
Permutation
Covers

Charles J.
Colbourn

Permutation Covers

Charles J. Colbourn

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University

Workshop on Graphs and Algorithms, Fields Institute,
May 2014

Permutation
Covers

Charles J.
Colbourn

Permutation t-Coverings

I A t-subpermutation of {0, . . . , v − 1} is a t-tuple
(x1, . . . , xt) with xi ∈ {0, . . . , v − 1} for 1 ≤ i ≤ t , and
xi 6= xj when i 6= j .

I A permutation π of {0, . . . , v − 1} covers the
t-subpermutation (x1, . . . , xt) if π−1(xi) < π−1(xj)
whenever i < j .

I (In other words, the permutation is a linear extension
of the subpermutation.)

I For example, (4,0,3) is a 3-subpermutation that is
covered by the permutation 4 2 0 3 1.

Permutation
Covers

Charles J.
Colbourn

Permutation t-Coverings

I A permutation covering of order v and strength t is a
set Π = {π1, . . . , πN} where πi is a permutation of
{0, . . . , v − 1}, and every t-subpermutation of
{0, . . . , v − 1} is covered by at least one of the
permutations {π1, . . . , πN}.

I Call one a PermC(N; t , v).
I When written as an array, often called a sequence

covering array SeqCA(N; t , v).

Permutation
Covers

Charles J.
Colbourn

Permutation t-Covering
Example

t = 3, v = 5, N = 8

SeqCA CSSP
4 2 0 3 1 2 4 1 3 0
1 4 3 0 2 3 0 4 2 1
3 1 2 0 4 3 1 2 0 4
0 2 4 1 3 0 3 1 4 2
2 1 3 4 0 4 1 0 2 3
0 3 4 1 2 0 3 4 1 2
3 0 2 1 4 1 3 2 0 4
4 1 2 0 3 3 1 2 4 0

Permutation
Covers

Charles J.
Colbourn

Scrambling Sets

I A completely t-scrambling set of permutations,
CSSP(N; t , v) is an N × v array A = (aij) for which

I every row forms a permutation of the v symbols, and
I in every set of t columns c1, . . . , ct , and for every

permutation ψ of {1, . . . , t}, there is a row ρ such that
aρcψ(i) < aρcψ(i+1) for 1 ≤ i < t .

I (in other words, in every set of t columns, every
‘pattern’ appears on these t columns in at least one
row)

I This is equivalent to a SeqCA(N; t , v) – just
interchange the roles of columns and symbols.

Permutation
Covers

Charles J.
Colbourn

Sequence Covering Arrays
The Existence Question

I Given t and v , what is the smallest N for which a
SeqCA(N; t , v) exists?

I Call this number SeqCAN(t , v).
I SeqCAN(t , v) ≥ t!

I SeqCAN(2, v) = 2 for all v ≥ 2 – Just take any
permutation and its reversal!

I SeqCAN(t , v) = t! when v ≤ t + 1 (Levenshtein),
and SeqCAN(4,6) = 4! (Mathon and Tran Van Trung).

I But SeqCAN(t , v) > t! when v ≥ 2t and t ≥ 3.

Permutation
Covers

Charles J.
Colbourn

Sequence Covering Arrays
The Existence Question when t ≥ 3

I A connection with “covering arrays” demonstrates
that SeqCAN(t , v) is Ω(log v).

I Choosing N permutations uniformly and
independently at random, the expected number of
uncovered t-subpermutations is v !

(v−t)!

(t!−1
t!

)N
.

I When t is fixed, this shows that SeqCAN(t , v) is
O(log v).

I And indeed, an efficient greedy algorithm produces
solutions!

Permutation
Covers

Charles J.
Colbourn

Sequence Covering Arrays
The Existence Question when t ≥ 3

I There is also one direct and one recursive
construction when t = 3.

I But for t ≥ 4, we are currently reliant on algorithmic
methods.

I In addition to greedy methods, answer set
programming, constraint programming, and
cooperative search methods have been applied.

Permutation
Covers

Charles J.
Colbourn

A Post-Optimization Method

I Choose an arbitrary order on the permutations.
I Determine all t-permutations covered by each

permutation that is not covered by an earlier one.

Permutation
Covers

Charles J.
Colbourn

Example

SeqCA First Covered
4 2 0 3 1 031 201 203 231 401 403 420 421 423 431
1 4 3 0 2 102 130 132 140 142 143 302 402 430 432
3 1 2 0 4 104 120 124 204 304 310 312 314 320 324
0 2 4 1 3 013 021 023 024 041 043 213 241 243 413
2 1 3 4 0 134 210 214 230 234 240 340
0 3 4 1 2 012 032 042 034 341 342 412
3 0 1 4 2 014 301
1 4 2 0 3 103 123
3 2 4 1 0 321 410

Permutation
Covers

Charles J.
Colbourn

A Post-Optimization Method

I Choose an arbitrary order on the permutations.
I Determine all t-permutations covered by each

permutation that is not covered by an earlier one.
I For each permutation, form a poset on the v

elements in which x ≺ y when there is some
subpermutation in which x precedes y and that is
covered for the first time by this permutation.

I Choose an arbitrary linear extension of each poset,
and replace the permutation using this linear
extension.

I Example: From permutation 1 4 2 0 3, {103,123}
has the poset 1 ≺ 0, 1 ≺ 2, 0 ≺ 3, 2 ≺ 3; one linear
extension is 4 1 2 0 3.

Permutation
Covers

Charles J.
Colbourn

Example

SeqCA First Covered
4 2 0 3 1 031 201 203 231 401 403 420 421 423 431
1 4 3 0 2 102 130 132 140 142 143 302 402 430 432
3 1 2 0 4 104 120 124 204 304 310 312 314 320 324
0 2 4 1 3 013 021 023 024 041 043 213 241 243 413
2 1 3 4 0 134 210 214 230 234 240 340
0 3 4 1 2 012 032 042 034 341 342 412
3 0 2 1 4 014 301 321
4 1 2 0 3 103 123 410
3 2 4 1 0 −

Permutation
Covers

Charles J.
Colbourn

A Post-Optimization Method

I Choose an arbitrary order on the permutations.
I Determine all t-permutations covered by each

permutation that is not covered by an earlier one.
I For each permutation, form a poset on the v

elements in which x ≺ y when there is some
subpermutation in which x precedes y and that is
covered for the first time by this permutation.

I Choose an arbitrary linear extension of each poset,
and replace the permutation using this linear
extension.

I If there is a permutation that covers no
subpermutation for the first time, remove it.

I Repeat the steps above until some stopping criterion
is met.

Permutation
Covers

Charles J.
Colbourn

Using the Post-Optimization Method

t = 4
v Initial Final
5 26 24
6 34 24
7 41 36
8 44 41
9 52 46

10 57 51
13 71 62
15 78 67
25 104 91
90 180 162

t = 5
v Initial Final
6 148 122
7 198 175
8 242 218
9 284 261

10 318 300
11 354 335
12 386 360
13 419 390
15 475 451
20 590 574
30 748 725

Permutation
Covers

Charles J.
Colbourn

Conclusion

I Randomly choosing different linear extensions to
alter the structure of the permutation covering
appears to provide useful improvements in solutions
that were the best known.

I But perhaps this suggests that the other
constructions are themselves not particularly good?

