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Background

Graphic TSP is the Traveling Salesman Problem on shortest path
metrics of undirected graphs with unit edge-lengths
Equivalently, given an undirected, unweighted graph, G , find a
spanning Eulerian subgraph with the fewest edges in 2G
Graphic TSP in cubic graphs captures much of the complexity of the
problem in general graphs while admitting approximation algorithms
with improved guarantees
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108)-approximation for 3-edge-connected, bipartite, cubic graphs
(Correa, Larré, and Soto [to be published])
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Approach

Find a cycle cover with k cycles
Compress each cycle into a single node and find a spanning tree in
this compressed graph
In the original graph, add two copies of each edge in the spanning
tree to the cycle cover to obtain a solution with n+2(k −1) edges
Our algorithm finds a cycle cover with at most 3

20n cycles, giving us a
solution with 13

10n−2 edges.
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New Result

Theorem
Given a cubic, bipartite graph G with n vertices, there is a polynomial time
algorithm that computes a spanning Eulerian subgraph in 2G with at most
13
10n−2 edges.



How it Works

All cycles in a bipartite graph are even
We can bound the number of cycles in the cycle cover if we ensure it
contains no 4-cycles and relatively few 6-cycles
If our graph contains a 4-cycle or 6-cycle, we replace it with a
different, more desirable subgraph (a “gadget”), maintaining cubic-
and bipartite-ness
Eventually we have a compressed graph with no “problematic”
4-cycles or 6-cycles
Find a cycle cover in this compressed graph
Expand the graph by swapping the 4- and 6-cycles back into the graph
Add edges as we go, eventually obtaining a desirable cycle cover in
the original graph
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A Good Example
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Figure : A 6-cycle
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Figure : The gadget which replaces
the 6-cycle
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cycle cover, after expanding the
graph
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Figure : Then, we add edges to get
a large cycle



A Bad Example
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Figure : A cycle of length x + y +4
that passes through a gadget that
replaced a 6-cycle
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Figure : The cycle from the previous
figure, after expanding the graph
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Figure : We add edges to get a cycle
cover in the expanded graph, but we
now have two smaller cycles of
lengths x +3 and y +5



Handling Bad Cases
We needed to use a few additional, more specialized gadgets in order
to bound the number of 6-cycles we create as we expand the graph
Below are the two main additional gadgets needed:
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Figure : Two other “bad” subgraphs
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Figure : The gadgets which replace
the “bad” subgraphs



Back to the Bad Example

The additional gadgets ensure that the 6-cycle on the right is
contracted only if y ≥ 3.
Now, this bad example can insert at most one 6-cycle, along with a
longer cycle in the final cycle cover.
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Future Directions

Can we find better approximations in cubic, bipartite graphs? (Lower
bound is 10

9 n)
Ways to modify the algorithm so it is simpler, uses fewer gadgets
Incorporate this technique with the local search methods used by
Boyd, Sitters, van der Ster, and Stougie
Is it possible to modify this algorithm to get a cycle cover with no
6-cycles? (implies a 5

4 -approximation)


