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Metric TSP
Given a complete graph G and metric weights c : E(G)→ R≥0,
find a Hamiltonian circuit in G with minimum total weight.

I NP-hard
I best known approximation ratio 3

2 (Christofides [1976])
I no 123

122 -approximation algorithm exists unless P = NP
(Karpinski, Lampis, Schmied [2013])

I integrality ratio of subtour relaxation between 4
3 and 3

2
(Wolsey [1980]), worst example is instance of Graph-TSP

Graph-TSP (= Eulerian 2ECSS):
I approximation ratio 1.5− ε (Oveis Gharan, Saberi, Singh [2011])
I approximation ratio 1.461 (Mömke, Svensson [2011])
I approximation ratio 1.445 (Mucha [2012])
I approximation ratio 1.4 (Sebő, Vygen [2012])
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The unfortunate history of 2ECSS approximation
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ő,
V

yg
en

[2
01

2]

←− now

correct proof

wrong proof

incomplete proof

no proof



The unfortunate history of 2ECSS approximation
3
2

17
12

4
3

4
3597

448
5
4

5
4

K
hu

lle
r,

V
is

hk
in

[1
99

2]

G
ar

g,
S

an
to

sh
,S

in
gl

a
[1

99
3]

C
he

riy
an

,S
eb

ő,
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ő,
V

yg
en

[2
01

2]

←− now

correct proof

wrong proof

incomplete proof

no proof



The unfortunate history of 2ECSS approximation
3
2

17
12

4
3

4
3597

448
5
4

5
4

K
hu

lle
r,

V
is

hk
in

[1
99

2]

G
ar

g,
S

an
to

sh
,S

in
gl

a
[1

99
3]

C
he

riy
an

,S
eb

ő,
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Ear-decompositions
Write G = P0 + P1 + · · ·+ Pk , where P0 is a single vertex, and
each Pi (i = 1, . . . , k ) is either
I a circuit sharing exactly one vertex with P0 + · · ·+ Pi−1, or
I a path sharing exactly its endpoints with P0 + · · ·+ Pi−1.

trivial ears (length 1)

closed ear

open ear

pendant
ears

I A graph is 2-edge-connected iff
it has an ear-decomposition.

I A graph is 2-vertex-connected iff
it has an open ear-decomposition.

I A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

I W.l.o.g., pendant ears come last,
followed only by trivial ears.
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Ear-decompositions for T -joins

change parity here

I Ear induction:

I Split pendant ear at the vertices
that have wrong parity so far

I Take smaller part

This yields a T -join with at most 1
2(n − 1 + keven) edges,

where n = |V (G)| and keven is the number of even ears.
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Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
I compute an ear-decomposition
I delete all trivial ears.

The remaining number of edges is at most

5
4(n − 1) + 3

4k2 +
1
2k3 +

1
4k4,

where n = |V (G)| and ki is the number of ears of length i.

So:
I even ears are bad, and
I 3-ears are bad.
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Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ϕ(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])
Let G be a 2-edge-connected graph. Then an ear-decomposition
with ϕ(G) even ears can be computed in polynomial time,

and

|V (G)|−1+ϕ(G)
2 = max

{
min{|J| : J is a T -join} : T ⊆ V (G), |T | even

}
.

Note:
I Every 2ECSS contains at least ϕ(G) even (thus: nontrivial) ears.
I So every 2ECSS contains at least n − 1 + ϕ(G) edges.
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In other words, G is factor-critical (Lovász [1972]).
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Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.

Lemma (Cheriyan, Sebő, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof (for ϕ(G) = 0):
I Compute an open odd ear-decomp. (Lovász, Plummer [1986])
I Replace non-pendant short ears
I Replace adjacent short ears
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Sketch of proof (some details)

I Replace non-pendant short ears
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Optimizing short ears
I Adding all short ears leaves some

number of connected components

I Internal vertices of short ears may
be incident to trivial ears

I These can be used to replace some
short ears by other short ears

I Goal: minimize the resulting number
of connected components

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(ii) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting

internal vertices of different short ears.
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First solution: matroid intersection

I For each pendant ear (= color), represent each possible
variant by an edge connecting its two endpoints

I Pick an edge for each color, so that the edges form a forest
I Intersection of partition matroid and graphic matroid

(Rado [1942], Edmonds [1970])



Second solution: forest representative systems

I For each pendant ear (= color), consider the set of endpoints
of the variants. In this hypergraph:

I Find a forest representative system (Lovász [1970])
I This leads to useful ears
I We have an algorithm with runtime O(|V (G)||E(G)|)



New algorithm for 2ECSS
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Theorem
The new algorithm yields a tour with at most 3

2L− π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Alternative yields an 2ECSS with at most 5
4L + 1

2π edges.

−→ The better of the two 2ECSSs has at most 4
3L edges.
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Note: number of even ears is minimum, all short ears are pendant

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Take all edges of

nontrivial ears.
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New algorithm for TSP
I Compute a nice ear-decomposition.
I Optimize short ears so that they serve best for connectivity.

I Delete all 1-ears. In each of the resulting blocks:

I Take all edges of pendant ears.
I Add edges to obtain connectivity.
I Add edges to correct parity.

Alternatively:
I Apply lemma of

Mömke-Svensson.

Theorem
In each block, this algorithm yields a tour with at most 3

2L−π edges,
where L is a lower bound on the number of edges in any 2ECSS,
and π is the number of pendant ears (after optimization).

Theorem
Mömke-Svensson yields a tour with at most 4

3L + 2
3π edges.

−→ The better of the two tours has at most 7
5L edges.
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Open problems

2ECSS
I improve approximation ratio

(combining with ideas from Vempala, Vetta [2000]?)
I improve on 2-approximation for weighted 2ECSS

(due to Khuller, Vishkin [1994])
I determine integrality ratio of the natural LP relaxation

TSP
I improve approximation ratio, determine integrality ratio
I extend to general metric TSP (beat Christofides [1976])
I extend to directed graphs (constant factor?)

T -tours ⊇ s-t-path-TSP
I find 3

2 -approximation algorithm for the weighted case

Thank you!
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Tight example for 2ECSS

L = n = OPT = 24k (Here k = 2.)
ϕ(G) = 1
π = 4k = 1

6L.

Algorithm computes solution with 32k − 1 edges.
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