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Problem 

•  Line on n nodes viewed as a graph 

•  Each edge e has capacity u(e) 

•  m interval demands (si,ti, wi, di) 

max !i wi xi 

 ! e ! [si,ti] di xi " u(e)    for all e 

xi ! {0,1}  for all i 



Basic-LP 
 
max !i wi xi 
 
 ! e ! [si,ti] di xi " u(e)    for all e 
 
xi ! [0,1]  for all i 

Edges

Capacity

2

1

4

2

8

3

...

...

2n−1

n− 1

2n

n

Figure 1: An instance of UFP on paths with large integrality gap.

Though an O(log n)-approximation algorithm for UFP on paths was given in [3], no LP with an integrality
gap of o(n) was known for this problem, and obtaining such an LP has been an interesting open question.
One could attempt to write a configuration LP for the problem, or to consider strengthening the natural LP,
for instance, via the Sherali-Adams hierarchy of relaxations. We show in the rest of this section that these
relaxations also have feasible fractional solutions of profit Ω(n) for the canonical integrality gap example; this
can be skipped on first reading without a loss of continuity. For both of the relaxations below, we use Re to
denote the set of requests passing through edge e.

A Configuration LP: In the configuration LP below, there is a variable xS,e for each set S ⊆ Re if the
total demand dS of the requests in S is at most the capacity ce. Though this LP has an exponential number of
variables, we can separate over its dual, which has a polynomial number of variables and constraints that are
essentially equivalent to the knapsack problem (with polynomially bounded profits, since we assume that the
profits of the original instance are integers in {1, . . . , k2}). However, the integrality gap of the configuration
LP is also n/2, as shown by the canonical example; set xi = 1/2 for each i, and for the jth edge ej , set
x{Rj},ej = 1/2, and xSj ,ej = 1/2, where Sj = {1, . . . , j − 1}. (On edge e1, set x∅,e1 = 1/2.)

Config LP max
�

iwixi

�
S: S⊆Re

xS,e = 1 (∀e ∈ E(G))
xi ≤

�
S: S⊆Re

xS,e (∀i ∈ {1, . . . , k}, e ∈ Pi)
xS,e ≥ 0 (∀e ∈ E(G), S ⊆ Re, dS ≤ ce)

The Sherali-Adams hierarchy for the Standard LP: For a zero-one programming problem, let P denote
the feasible integer polytope, and P0 denote the convex polytope of an LP relaxation for P . The Sherali-Adams
Hierarchy [35] is a sequence P0, P1, P2 . . . Pn = P of (successively tighter) relaxations of P ; here Pi ⊆ Pi−1,
and Pn (where n is the number of variables in P ) is identical to the original integer polytope. There has recently
been significant interest [30, 14] in such hierarchies of linear and semi-definite programming relaxations.

We do not discuss the Sherali-Adams hierarchy in detail here; we simply note that to construct the tth
polytope Pt, we first construct a “lifted” polytope P lift

t . In addition to the xi variables, there is a variable yS for
every set S such that 1 < |S| ≤ t. The constraints of the new polytope P lift

t are formed as follows: For each
constraint C of the original polytope, and for each I, J ⊂ {1, . . . , k} such that I ∩ J = ∅ and |I ∪ J | ≤ t,
we multiply both the LHS and RHS of constraint C by the polynomial

�
i∈I xi

�
j∈J(1 − xj). This produces

constraints that are non-linear; we linearize them by replacing each x2i by xi, and for each monomial of the
form

�
i∈S xi (which must have degree ≤ t), we replace the monomial by the variable yS . The polytope Pt is

formed by projecting this new polytope down to n dimensions (only retaining the variables xi); that is, a point

7

Figure 1: An instance of UFP on paths with large integrality gap.

Though an O(log n)-approximation algorithm for UFP on paths was given in [3], no LP with an integrality
gap of o(n) was known for this problem, and obtaining such an LP has been an interesting open question.
One could attempt to write a configuration LP for the problem, or to consider strengthening the natural LP,
for instance, via the Sherali-Adams hierarchy of relaxations. We show in the rest of this section that these
relaxations also have feasible fractional solutions of profit Ω(n) for the canonical integrality gap example; this
can be skipped on first reading without a loss of continuity. For both of the relaxations below, we use Re to
denote the set of requests passing through edge e.

A Configuration LP: In the configuration LP below, there is a variable xS,e for each set S ⊆ Re if the
total demand dS of the requests in S is at most the capacity ce. Though this LP has an exponential number of
variables, we can separate over its dual, which has a polynomial number of variables and constraints that are
essentially equivalent to the knapsack problem (with polynomially bounded profits, since we assume that the
profits of the original instance are integers in {1, . . . , k2}). However, the integrality gap of the configuration
LP is also n/2, as shown by the canonical example; set xi = 1/2 for each i, and for the jth edge ej , set
x{Rj},ej = 1/2, and xSj ,ej = 1/2, where Sj = {1, . . . , j − 1}. (On edge e1, set x∅,e1 = 1/2.)

Config LP max
�

iwixi

�
S: S⊆Re

xS,e = 1 (∀e ∈ E(G))
xi ≤

�
S: S⊆Re

xS,e (∀i ∈ {1, . . . , k}, e ∈ Pi)
xS,e ≥ 0 (∀e ∈ E(G), S ⊆ Re, dS ≤ ce)

The Sherali-Adams hierarchy for the Standard LP: For a zero-one programming problem, let P denote
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t . In addition to the xi variables, there is a variable yS for
every set S such that 1 < |S| ≤ t. The constraints of the new polytope P lift

t are formed as follows: For each
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Basic-LP has integrality gap "(n) 



Theorem: Integrality gap of  Basic-LP is O(1/!") if   di " (1-!)bi 
for all i 
 
 
Focus on large demands: di > ! bi 
 
There is an O(1) approximation for large demands via dynamic 
programming [Bonsma-Schulz-Wiese’01,AGLW’13] 
 
Quest: Is there a “natural” LP with O(1) gap? 
 



Rank-LP [CEK’09] 
 
max !i wi xi 
 
 ! e ! [si,ti] di xi " u(e)    for all e 
#
 ! i ! S xi " f(S)    for all e, S # B(e) 

xi ! [0,1]  for all i 

B(e) : large demands with e on their path 



or not. For each set B ⊆ B of big requests, let f(B) denote the maximum number of requests in B that can

be simultaneously routed without violating the capacity constraints. For each set B of “big” requests that pass

through a common edge, we introduce a rank constraint which requires that the total extent to which requests

in B are selected by the LP must be at most the number of requests in B that can be routed integrally.

UFP-LP max
�

iwixi

�
i: e∈Pi

dixi ≤ ce (∀e ∈ E(G)) [capacity constraints]�
Ri∈B xi ≤ f(B) (∀e ∈ E(G), B ⊆ Be) [rank constraints]

xi ∈ [0, 1] (∀i ∈ {1, . . . , k})

The new constraints are essentially tailor made to mimic the analysis of the greedy algorithm in Section 2 and

it is relatively straight forward to show that the integrality gap is O(log2 n) [16]. However, it is not obvious that

the LP can be solved in polynomial time, even approximately. In [16], we described an approximate separation

oracle that allowed one to solve UFP-LP to within a constant factor in polynomial time. Subsequently, we

noticed that the separation oracle implicitly defined a compact relaxation which includes a polynomial sized

subset of the rank constraints. We are able to show an improved bound of O(log n) on the integrality gap of the

compact relaxation, and hence also for UFP-LP. We now describe the compact relaxation.

Recall that Be is the set of all requests R in B such that the path for R passes through edge e. Let Bleft(e)
(resp. Bright(e)) be the set of all requests Ri in B(e) such that the bottleneck edge of Ri is to the left (resp.

to the right) of e; if the bottleneck for Ri ∈ B(e) is edge e, Ri is in both Bleft(e) and Bright(e). For any two

requests Ri and Rj in Be, Rj blocks Ri if dj > di and Ri and Rj are not simultaneously routable. For any

edge e and any request Ri in Bleft(e), let LeftBlock(e, i) be the set consisting of Ri and all requests Rj in

Bleft(e) that block Ri. Similarly, for any edge e and any request Ri in Bright(e), let RightBlock(e, i) be the

set consisting of Ri and all requests Rj in Bright(e) that block Ri.

As shown in Corollary 4.11, no two requests in LeftBlock(e, i) (resp. RightBlock(e, i)) are simultaneously

routable. Therefore the rank constraints corresponding to the set LeftBlock(e, i) and RightBlock(e, i) forces

the LP to fractionally pick at most one of the requests in LeftBlock(e, i) (resp. RightBlock(e, i)). Using

only the rank constraints corresponding to the blocking sets LeftBlock(e, i) and RightBlock(e, i), we get the

following compact LP.

Compact UFP-LP max
�

iwixi

�
i: e∈Pi

dixi ≤ ce (∀e ∈ E(G)) [capacity constraints]�
Rj∈LeftBlock(e,i) xj ≤ 1 (∀e ∈ E(G), Ri ∈ Bleft(e)) [blocking constraints]�

Rj∈RightBlock(e,i) xj ≤ 1 (∀e ∈ E(G), Ri ∈ Bright(e)) [blocking constraints]

xi ∈ [0, 1] (∀i ∈ {1, . . . , k})

Since Compact UFP-LP contains only a subset of the constraints of UFP-LP, it is clear that the former is

weaker than the latter. We show that it is not much weaker in the following theorem.

Theorem 4.1. Let x be any feasible solution to Compact UFP-LP on a given instance of UFP on a path. Then
there is an absolute constant α ≤ 18 such that x/α is feasible for UFP-LP on the same instance.

The above theorem implies that the integrality gap of the two relaxations are within a constant factor of

each other. We prove the above theorem in Section 4.2. First, we show that the integrality gap of Compact
UFP-LP is at most O(log n). We believe that the gap is O(1) and give a connection between the integrality gap
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Figure 2: A top-drawn instance of UFP/RIS. The red curve is the capacity profile.

of UFP-LP and the integrality gap of the standard LP for the RECTANGLE INDEPENDENT SET (RIS) problem

on certain restricted instances that would enable one to prove such an improved bound. Before we define these

restricted instances, we give a geometric representation of an UFP instance on paths that was introduced in

[7]. Given an UFP instance, we construct a top-drawn drawing of the instance as follows. We represent each

request Ri using an axis-parallel rectangle whose start and end points are the start and end points of the request

and whose height is equal to the demand di. Moreover, we draw the rectangle representing Ri underneath the

capacity profile so that its top edge has y-coordinate equal to c(e), where e is the bottleneck edge of Ri (see

Figure 4). A set of rectangles that do not overlap when top-drawn gives us a set of requests that is feasible.

Bonsma et al. [7] show that any feasible UFP solution has a subset of comparable weight whose corresponding

top-drawn rectangles do not overlap. We show in the following theorem that there is a similar connection

between feasible fractional solutions to UFP-LP and feasible fractional solutions to the standard LP for the

RIS problem on top-drawn instances. We prove Theorem 4.2 in Section 4.3.

Theorem 4.2. If the integrality gap of the standard LP for the RECTANGLE INDEPENDENT SET problem is at
most α for top-drawn instances, the integrality gap of UFP-LP is O(α) for instances of UFP on paths in which
all requests are big.

4.1 Bounding the Integrality Gap

In this section, we show an O(log n) upper bound on the integrality gap of UFP-LP and Compact-LP for UFP

instances on paths.

Theorem 4.3. The LP relaxation Compact UFP-LP has O(log n) integrality gap for instances of UFP on
paths.

Corollary 4.4. The LP relaxation UFP-LP has O(log n) integrality gap for instances of UFP on paths.

Given a fractional solution x to the LP of profit OPTf , we show how to round it to obtain an integral

solution of comparable profit. For any set S of requests, let profit(S), the profit of S be
�

i∈S wixi. We round

“small” and “big” jobs separately; note that one of profit(S) or profit(B) is at least OPT/2.

Lemma 4.5. If profit(S) ≥ OPT/2, there is a poly-time algorithm to find an integral solution of value Ω(OPT).

Lemma 4.5 follows immediately from Corollary 1.3, as for each request Ri ∈ S , we have di ≤ (3/4)mine∈Pi ce.
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Top-Drawn-Rectangle-LP [AGLW’13] 
 
max !i wi xi 
 
! i: p ! Rect(i) xi " 4  for all p 
 
xi ! [0,1]  for all i 

B(e) : demands with e on their path 



Theorem: Integrality gap of  Rank-LP is O(log n) 
 
 
Theorem: [AGLW’13] Integrality gap of  Top-Drawn-
Rectanlge LP is O(1) for unweighted instances 
 
Theorem: Integrality gap of  Rank-LP is O(#) where # is 
integrality gap of  Top-Drawn-Rectangle LP 
 
Question: Is the integrality gap of  Rank-LP O(1)? 



Theorem: Integrality gap of  Rank-LP is O(log n) 
 
 
Theorem: [AGLW’13] Integrality gap of  Top-Drawn-
Rectanlge LP is O(1) for unweighted instances 
 
Theorem: Integrality gap of  Rank-LP is O(#) where # is 
integrality gap of  Top-Drawn-Rectangle LP 
 
Question: Is the integrality gap of  Rank-LP O(1)? 
 
Why do I care?  
Could perhaps extend to submodular function 
maximization. 
 



UPF on Trees: O(log2 n) combinatorial approximation 
 
Is there a better approximation? 
 
LP Relaxation? 


