-spanners
can be defined similarly

2 collective additive tree 2-spanners

/
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Collective Additive Tree r -Spanners Problem

Feodor F. Dragan, Chenvu Yan, Itina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

= Given unweighted undirected graph G=(J/E) and integers /i, r.

= Does G admit a system of £/ collective additive tree r-spanners {T,,T,..., T/}
such that

vu,veVand 30 <i< g, dist; (v,u)—distg (v,u) <r

(a system of x collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners
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Collective Additive Tree r -Spanners Problem

Feodor F. Dragan, Chenvu Yan, Itina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

= Given unweighted undirected graph G=(J/E) and integers /i, r.

= Does G admit a system of £/ collective additive tree r-spanners {T,,T,..., T/}
such that

vu,veVand 30 <i< g, dist; (v,u)—distg (v,u) <r

(a system of x collective additive tree r-spanners of G )?

2 collective additive tree 2-spanners
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Collective Additive Tree r -Spanners Problem

Feodor F. Dragan, Chenvu Yan, Itina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

= Given unweighted undirected graph G=(J/E) and integers /i, r.

= Does G admit a system of £/ collective additive tree r-spanners {T,,T,..., T/}
such that

vu,veVand 30 <i< g, dist; (v,u)—distg (v,u) <r

(a system of x collective additive tree r-spanners of G )?

2 collective additive
2 collective additive tree 2-spanners tree O-spanners

-




/Applications of Collective Tree Spanners\

H message routing in networks

Efficient routing schemes are known for trees

but not for general graphs. For any two nodes, we can route
the message between them in one of the trees which
approximates the distance between them.

- (Wt log’n)-bit labels,
- O(U ) initiation, O(1) decision

Jsolution for sparse t-spanner problem

It a graph admits a system of z/ collective additive tree r-
spanners, then the graph admits a sparse additive r-spanner

with at most £n-1) edges, where n is the number of nodes. _
2 collective tree 2-

spanners for G
(-




Some results on collective tree spanners

Feodor F. Dragan, Chenvu Yan, Irina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenvu Yan, Derek G. Cormeil: Collective Tree Spanners and Fouting in AT-free Eelated Graphs. WG 2004: 68-80

O chordal graphs, chordal bipartite graphs
® log n collective additive tree Z2-spanners in polynomial time
e QQ(n'"?) or Q(n) trees necessary to get +1
® no constant number of trees guaranties +2 (+3)

U circular-arc graphs

® ) collective additive tree 2 -spanners in polynomial time

O k-chordal graphs

° log n collective additive tree 2 le /2 J -spanners in polynomial time

O interval graphs

° log n collective additive tree 1-spanners in polynomial time

e ® no constant number of trees guaranties +1




Results for AT-free graphs

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Felated Graphs. J. Graph Algorithms

Appl. 10(2): 97-122 (2006)

(-

O AT-free graphs

® include: interval, permutation, trapezoid, co-comparability
® 2 collective additive tree Z-spanners in linear time

® an additive tree 3-spanner in linear time (before)

| graphs with a dominating shortest path
® an additive tree 4-spanner in polynomial time (before)
® ) collective additive tree 3 -spanners in polynomial time
® 5 collective additive tree 2-spanners in polynomial time
O graphs with asteroidal number an(G)=k

® k(k-1)/2 collective additive tree 4-spanners in polynomial time

® k(k-1) collective additive tree 3-spanners in polynomial time




Results for AT-free graphs

Appl. 10(2): 97-122 (2006)

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Felated Graphs. J. Graph Algorithms ‘

 Any AT-free graph G admits an additive tree

3-spanner [PKLMW’03]

J Thm: Any AT-free graph G admits a system

of 2 collective additive tree J-spanners

which can be constructed in linear time.

[ To get +2, one needs at least 2 spanning

trees

dTo get +1, one needs at least {2(n) spanning

trees

(-

an AT-free graph with its backbone

/




Results for AT-free graphs

Appl. 10(2): 97-122 (2006)

Feodor F. Dragan, Chenvu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Felated Graphs. J. Graph Algorithms ‘

2 collective additive tree 2-spanners of G

caterpillar-tree
(- i

cactus-tree

/




Talk outline
d collaborating with Derek

o fast estimation of diameters

o representing approximately graph distances with few tree distances

2012

Discrete Applied Mathematics (DAM) 160(12):1717-1729 (2012}

F’E Feodor F. Dragan. Derek G. Comneil, Ekkehard Edhler, Yang Xiang: Collective additive tree spanners for circle graphs and polygonal graphs.
| 2008
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| 2006
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E@lFE{}dG[ F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004:68-80

| 2003

E@!Dﬁ'tk G. Corneil Feodor F. Dragan, Ekkehard Edhler: On the power of BFS to determine a graph's diameter. Networks 42(4):200-222 (2003)

| 2002

EE IDereI{ G. Corneil, Feodor F. Dragan, Ekkehard Kdhler: On the Power of BES to Determine a Graphs Diameter. LATIN 2002:209-223

| 2001

2 |[EE |Derek G. Comneil, Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter determination on restricted graph families. Discrete Applied
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| 1008

E@Dﬁek G. Corneil Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter Determination on Restricted Graph Faminlies. WG 1998:192-202




Papers that influenced my (later) work ¢~

among many others o
g Y

| Graph searches and their algorithmic use

E EE [Derek G. Corneil, Barnaby Dalton, Michel Habib: LDF5-Based Certifying Algorithm for the Minimum Path Cover Problem on Cocomparability
Graphs. 5TAM J. Comput. (SIAMCOMP) 42(3):792-807 (2013}

85 |EE |Derek G. Corneil Ekkehard Kdhler, Jean-Marc Lanlignel: On end-vertices of Lexicographic Breadth First Searches. Discrete Applied
Mathematics (DAM) 158(5):434-443 (2010

3__4 EE [Derek G. Corneil, Stephan Olariu, Lorna Stewart: The LBFS Structure and Recognition of Interval Graphs. SIAM 1. Discrete Math. (SIAMDM)
23(4):1905-1953 (2009

@El[)erek G. Corneil. Richard Erueger: A Unified View of Graph Searching. SIAM J. Discrete Math. (SIAMDM) 22(47:1259-1276 (2008)
68

EE [Derek G. Corneil: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Applied Mathematies (DAM)
138(33:371-379 (2004)

I_ I_ !Derek G. Corneil, Stephan Olariu, Lorna Stewart: LBFS Orderings and Cocomparability Graphs. S0DA 1999:-883-884

J AT-free graphs

2]
|
™

EE [Derck G. Corneil, Stephan Olariu, Lorna Stewart: Linear Time Algorithis for Dominating Pairs in Asteroidal Triple-free Graphs. STAM T,
Comput. (STAMCOMP) 28(47:1284-1297 (1999}

L

!Derek G. Corneil, Stephan Olariu, Lorna Stewart: Asteroidal Triple-Free Graphs. STAM J. Discrete Math. (STAMDM) 1003):399-430 (1997

ElE

Ed |5

Derek G. Corneil Stephan Olariu, Lorna Stewart: A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph. Inf Process.
Lett. (TPL) 54(5):253-257 (1983}

l
l




Papers that influenced my (later) work .~

[}
- i
(among many others) = Loy F

 Tree spanners, tree powers

|Pau1E Eearney, Derek G. Corneil: Tree Powers. J. Algorithms (TAL)Y 20013:111-131 (1998} |
|Le1ﬂ:len Cai, Derek G. Corneil: Tree Spanners. SIAM J. Discrete Math, (SITAMDM) 8(3):350-387 (1995) ‘

[I2]78]
IEII_I

4 Graph decompositions and their parameters

’E’E Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel Bruce A. Reed, Udi Rotics: Polynomial-time recognition of cligue-width <3 graphs. ‘

Discrete Applied Mathematics (DAM) 160(6):334-865 (2012

|_2|E_|Df:rek G. Corneil. Udi Rotics: On the Relationship Between Clique-Width and Treewidth. SIAM J. Comput. (STAMCONP) 34(4):825-847 (2005 |
’E’E Stefan Arnborg, Andrzej Proskurowski, Derek G. Comeil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM ‘
B0(1):1-19 (19903

L first paper that I got from Derek (long time ago)

EIE IDerek G. Corneil, Lorna K. Stewart: Dominating sets in perfect graphs. Discrete Mathematics (DM 86(1-37:145-164 (1990) ‘
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Papers that influenced my (later) work
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(among many others) 5 oy ¥
 Tree spanners, tree powers
|_|_|Pau1E Eearney, Derek G. Corneil: Tree Powers. I, Algorithms (JAL) 20(13:111-131 {1998
35 [EE||

|Le1ﬂ:len Cai, Derek G. Corneil: Tree Spanners. SIAM J. Discrete Math, (SITAMDM) 8(3):350-387 (1995)

4 Graph decompositions and their parameters

Discrete Applied Mathematics (DAM) 160(6):334-865 (2012

’E’E Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel. Bruce A. Reed, Udi Rotics: Polynomial-time recognition of clique-width =3 graphs

|_2|E_|Df:rek G. Corneil. Udi Rotics: On the Relationship Between Clique-Width and Treewidth. SIAM J. Comput. (STAMCOMP) 34(4):825-847 (2005) |
EE =

Stefan Arnborg, Andrzej Proskurowski, Derek G. Comeil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM
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L first paper that I got from Derek (long time ago)

EIE IDerek G. Corneil, Lorna K. Stewart: Dominating sets in perfect graphs. Discrete Mathematics (DM 86(1-37:145-164 (1990)
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Following Derek's footsteps
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d collaborating with Derek
o fast estimation of diameters
o representing approximately graph distances with few tree

distances

- following Derek's footsteps
o tree- and path-decompositions and new graph parameters
o Approximating tree t-spanner problem using tree-breadth
o Approximating bandwidth using path-length
o Approximating line-distortion using path-length
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Elfollowing Derek's footsteps
o tree- and path-decompositions and new graph parameters

o Approximating tree t-spanner problem using tree-breadth

0 Graph decompositions and their parameters + U Tree spanners =

E|E—_EIDEIE{ G. Corneil. Udi Rotics: On the Relationship Between Clique-Width and Treewidth. STAM J. Comput. (STAMCOMP) 34(4):825-847 (20035

B0(1x1-19 (19903

’E’E Stefan Arnborg, Andrze] Proskurowski, Derek G. Corneil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM)

IEIEILeizhen Cai, Derek G. Corneil: Tree Spanners. STAM T, Discrete Math. (STAMDM) 8(33:359-387 (1895)

95 |EE||[Fecdor F. Diragan, Ekkehard Edhler: An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized
Chordal Graphs. APPROX-FANDOM 2011:171-183
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Tree-Decomposition

| Robertson, Seymour |

O Tree-decomposition T'(G) of a graph ¢ = (V/, E) is a pair
({X;:i €I}, T =(,F)) where {X;:i € I}is a collection of subset of I/
(bags) and T is a tree whose nodes are the bags satisfying:

) UjgXi=V
2) VYuveE,Jiels.t.u,v€ELX;
3) VveV,thesetof bags{i € l,v € X;} form a subtreeT, of T

(_ /\ B\\“} \/B [\ \\.l
\\\\7(7:-’ ,\-- R - / (i//.
\r(.ls\ /B(l,/

\/ - E B

/ /~ S NE <\ -




" Tree-Decomposition and
Graph Parameters

d Tree-width tw(G):
e Width of T(G) is mealxle-I —1
l
e tw(G): minimum width over all tree-decompositions
d Tree-length tl(G):
e Length of T(G) is max max d;(u,v)

e tl(G): minimum length over all tree-decompositions

O Tree-breadth th(G):
e Breadth is minimum r such that Vi € I, 3v; with X;

e tb(G): minimum breadth over all tree-decompositions

S D, (vir G)

IE] U, veEX;

9_h

f

a g

b - G .
Y 9

d

c

aube c

d e i

g h

Tree-length was introduced in [ Dourisboure, Gavoille: DM (2007) | and [ Dragan,Lomonosov: DAM (2007) |

Tree-breadth was introduced in [ Dragan,Lomonosov: DAM (2007) | and [ Dragan, Kohler: APPROX (2011) ]

(-

(R,D)-acyclic clustering




" Tree-Decomposition and

d Tree-width tw(G):
e Width of T(G) is mealxle-I -1 4
l

e tw(G): minimum width over all tree-decompositions

Graph Parameters

QA Tree-length tI(G): yY'Yeve
e Length of T(G) is max u%eelg((i de(u,v) C@‘?
e tl(G): minimum length over all tree-decompositions

0 Tree-breadth th(G): oy
e Breadth is minimum r such that Vi € I, 3v; with X; g h

S Dr(vir G) =

e tb(G): minimum breadth over all tree-decompositions

©

VG, th(G) <tl(G) < 2th(G)  as VSCV(G), rad;(S) < diamg(S) < 2rad;(S)
tw(G) and tl(G) are not comparable (check cycles and cliques)

tw(Csp) =2, tl(Cap) = k
twK)=n—1, ti(K,) =1




e
Tree-stretch vs tree-breadth

Tree t-spanner = Given unvveighted undirected graph G=(VE) and

problem: integer t.
= Does G admit a spanning tree T =(J/E’) such that

vu,veV, dist; (v,u) <txdist;(v,u)

» If a graph G admits a tree r-spanner then th(G) < [r/2].




4 N
Tree spanners in bounded tree-breadth graphs

Lmi) Each graph G has balanced disk separator D, (v, G), where r < th(G). It can be found in O(nm).
Lm2) th(G;") < tb(G).

Lm3) T;s are a-spanners = T is (& + 2r)-spanner, where r < tb(G).

Tm2) Any connected graph G admits a tree (2tb(G)|log, n|)-spanner constructible in O(nmlog? n) time.

Tree_Spanner(G)

If & has at most 9 vertices

Find a tree f-spanner T of 7 with minimum i directly;

Output T
Else
Find a balanced disk-zeparator D (v, ) of G with minimum r;
Find connected components G| ..., Gy of graph G|V \ D (v, G)]; .
el |

Build graphs G| Gy +

Set T; .—Tme-_Epanmr{G} ) foreachi=1,... k;
Construct a shortest path tree SPTp of G Dr (v, G:l rooted at vertex v;
Construct a spanning tree T of (7 from trees T .. Tk and SPTp;

3 KM

» leaves have tree 4th({G)-spanners

G

» depth is at most log, n — 2
k » total number of edges per level of recursion is O(m); total number of vertices is @(nlogn) /




/Approximating tree t-spanner problem
in general unweighted graphs

Tm2) Any connected graph G admits a tree (2tb(G) |log, n| )-spanner constructible in O(nmlog” n) time.

» If a graph G admits a tree 7-spanner then th(G) < [z /2].

Tm3) Any connected graph G admits a tree (2[7 /2] |10g, n | )-spanner constructible in O(nm Ivl:ngE n) time.

(-




95 |EE||[Fecdor F. Diragan, Ekkehard Echler: An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized
(Chordal Graphs. APPROX-EANDOM 2011:171-183

Our results vs known results

» G chordal =-
» Jatree (2|log, n|)-spannerin O(mlogn) time
> no f-spanner with 7 < log, 7 +2
» NP-complete for every r = 4 (BDLL '04)

- [h[G] —p= » k-snowflake has no tree r-spanner
withr < k+1=1logy 5 +2

» atree (2p |log, n|)-spannerin O(mnlog” n) time or
» atree (12p |log, n|)-spanner in O(mlogn) time
* no previous result known
» if & admits a tree r-spanner we construct
> atree (2[1/2]|10g; n|)-spanner in O(mnlog” n) time or
» atree (6rlog, n|)-spannerin O(mlogn) time
» if G admits a tree 7-spanner, Emek & Peleg (2008) construct a tree (6r flﬂgz n|)-spanner
in O(mnlog” n) time.

o y
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Real-Life datasets

Autonomous Systems

| /
B
i wE Fiy
T

T

Graph n= m= |diameter| radius |lower bound|upper bound
G =(V.E) |V |E|  |diam(G)|rad(G)| on th(G) | on th(G)

PPI 1458 | 1048 19 11 2 5
Yeast [14] 2224 | 6609 11 6 2 4
DutchElite [Z9] 3621 | 4311 22 12 2 6
EPA [T] 4253 | 8053 10 6 2 4
EVA [57] 4475 | 4664 18 10 2 5
California [49] 5925 | 15770 13 7 2 4
Erdas [10] 6927 | 11850 4 2 1 2
Routeview [ 10515 | 21455 10 5 1 4
Homo release 3.2.99 16711 | 115406 10 5 1 3
AS_Caida 20071105 [1H] 26475 | 3381 17 9 1 3
Dimes 3/2010 26424 | 90267 8 4 1 2
'Aqualab 12/2007- 09,2008 [19]| 31845 | 143383 | 9 5 1 3
" AS_Caida_20120601 [16] 41203 (121300 | 10 5 1 3
itdk0304 [17] 190914| 607610 | 26 14 2 6
DBLB-coauth 317080[1049866, 23 12 3 7
Amazon [67] 334863| 025872 | 47 24 4 12

ME IMuad Abu-Ata, Feodor F Dragan: Metric tree-like structures in real-life networks: an empirical study. CoRR abs/1402.3364 (2014)

o
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Elfollowing Derek's footsteps

4G

o Approximating bandwidth using path—length
o Approximating line-distortion using path—length

raph decompositions and their parameters + U AT-free graphs =

E |E__E IDEIE

£ &. Corneil, Udi Rotics: On the Relationship Between Cligue-Width and Treewidth. STAM J. Comput. (STAMCOMP) 34(4):825-847 (20035

-1-19 (19903

’E’E Stefan Arnborg, Andrze] Proskurowski, Derek G. Corneil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM)
20017

E E IDEIE

« G. Corneil, Stephan Olariu, Lorna Stewart: Asteroidal Triple-Free Graphs. SIAM J. Discrete Math, (STAMDM) 10{37:399-430 (1997)

{ G. Corneil, Stephan Olariu, Lorna Stewart: A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph. Inf Process.

IPL) 34(5):253-257 (1995)

36 [EE [Derel
Lett.

U=

o

[ F. Dragan, E. Kohler, A. Leitert: Line-distortion, Bandwidth and Path-length of a graph, SWAT 2014 ]




Path-Decomposition

| Robertson, Seymour |

O Path-decomposition P(G) ofa graph ¢ = (V, E) is a pair
({X;:iel}, P =(,F)) where {X;:i € I} is a collection of subset of I
(bags) and P is a path whose nodes are the bags satisfying:

) UjgXi=V
2) VYuveE,Jiels.t.u,v€ELX;
3) VveV,thesetof bags{i €l,v € X;} form a subpath of P




" Path-Decomposition and new
Graph Parameters

a path-width pw(G):
e Width of P(G) is méxlXil -1
l

e pw(G): minimum width over all path-decompositions

O path-length pl(G):

e Length of P(G) is max max d;(u, v)
lel u,veX;

e pl(G): minimum length over all path-decompositions
d path-breadth pb(G):
e Breadth is minimum r such that Vi € I,3v; with X; C
Dr (vi' G)
e pb(G): minimum breadth over all path-decompositions
a_9

b

C Jf




e
Line distortion and bandwidth

O Line-distortion ld(G): f: V — [ with minimum 4 such that Vx,y € I/

e Non-contractiveness: d;(x,v) < |f(x) — f(v)]
e minimum distortion 4: |f(x) — f(y)| < k d; (x,v)

O Bandwidth bw(G): b: V — N with minimum £ such that Vxy € E
e minimum bandwidth 4: |b(x) — b(y)| <k




4 S
[ [ [ = a h
Line distortion and bandwidth r
O Line-distortion ld(G): f: V — [ with minimum 4 such that Vx,y € I/
e Non-contractiveness: d;(x,v) < |f(x) — f(v)]
e minimum distortion 4: |f(x) — f(v)| < kd; (x,v)
; §7
a b ¢ d e f g h
O Bandwidth bw(G): b: V — N with minimum £ such that Vxy € E
e minimum bandwidth 4: |b(x) —b(v)| <k bw(G) < 1d(G)
m .
a b ¢ d e f g h m
O =5
A, /




e
Line distortion and bandwidth r

O Line-distortion ld(G): f: V — [ with minimum 4 such that Vx,y € I/

e Non-contractiveness: d;(x,v) < |f(x) — f(v)]
e minimum distortion 4: |f(x) — f(y)| < k d; (x,v)

7
Hard to approximate
| within a constant factor

O Bandwidth bw(G): b: V — N with minimum £ such that Vxy € E
e minimum bandwidth 4: |b(x) — b(y)| <k

" Hard to approximate
within a constant factor




e
Line-distortion vs path-length

Q For an arbitrary graph G, pl(G) < Id(G), pw(G) < Id(G) and pb(G) < [Id(G)/2].

B

v

— e
P flv)+k

v

!

o

f(v) fix)  fiy) fiw)

U Line-distortion is hard to approximate within a constant factor

0 Theorem: g factor 2 approzimation of the path-length of an arbitrary n-vertex graph

can be computed in O(n?) total time.




e
Line-distortion vs path-length

Q For an arbitrary graph G, pl(G) < Id(G), pw(G) < Id(G) and pb(G) < [Id(G)/2].

BI.l"
—di __._'_‘——,_,_n_-
P flv)+k

v

C
¢
o

f(v) fix)  fiy) fiw)

U Line-distortion is hard to approximate within a constant factor

0 Theorem: g factor 2 approzimation of the path-length of an arbitrary n-vertex graph

can be computed in O(n?) total time.

Path-length and AT-free graphs

Q For a graph G with pl(G) < X\, G* is an AT-free graph. "%, o,
") ".
O Every graph G with pl(G) < X\ has a A-dominating pair. ”"; o,

(-




/ hard to approximate \

Approximating line-distortion within a constant factor

in general graphs

O Proposition:  Every graph G with a k-dominating shortest path admits an embedding f of G
into the line with distortion at most (8k 4+ 4)Id(G) + (2k)2 4 2k + 1. If a k-dominating shortest path
of G is given in advance, then such an embedding f can be found in linear time.

\*‘*3/ | XI

f '.

| L
\

F’D—D\Q/O —Oo——0—=0C
X Xy X

i+1

f— T e ——
2+

X X, X k <pl(G) <1d(G)

Q Corollary:  For every n-vertex m-edge graph G. an embedding into the line with distortion at
most (12pl(G) + 7)Id(G) can be found in O(n’*m) time.

[ Theorem: For every class of graphs with path-length bounded by a constant, there is an efficient
constant-factor approrimation algorithm for the minimum line-distortion problem.

Q Corollary:[4] For every graph G with Ild(G) = ¢, an embedding into the line with distortion
at most O(c?) car_be found in polynomial time.

@ ([BDGRRRS: SODA’OS])
. y




/ hard to approximate \

Ba ndW|dth a pprOX| mathn within a constant factor

in general graphs

O Proposition:  FEvery graph G with a k-dominating shortest path has a layout f with bandwidth
at most (4k+2)bw(G). If a k-dominating shortest path of G is given in advance, then such a layout
f can be found in linear time.

k < pl(G) < 1d(G)
[1.n]

X (b) X

@ Corollary:  For every n-verter m-edge graph G, a layout with bandwidth at most (4pl(G) +
2)bw(G) can be found in O(n*m) time.

O Theorem: For every class of graphs with path-length bounded by a constant, there is an efficient
constant-factor approrimation algorithm for the minimum bandwidth problem.

(- y




e
AT-free graphs

Q If G is an AT-free graph, then pb(G) < pl(G) < 2.

Q There is a linear time algorithm to compute an 8-approrimation of the line-distortion

of an AT-free graph.

Vit1 Ué—ﬁ Xit1 P Xiia||Lita

Ui cé—o X; X
P

U;‘—lcé—o Xi1 P X 1l| Li=1

O There is a linear time algorithm to compute a 4-approrimation of the
minimum bandwidth of an AT-free graph.

(-










