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Permutation t-Coverings

I A t-subpermutation of {0, . . . , v − 1} is a t-tuple
(x1, . . . , xt ) with xi ∈ {0, . . . , v − 1} for 1 ≤ i ≤ t , and
xi 6= xj when i 6= j .

I A permutation π of {0, . . . , v − 1} covers the
t-subpermutation (x1, . . . , xt ) if π−1(xi) < π−1(xj)
whenever i < j .

I (In other words, the permutation is a linear extension
of the subpermutation.)

I For example, (4,0,3) is a 3-subpermutation that is
covered by the permutation 4 2 0 3 1.
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Permutation t-Coverings

I A permutation covering of order v and strength t is a
set Π = {π1, . . . , πN} where πi is a permutation of
{0, . . . , v − 1}, and every t-subpermutation of
{0, . . . , v − 1} is covered by at least one of the
permutations {π1, . . . , πN}.

I Call one a PermC(N; t , v).
I When written as an array, often called a sequence

covering array SeqCA(N; t , v).
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Permutation t-Covering
Example

t = 3, v = 5, N = 8

SeqCA CSSP
4 2 0 3 1 2 4 1 3 0
1 4 3 0 2 3 0 4 2 1
3 1 2 0 4 3 1 2 0 4
0 2 4 1 3 0 3 1 4 2
2 1 3 4 0 4 1 0 2 3
0 3 4 1 2 0 3 4 1 2
3 0 2 1 4 1 3 2 0 4
4 1 2 0 3 3 1 2 4 0
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Scrambling Sets

I A completely t-scrambling set of permutations,
CSSP(N; t , v) is an N × v array A = (aij) for which

I every row forms a permutation of the v symbols, and
I in every set of t columns c1, . . . , ct , and for every

permutation ψ of {1, . . . , t}, there is a row ρ such that
aρcψ(i) < aρcψ(i+1) for 1 ≤ i < t .

I (in other words, in every set of t columns, every
‘pattern’ appears on these t columns in at least one
row)

I This is equivalent to a SeqCA(N; t , v) – just
interchange the roles of columns and symbols.
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Sequence Covering Arrays
The Existence Question

I Given t and v , what is the smallest N for which a
SeqCA(N; t , v) exists?

I Call this number SeqCAN(t , v).
I SeqCAN(t , v) ≥ t!

I SeqCAN(2, v) = 2 for all v ≥ 2 – Just take any
permutation and its reversal!

I SeqCAN(t , v) = t! when v ≤ t + 1 (Levenshtein),
and SeqCAN(4,6) = 4! (Mathon and Tran Van Trung).

I But SeqCAN(t , v) > t! when v ≥ 2t and t ≥ 3.
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Sequence Covering Arrays
The Existence Question when t ≥ 3

I A connection with “covering arrays” demonstrates
that SeqCAN(t , v) is Ω(log v).

I Choosing N permutations uniformly and
independently at random, the expected number of
uncovered t-subpermutations is v !

(v−t)!

( t!−1
t!

)N
.

I When t is fixed, this shows that SeqCAN(t , v) is
O(log v).

I And indeed, an efficient greedy algorithm produces
solutions!
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Sequence Covering Arrays
The Existence Question when t ≥ 3

I There is also one direct and one recursive
construction when t = 3.

I But for t ≥ 4, we are currently reliant on algorithmic
methods.

I In addition to greedy methods, answer set
programming, constraint programming, and
cooperative search methods have been applied.
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A Post-Optimization Method

I Choose an arbitrary order on the permutations.
I Determine all t-permutations covered by each

permutation that is not covered by an earlier one.
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Example

SeqCA First Covered
4 2 0 3 1 031 201 203 231 401 403 420 421 423 431
1 4 3 0 2 102 130 132 140 142 143 302 402 430 432
3 1 2 0 4 104 120 124 204 304 310 312 314 320 324
0 2 4 1 3 013 021 023 024 041 043 213 241 243 413
2 1 3 4 0 134 210 214 230 234 240 340
0 3 4 1 2 012 032 042 034 341 342 412
3 0 1 4 2 014 301
1 4 2 0 3 103 123
3 2 4 1 0 321 410
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A Post-Optimization Method

I Choose an arbitrary order on the permutations.
I Determine all t-permutations covered by each

permutation that is not covered by an earlier one.
I For each permutation, form a poset on the v

elements in which x ≺ y when there is some
subpermutation in which x precedes y and that is
covered for the first time by this permutation.

I Choose an arbitrary linear extension of each poset,
and replace the permutation using this linear
extension.

I Example: From permutation 1 4 2 0 3, {103,123}
has the poset 1 ≺ 0, 1 ≺ 2, 0 ≺ 3, 2 ≺ 3; one linear
extension is 4 1 2 0 3.
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Example

SeqCA First Covered
4 2 0 3 1 031 201 203 231 401 403 420 421 423 431
1 4 3 0 2 102 130 132 140 142 143 302 402 430 432
3 1 2 0 4 104 120 124 204 304 310 312 314 320 324
0 2 4 1 3 013 021 023 024 041 043 213 241 243 413
2 1 3 4 0 134 210 214 230 234 240 340
0 3 4 1 2 012 032 042 034 341 342 412
3 0 2 1 4 014 301 321
4 1 2 0 3 103 123 410
3 2 4 1 0 −
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A Post-Optimization Method

I Choose an arbitrary order on the permutations.
I Determine all t-permutations covered by each

permutation that is not covered by an earlier one.
I For each permutation, form a poset on the v

elements in which x ≺ y when there is some
subpermutation in which x precedes y and that is
covered for the first time by this permutation.

I Choose an arbitrary linear extension of each poset,
and replace the permutation using this linear
extension.

I If there is a permutation that covers no
subpermutation for the first time, remove it.

I Repeat the steps above until some stopping criterion
is met.
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Using the Post-Optimization Method

t = 4
v Initial Final
5 26 24
6 34 24
7 41 36
8 44 41
9 52 46

10 57 51
13 71 62
15 78 67
25 104 91
90 180 162

t = 5
v Initial Final
6 148 122
7 198 175
8 242 218
9 284 261

10 318 300
11 354 335
12 386 360
13 419 390
15 475 451
20 590 574
30 748 725
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Conclusion

I Randomly choosing different linear extensions to
alter the structure of the permutation covering
appears to provide useful improvements in solutions
that were the best known.

I But perhaps this suggests that the other
constructions are themselves not particularly good?


