Complex Vector Bundles over Higher-dimensional Connes-Landi Spheres

Mira A. Peterka University of Kansas

Conference on Noncommutative Geometry and Quantum Groups June 25, 2013 Fields Institute, Toronto

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The θ -deformed $C(S_{\theta}^n)$

The θ -deformed spheres") $C(S_{\theta}^{n})$ are a class of C*-algebras studied by Connes and Landi [8], and Connes and Dubois-Violette [6, 7], among others [14, 16].

The θ -deformed $C(S_{\theta}^n)$

The θ -deformed spheres") $C(S_{\theta}^{n})$ are a class of C*-algebras studied by Connes and Landi [8], and Connes and Dubois-Violette [6, 7], among others [14, 16].

Definition

Let $(\theta)_{ij}$ be an $m \times m$ real-valued skew-symmetric matrix, and let $\rho_{ij} = \exp(2\pi i \theta_{ij})$. The θ -deformed 2m - 1-sphere $C(S_{\theta}^{2m-1})$ is the universal C*-algebra generated by m normal elements $z_1, ..., z_m$ satisfying the relations

$$z_1 z_1^* + \ldots + z_m z_m^* = 1, \quad z_i z_j = \rho_{ji} z_j z_i.$$

The θ -deformed 2m-sphere $C(S_{\theta}^{2m})$ is the universal C*-algebra generated by m normal elements $z_1, ..., z_m$ and a hermetian element x satisfying the relations

$$z_1 z_1^* + \ldots + z_m z_m^* + x^2 = 1, \quad z_i z_j = \rho_{ji} z_j z_i, \quad [x, z_i] = 0.$$

One thinks of $C(S_{\theta}^{n})$ as being the algebra of continuous functions on a virtual space S_{θ}^{n} .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

One thinks of $C(S_{\theta}^{n})$ as being the algebra of continuous functions on a virtual space S_{θ}^{n} .

We note that $C(S_{\theta}^{2m-1})$ is obviously a quotient of $C(S_{\theta}^{2m})$ (so that S_{θ}^{2m-1} is the "equator" of S_{θ}^{2m}), but that $C(S_{\theta}^{2m-2})$ is apparently not a quotient of $C(S_{\theta}^{2m-1})$.

One thinks of $C(S_{\theta}^n)$ as being the algebra of continuous functions on a virtual space S_{θ}^n .

We note that $C(S_{\theta}^{2m-1})$ is obviously a quotient of $C(S_{\theta}^{2m})$ (so that S_{θ}^{2m-1} is the "equator" of S_{θ}^{2m}), but that $C(S_{\theta}^{2m-2})$ is apparently not a quotient of $C(S_{\theta}^{2m-1})$.

The $C(S_{\theta}^{n})$ are (strict) deformation quantizations of S^{n} by actions of the appropriate T^{m} (periodic actions of \mathbb{R}^{m}), and so have the same K-groups as $C(S^{n})$ [22, 27, 25, 23]. The $C(S_{\theta}^{n})$ are intimately related to the noncommutative tori $C(T_{\theta}^{m})$ [20], being continuous fields of noncommutative tori (with some degenerate fibers) in exactly the same way that S^{n} decomposes as an orbit space for the action of T^{m} [16, 18].

Each $C(S_{\theta}^{n})$ admits the structure of a spectral triple, and satisfies the (tentative) axioms [4, 8] of a "noncommutative $Spin^{\mathbb{C}}$ manifold".

The $C(S_{\theta}^{n})$ are (completions) of solutions of homological equations satisfied by (the coordinate algebras of) ordinary spheres, but not by, for example, the *q*-deformed spheres $C(S_{\alpha}^{n})$ of Podleś [19, 10].

The $C(S_{\theta}^{n})$ are (completions) of solutions of homological equations satisfied by (the coordinate algebras of) ordinary spheres, but not by, for example, the *q*-deformed spheres $C(S_{\alpha}^{n})$ of Podleś [19, 10].

The moduli space of solutions of the homological equations for the case n = 3 has been determined by Connes and Dubois-Violette. Critical values of the moduli space are the full polynomial *-subalgebras of the $C(S_{\theta}^3)$'s, while generic values are (quotients of) the Sklyanin algebras of noncommutative algebraic geometry [26].

The $C(S_{\theta}^{n})$ are (completions) of solutions of homological equations satisfied by (the coordinate algebras of) ordinary spheres, but not by, for example, the *q*-deformed spheres $C(S_{q}^{n})$ of Podleś [19, 10].

The moduli space of solutions of the homological equations for the case n = 3 has been determined by Connes and Dubois-Violette. Critical values of the moduli space are the full polynomial *-subalgebras of the $C(S_{\theta}^3)$'s, while generic values are (quotients of) the Sklyanin algebras of noncommutative algebraic geometry [26].

Instanton solutions of the Euclidean Yang-Mills equations for S_{θ}^{4} and their moduli have been extensively studied (e.g.[2, 3, 13]), inspired both by the classical work of Atiyah, Ward, Donaldson, etc. [1, 11], and also by investigations of the gauge theories of the noncommutative tori [9, 5, 15] and of the Moyal-deformed 4-plane [17, 24, 12]. Despite this, numerous fundamental questions remain open or unexplored.

Complex Vector Bundles over S^n .

By the clutching construction, the isomorphism classes of rank k complex vector bundles over S^n are in bijective correspondence with $\pi_{n-1}(GL_k(\mathbb{C}))$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complex Vector Bundles over S^n .

By the clutching construction, the isomorphism classes of rank k complex vector bundles over S^n are in bijective correspondence with $\pi_{n-1}(GL_k(\mathbb{C}))$.

If $k \ge [\frac{n}{2}]$, then the map $\pi_{n-1}(GL_k(\mathbb{C})) \to K^{-n \mod 2}(S^{n-1})$ is an isomorphism, but as *n* increases, these homotopy groups become difficult to compute for $k < [\frac{n}{2}]$. Cancellation fails for the semigroup of isomorphism classes of complex vector bundles over S^n for $n \ge 5$. For example, S^5 has only one nontrivial bundle over it, coming from the fact that $\pi_4(S^3) \cong \mathbb{Z}_2$.

if $n \neq 2$, then S^n has no nontrivial line bundles.

Definition

We will say that θ is *totally irrational* if all entries off of the main diagonal of θ are irrational.

Definition

We let $V(S_{\theta}^{n})$ denote the semigroup of isomorphism classes of finitely-generated projective $C(S_{\theta}^{n})$ -modules.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

We will say that θ is *totally irrational* if all entries off of the main diagonal of θ are irrational.

Definition

We let $V(S_{\theta}^{n})$ denote the semigroup of isomorphism classes of finitely-generated projective $C(S_{\theta}^{n})$ -modules.

Theorem

If θ is totally irrational, then all finitely-generated projective $C(S_{\theta}^{2m-1})$ -modules are free,, i.e. all "complex vector bundles" over S_{θ}^{2m-1} are trivial, and $V(S_{\theta}^{2m-1})$ satisfies cancellation.

Theorem Let θ be totally irrational. Then

 $V(S^{2m}_{\theta}) \cong \{0\} \cup (\mathbb{N} \times K_1(C(S^{2m-1}_{\theta}))) \cong \{0\} \cup (\mathbb{N} \times \mathbb{Z}).$

Thus every complex vector bundle over S_{θ}^{2m} decomposes as the direct sum of a "line bundle" and a trivial bundle, and cancellation holds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem Let θ be totally irrational. Then

 $V(S^{2m}_{\theta}) \cong \{0\} \cup (\mathbb{N} \times K_1(C(S^{2m-1}_{\theta}))) \cong \{0\} \cup (\mathbb{N} \times \mathbb{Z}).$

Thus every complex vector bundle over S_{θ}^{2m} decomposes as the direct sum of a "line bundle" and a trivial bundle, and cancellation holds.

If θ contains a mix of rational and irrational terms, then somewhat surprising phenomena can occur. For instance if n = 5 and θ consists of one irrational entry (besides its negative) and all other entries are zero, then S_{θ}^5 has $\mathbb{Z} \times \mathbb{Z}$ -many nontrivial "line bundles" over it, but all bundles of higher rank are trivial. For higher ntorsion phenomena can occur. Also, for $n \ge 7$ it is possible for θ to contain certain mixes of rational and irrational terms and for cancellation to still hold, though for generic mixed θ cancellation fails.

Idea of the Proofs of the Theorems.

As a generalization of the genus-1 Heegaard splitting of S^3 , one sees that

$$S^{2m+1} = (D^{2m} \times S^1) \cup_{S^{2m-1} \times S^1} (S^{2m-1} \times D^2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Idea of the Proofs of the Theorems.

As a generalization of the genus-1 Heegaard splitting of S^3 , one sees that

$$S^{2m+1} = (D^{2m} \times S^1) \cup_{S^{2m-1} \times S^1} (S^{2m-1} \times D^2).$$

This decomposition is preserved by the canonical action of T^m on S^{2m-1} . Thus deforming S^{2m-1} by using θ and the action of T^m preserves this decomposition at the level of noncommutative spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea of the Proofs of the Theorems.

As a generalization of the genus-1 Heegaard splitting of S^3 , one sees that

$$S^{2m+1} = (D^{2m} \times S^1) \cup_{S^{2m-1} \times S^1} (S^{2m-1} \times D^2).$$

This decomposition is preserved by the canonical action of T^m on S^{2m-1} . Thus deforming S^{2m-1} by using θ and the action of T^m preserves this decomposition at the level of noncommutative spaces.

Thus we can view S_{θ}^{2m+1} as consisting of $(D^{2n} \times S^1)_{\theta}$ and $(S^{2n-1} \times D^2)_{\theta}$ "hemispheres" glued together over a $(S^{2n-1} \times S^1)_{\theta} = C(S_{\theta'}^{2n-1}) \times_{\alpha} \mathbb{Z}$ "equator". We can view S_{θ}^{2m} as two D_{θ}^{2m} hemispheres over a S_{θ}^{2m-1} equator. We prove the theorems simultaneously with obtaining the homotopy-theoretic results that

$$\pi_0(GL_k(C(S^{2n-1}_{\theta'})))\cong \mathbb{Z}$$

and

$$\pi_0(\mathit{GL}_k(\mathit{C}(\mathit{S}^{2n-1}_{\theta'})\times_{\alpha}\mathbb{Z}))\cong \mathbb{Z}_{\mathcal{I}}\!\!\times\!\mathbb{Z}_{\mathcal{I}}$$

(This last isomorphism true in fact for any θ' so long as α acts sufficiently irrationally.)

(This last isomorphism true in fact for any θ' so long as α acts sufficiently irrationally.)

Actually to do this our first move is to show that the map

 $\pi_j(GL_k(\mathcal{C}(S^{2n-1}_{\theta})\times_{\alpha_1}\mathbb{Z}...\times_{\alpha_r}\mathbb{Z})) \to K_{1-j \mod 2}(\mathcal{C}(S^{2n-1}_{\theta})\times_{\alpha_1}\mathbb{Z}...\times_{\alpha_r}\mathbb{Z})$

is an isomorphism assuming that the α_i 's act sufficiently irrationally.

(This last isomorphism true in fact for any θ' so long as α acts sufficiently irrationally.)

Actually to do this our first move is to show that the map

 $\pi_j(GL_k(C(S^{2n-1}_{\theta})\times_{\alpha_1}\mathbb{Z}...\times_{\alpha_r}\mathbb{Z})) \to K_{1-j \mod 2}(C(S^{2n-1}_{\theta})\times_{\alpha_1}\mathbb{Z}...\times_{\alpha_r}\mathbb{Z})$

is an isomorphism assuming that the α_i 's act sufficiently irrationally.

The argument uses Rieffel's [21] result that, so long as θ contains at least one irrationaly entry, then

$$\pi_j(GL_k(C(T^m_\theta)))\cong\mathbb{Z}^{2^{m-1}},$$

along with using the Pimsner-Voiculescu sequence and K-theory and unstabilized homotopy versions of Mayer-Vietoris.

The case n=4.

We can give a very explicit description of the modules M(k, s) in this case. The Rieffel projection [20] $p = M_g V + M_f + V^* M_g$ of trace $|\theta| \mod 1$ plays a central role in the construction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The case n=4.

We can give a very explicit description of the modules M(k, s) in this case. The Rieffel projection [20] $p = M_g V + M_f + V^* M_g$ of trace $|\theta| \mod 1$ plays a central role in the construction.

Viewing $C(S_{\theta}^3)$ as a continuous field of noncommutative 2-tori over [0, 1], we consider the invertible

$$X=\exp(2\pi it)p+1-p\in C(S^3_ heta),$$

where p is a Rieffel projection with trace $|\theta| \mod 1$. (note that X corresponds to the image of p under the Bott map $\mathcal{K}_0(\mathcal{C}(\mathcal{T}^2_{\theta})) \to \mathcal{K}_1(\mathcal{SC}(\mathcal{T}^2_{\theta}))).$

The case n=4.

We can give a very explicit description of the modules M(k, s) in this case. The Rieffel projection [20] $p = M_g V + M_f + V^* M_g$ of trace $|\theta| \mod 1$ plays a central role in the construction.

Viewing $C(S_{\theta}^3)$ as a continuous field of noncommutative 2-tori over [0, 1], we consider the invertible

$$X=\exp(2\pi it)
ho+1-
ho\in C(S^3_ heta),$$

where p is a Rieffel projection with trace $|\theta| \mod 1$. (note that X corresponds to the image of p under the Bott map $\mathcal{K}_0(\mathcal{C}(\mathcal{T}^2_{\theta})) \to \mathcal{K}_1(\mathcal{SC}(\mathcal{T}^2_{\theta}))$).

Lemma

Let θ be irrational. Then the natural map $\pi_0(GL_j(C(S^3_{\theta}))) \to K_1(C(S^3_{\theta})) \cong \mathbb{Z}$ is an isomorphism for all $j \ge 1$. The invertible X is a generator of $\pi_0(GL_1(C(S^3_{\theta})))$.

It follows that one can take the representative M(k, s) to be the result of using the image of X^s in $GL_k(S^3_{\theta})$ as a clutching element.

We obtain $M(1,s) \cong PC(S_{\theta}^4)^2$, where

$$P = \frac{1}{2} \begin{pmatrix} 1+x & (1-x^2)^{1/2}X \\ (1-x^2)^{1/2}X^* & 1-x \end{pmatrix}$$

(here x is the hermetian generator x from the definition of $C(S_{\theta}^4)$.).

We obtain $M(1,s) \cong PC(S_{\theta}^4)^2$, where

$$P = \frac{1}{2} \begin{pmatrix} 1+x & (1-x^2)^{1/2}X \\ (1-x^2)^{1/2}X^* & 1-x \end{pmatrix}$$

(here x is the hermetian generator x from the definition of $C(S_{\theta}^4)$.).

The first example of an $C(S_{\theta}^{4})$ -module to appear in the literature is the "instanton bundle of charge-1" $eC(S_{\theta}^{4})^{4}$ discovered by Connes and Landi, is given by

$$e := rac{1}{2} egin{pmatrix} 1+x & 0 & z_2 & z_1 \ 0 & 1+x & -
ho z_1^* & z_2^* \ z_2^* & -ar
ho z_1 & 1-x & 0 \ z_1^* & z_2 & 0 & 1-x \end{pmatrix},$$

where $\rho = \exp(2\pi i\theta)$, and the z_i and x are the generators of $C(S_{\theta}^4)$. The Levi-Civita connection *ede* gives an instanton solution to the Euclidean Yang-Mills equations for S_{θ}^4 . In the case $\theta = 0$, the projection *e* corresponds to the complex rank-2 vector bundle E_1 over S^4 with second Chern number (charge) 1. The Levi-Civita connection *ede* is then a charge-1 instanton on E_1 .

Sac

Proposition

Let e be Connes and Landi's instanton projection, and let θ be irrational. Then the corresponding module $eC(S_{\theta}^{4})^{4}$ is isomorphic to $M(1,-1) \oplus C(S_{\theta}^{4})$.

Proposition

Let e be Connes and Landi's instanton projection, and let θ be irrational. Then the corresponding module $eC(S_{\theta}^4)^4$ is isomorphic to $M(1, -1) \oplus C(S_{\theta}^4)$.

The Proposition follows from first showing that $\begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix}$ and

 $\begin{pmatrix} z_2 & z_1 \\ -\rho z_1^* & z_2^* \end{pmatrix} \text{ are path-connected in } GL_2(C(S_{\theta}^3)), \text{ and then seeing}$ that $eC(S_{\theta}^4)^4$ results from clutching using $\begin{pmatrix} z_2^* & -\bar{\rho}z_1 \\ z_1^* & z_2 \end{pmatrix}$.

Thus the basic rank-2 instanton bundle for S_{θ}^4 splits as the sum of a nontrivial line bundle and a trivial line bundle!

The invertible $X \in C(S^3_{\theta})$ generates a C*-subalgebra $C^*(X) \cong C(S^1)$. One may "suspend" $C^*(X)$ by coning it twice, unitizing the cones, and then gluing them together to obtain a C*-subalgebra of $C(S^4_{\theta})$ isomorphic to $C(S^2)$.

The invertible $X \in C(S^3_{\theta})$ generates a C*-subalgebra $C^*(X) \cong C(S^1)$. One may "suspend" $C^*(X)$ by coning it twice, unitizing the cones, and then gluing them together to obtain a C*-subalgebra of $C(S^4_{\theta})$ isomorphic to $C(S^2)$.

Theorem

Suppose that θ is irrational. Then

$$M(k,s) \cong E(k,s) \otimes_{C(S^2)} C(S^4_{\theta}),$$

where E(k, s) is the module of continuous sections of a rank-k complex vector bundle over S^2 with Chern number -s, and the inclusion $C(S^2) \hookrightarrow C(S^4_{\theta})$ is as described above.

Thus every complex vector bundle over S_{θ}^4 is the pullback of a complex vector bundle over S^2 via a certain fixed quotient map $S_{\theta}^4 \rightarrow S^2$. The basic instanton bundle *e* of charge 1 over S_{θ}^4 is just the pullback of the direct sum of the Bott bundle over S^2 with Chern number 1 and a trivial line bundle! This is intriguing as it provides a link between the classical Bott bundle on S^2 and a deformation of the charge-1 instanton bundle on S^4 .

Further Directions

I have managed to calculate certain higher homotopy groups $\pi_k(GL_j(C(S^n_{\theta})))$ for various k, j, n and θ and have obtained interesting values in many cases (e.g $\pi_0(GL_1(C(S^4_{\theta}))) \cong \mathbb{Z} \times \mathbb{Z}$, while replacing 1 with $j \ge 2$ yields zero).

Further Directions

I have managed to calculate certain higher homotopy groups $\pi_k(GL_j(C(S^n_{\theta})))$ for various k, j, n and θ and have obtained interesting values in many cases (e.g $\pi_0(GL_1(C(S^4_{\theta}))) \cong \mathbb{Z} \times \mathbb{Z}$, while replacing 1 with $j \ge 2$ yields zero).

I am also investigating the gauge theory of the $C(S_{\theta}^{n})$ as part of a larger project. It seems to me that U(1) instantons for $C(S_{\theta}^{4})$ should probably exist. There should also be a nontrivial monopole theory. The gauge theory for higher $C(S_{\theta}^{n})$ could potentially be simpler than that for classical spheres.

References

- M. F. Atiyah. Geometry on Yang-Mills fields. Scuola Normale Superiore Pisa, Pisa, 1979.
- [2] S.J. Brain and G. Landi.

Families of monads and instantons from a noncommutative adhm construction http:// arxiv.org/abs/0901.0772.

[3] S.J. Brain, G. Landi, and W.D. Van Suijelkom. Moduli spaces of instantons on toric noncommutative manifolds http://arxiv.org/abs/1204.2148.

[4] Alain Connes.

Gravity coupled with matter and the foundation of non-commutative geometry.

Comm. Math. Phys., 182(1):155-176, 1996.

[5] Alain Connes, Michael R. Douglas, and Albert Schwarz. Noncommutative geometry and matrix theory: compactification on tori.

J. High Energy Phys., (2):Paper 3, 35 pp. (electronic), 1998.

- [6] Alain Connes and Michel Dubois-Violette. Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. *Comm. Math. Phys.*, 230(3):539–579, 2002.
- [7] Alain Connes and Michel Dubois-Violette. Noncommutative finite dimensional manifolds. II. Moduli space and structure of noncommutative 3-spheres. *Comm. Math. Phys.*, 281(1):23–127, 2008.
- [8] Alain Connes and Giovanni Landi. Noncommutative manifolds, the instanton algebra and isospectral deformations. *Comm. Math. Phys.*, 221(1):141–159, 2001.

 [9] Alain Connes and Marc A. Rieffel.
 Yang-Mills for noncommutative two-tori.
 In Operator algebras and mathematical physics (lowa City, lowa, 1985), volume 62 of Contemp. Math., pages 237–266.
 Amer. Math. Soc., Providence, RI, 1987.

[10] Ludwik Dąbrowski, Giovanni Landi, and Tetsuya Masuda. Instantons on the quantum 4-spheres S_q^4 . Comm. Math. Phys., 221(1):161–168, 2001.

 S. K. Donaldson and P. B. Kronheimer. *The geometry of four-manifolds.* Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1990. Oxford Science Publications.

 [12] Anton Kapustin, Alexander Kuznetsov, and Dmitri Orlov. Noncommutative instantons and twistor transform. *Comm. Math. Phys.*, 221(2):385–432, 2001.

[13] Giovanni Landi and Walter D. van Suijlekom. Noncommutative instantons from twisted conformal symmetries.

Comm. Math. Phys., 271(3):591-634, 2007.

[14] Kengo Matsumoto.

Noncommutative three-dimensional spheres. Japan. J. Math. (N.S.), 17(2):333–356, 1991.

[15] B. Morariu and B. Zumino.
Super Yang-Mills on the noncommutative torus.
In *Relativity, particle physics and cosmology (College Station, TX, 1998)*, pages 53–69. World Sci. Publ., River Edge, NJ, 1999.

[16] T. Natsume and C. L. Olsen.

Toeplitz operators on noncommutative spheres and an index theorem.

Indiana Univ. Math. J., 46(4):1055–1112, 1997.

[17] Nikita Nekrasov and Albert Schwarz.
 Instantons on noncommutative R⁴, and (2,0) superconformal six-dimensional theory.

Comm. Math. Phys., 198(3):689-703, 1998.

[18] Mira A.. Peterka.

Finitely-generated projective modules over the theta-deformed 4-sphere.

[19] P. Podleś.

Quantum spheres.

Lett. Math. Phys., 14(3):193-202, 1987.

[20] Marc A. Rieffel.

 C^* -algebras associated with irrational rotations.

Pacific J. Math., 93(2):415–429, 1981.

[21] Marc A. Rieffel.

The homotopy groups of the unitary groups of noncommutative tori.

J. Operator Theory, 17(2):237-254, 1987.

[22] Marc A. Rieffel.

Deformation quantization for actions of \mathbb{R}^d . Mem. Amer. Math. Soc., 106(506):x+93, 1993.

[23] Marc A. Rieffel.
 K-groups of *C**-algebras deformed by actions of *R^d*.
 J. Funct. Anal., 116(1):199–214, 1993.

[24] Nathan Seiberg and Edward Witten.
 String theory and noncommutative geometry.
 J. High Energy Phys., (9):Paper 32, 93 pp. (electronic), 1999.

[25] Andrzej Sitarz.

Rieffel's deformation quantization and isospectral deformations.

Internat. J. Theoret. Phys., 40(10):1693–1696, 2001.

[26] E. K. Sklyanin.

Some algebraic structures connected with the Yang-Baxter equation.

Funktsional. Anal. i Prilozhen., 16(4):27–34, 96, 1982.

[27] Joseph C. Várilly.

Quantum symmetry groups of noncommutative spheres. *Comm. Math. Phys.*, 221(3):511–523, 2001.