
Kirk Pruhs

Hallucination Helps:
Energy Efficient

Virtual Circuit Routing

Workshop of
Flexible Network Design

July 2013

Covered Papers
�  Past:

�  [WAOA2012] Anupam Gupta, Ravishankar Krishnaswamy, Kirk
Pruhs: Online Primal-Dual for Non-linear Optimization with
Applications to Speed Scaling. Workshop on Approximation and
Online Algorithms, 2012: 173-186

�  [MedAlg2012] Nikhil Bansal, Anupam Gupta, Ravishankar

Krishnaswamy, Viswanath Nagarajan, Kirk Pruhs, Cliff Stein:
Multicast Routing for Energy Minimization Using Speed Scaling.
Mediterranean Conference on Algorithms 2012: 37-51

�  Present
�  Antonios Antoniadis, Sungjin Im, Ravishankar Krishnaswamy,

Benjamin Moseley, Viswanath Nagarajan, Kirk Pruhs, Cliff Stein,
Hallucination Helps: Energy Efficient Virtual Circuit Routing,
submitted to the ACM-SIAM Symposium on Discrete Algorithms
2014.

�  Future
�  Ravishankar Krishnaswamy, Viswanath Nagarajan, Kirk Pruhs,

Cliff Stein, No title as of yet, hand written notes

Green Computing
 Revolution

�  Essentially all IT is being redesigned with
energy efficiency as a first order resource

�  Examples

�  Emergence of multicore chips
�  Emergence of Solid State Disks (SSD)
�  Speed Scalable processors and maybe disks
�  Power heterogeneous architectures
�  Google, Microsoft, etc. completely

redesigning data centers and their
management for energy efficiency

�  Cisco redesigning routers for energy
efficiency

"What matters most to the computer designers at Google is not speed,
but power, low power, because data centers can consume as much
electricity as a city."--- Eric Schmidt, Former CEO

Long Term Goal Sales Pitch
�  Build a theory of energy as a computational

resource that allows software engineers to reason
abstractly about power, energy and temperature
as effectively as they can currently abstractly
reason about time and space

But ...
�  However, it seems that due

to the fact that the physics
of energy is quite different
than that of time and space
�  e.g. there is no energy

hierarchy theorem

�  We need different models to
study energy as a
computational resource
than we use for time and
space

Current State of the Theory: Green Computing
Algorithmics

� Algorithmic principles for managing resources
with different energy characteristics using
some mechanism to achieve an energy
related objective

� Network Routing
Paradigm

�  Datagram
packet routing
� hard?

�  Virtual circuit
routing

Energy Efficient Network Routing Research Program:
This Talk

�  Power
Management
Mechanism

�  Intra-device power
heterogeneity

�  Inter-device power
heterogeneity
�  Future work

�  Shutdown

Dominant Energy Management Mechanisms

�  1. Power heterogeneity

�  Physics fact: Higher performance
comes at a cost of energy efficiency

�  Management: Use higher

performance mode/device when the
increased energy per unit
computation/communication gives
sufficient performance returns

�  Heterogeneity can be intra-device or
inter-device

�  2. Shutdown

Network Routing Paradigms

� Datagram packet routing

� Virtual circuit routing

Virtual Circuit Model
� Network = undirected multigraph

Virtual Circuit Model
� Network = undirected multigraph

�  Input:
�  Requests for connections arrive over time
�  Request i consists of:

� Source node si

� Destination node ti

� Load (without great loss of generality assume
unit loads for this talk)

si

ti

Virtual Circuit Model
�  Network = undirected multigraph

�  Input:
�  Requests for connections arrive over time
�  Request i consists of:

�  Source node si

� Destination node ti

�  Load (without great loss of generality assume
unit loads for this talk)

�  Output: In response to request i, a (si, ti) path
must be specified

si

ti

Standard Energy Model
�  Power = static power + dynamic power

�  = σ+ speedα

�  Speed in [0, ∞)
� α in [1.1, 3]

�  = σ+ loadα

�  A shutdown device uses no power

�  For reasons of mathematical tractability,
assume power management happens on
edges
�  Later we’ll say something about about the case

where power management happens on nodes

Energy Efficient Routing Problem [AAZ2010]

� Feasible Solution: A routing of all
requests

� Objective: Minimize aggregate
power over all edges
�  = Σedges e powered on (σ+ load(e)α)

Warm-up Problem 1:

� Assume static power σ= 0
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

s t

σ+ loadα

Warm-up Problem 1:

� Assume static power σ= 0
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

� Answer: Put 1/3 of the paths on
each edge

s t

σ+ loadα

Warm-up Problem 2:

� Assume static power σ= 0
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

s t

σ+ loadα

Warm-up Problem 2:

� Assume static power σ= 0
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

� Answer: The aggregate power on
each of the three s-t paths should
be identical

s t

σ+ loadα

Warm-up Problem 3:

� Assume static power σ= 0

� Question: What is the obvious
online algorithm?

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 3:
�  Assume static power σ= 0

�  Question: What is the obvious
 online algorithm?

�  Answer: Greedy Water filling = route
each request in such a way that the
aggregate increase in power is
minimized (shortest path
computation)

�  Theorem [AAFPW1997] Water filling is
O(1)-competitive

�  Proof[WAOA2012] : convex
programming duality

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 4:

� Assume static power σ= ∞
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

s t

σ+ loadα

Warm-up Problem 4:

� Assume static power σ= ∞
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

� Answer: Use only 1 edge, and
shutdown the rest

s t

σ+ loadα

Warm-up Problem 5:

� k requests
� Many parallel edges
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

s t

σ+ loadα

Warm-up Problem 5:
� k requests
� Many parallel edges
� Assume all si = s
� Assume all ti = t

� Question: What is the optimal
solution for this network?

� Answer: Have q paths on each of
k/q edges, and shutdown the rest
of the edges
�  q = σ1/α is load at which dynamic

power = static power

s t

σ+ loadα

Literature
�  Theorem: Online greedy water filling algorithm is

O(1)-competitive when static power is zero (or
shutdown isn’t possible)

�  Theorem[AAZ2010]: There is a poly-time poly-log-
approximation algorithm
�  Algorithm complicated and uses big hammers
�  The poly in poly-log-approximation is sufficiently large

that it is not explicitly calculated
�  Hard to o(log ¼ k) approximate using standard

complexity theoretic assumptions

�  Theorem[MedAlg2012]: On instances with a single
source,
�  a poly-time O(1)-approximation using grouping and min-

cost flow
�  an O(log 2α+1 k)-competitive online algorithm

Results in Our SODA Submission

�  Theorem: There is a poly-time O(logα k)-
approximation algorithm
�  Combination of simple combinatorial

algorithms
�  Analysis follows directly from flow-cut gap for

multi-commodity flow (the only hammer)
�  The poly in poly-log-approximation is small

�  Theorem: An Õ(log 3α+1 k)-competitive
online algorithm
�  Natural minimal extension of offline algorithm
�  However, one part of the analysis is more

involved than in offline case

Online/Offline Algorithm

�  Power-on a Steiner forest to guarantee
minimal connectivity

�  Hallucination:
�  Sparsification: With probability Θ(log k)/q each

request pair hallucinates its demand is q
�  Water filling algorithm is used to route this

“hallucinated flow”
�  The “hallucinated” edges used to route

hallucinated flow are powered on

�  Water filling algorithm is used to route flow on
the “powered on” edges

Offline Analysis

� Theorem: The algorithm is O(logαk)-
approximate
�  Proof: Both the static power and the

dynamic power are O(logαk)*Opt

Offline Analysis: Static Power

� Lemma: The static power for the Steiner
forest edges is O(1)*Opt

� Lemma: The static power for the
hallucinated edges is O(logα k) * Opt
�  Proof: The water filling that is used to route

hallucinated flow is O(1)-competitive and
sparsification doesn’t increase the
expected cost for Opt on any edge by
more than O(logα k) factor on

Offline Analysis: Dynamic Power: via Congestion (1)

�  Capacification: Each Steiner edge is given capacity
q log k and each hallucinated edge is given
capacity q

�  Defn: Sparsity of a cut Q = capacity of edges in Q /
demand across Q

�  Lemma: The sparsity of every cut is Ω(log k)
�  Proof:

� Tree edges have enough capacity if there is low
demand across a cut.

� Hallucinated edges have enough capacity if
there is high demand across a cut.

� Union bound

Offline Analysis: Dynamic Power: via Congestion (2)

�  Corollary: There is a O(1)-congestion routing
�  Proof: flow-cut gap for multi-commodity flow

�  Lemma: The dynamic power used by the algorithm is
O(logαk) *Opt
�  Proof: There is a routing with O(1)-congestion, and

hence flow O(q log k) on every powered-on edge, and
the water filling algorithm that is used to route actual
flow is O(1)-competitive

Recall Algorithm

�  Power-on a Steiner forest to guarantee
minimal connectivity

�  Hallucination:
�  Sparsification: With probability Θ(log k)/q each

request pair hallucinates its demand is q
�  Water filling algorithm is used to route this

hallucinated flow
�  The “hallucinated” edges used to route

hallucinated flow are powered on

�  Water filling algorithm is used to route flow on
the “powered on” edges

Online Analysis: Dynamic Power

�  Lemma: The water filling algorithm is O(1)-
approximate against any priority routing
�  Priority routing = each path only routes along

edges powered on by the online algorithm by
the time that request arrived

�  Proof: Same analysis as in [WAOA2012]

�  Essentially all the technical difficulty: Need to
prove that Opt can’t greatly profit from
powering on edges before online does
�  To mimic the analysis in the offline case, we

need to show that there is a low congestion
priority routing

Strategy to Show Low Congestion Priority Routing

Big

small

Optimal Primal Maximum
Priority Flow LP Value

Optimal Dual Sparsest
Priority Cut LP Value

Optimal Primal Maximum
Priority Flow ILP Value

Optimal Dual Sparsest
Priority Cut “ILP” Value

Argue this is big as
in the offline case

Argue this “integrality gap” is small

gap is obviously small

=

Maximum Priority Multicommodity Flow LP

�  f(p) = flow routed on path p
�  Priority component: Pi = priority (si, ti) paths

�  Objective: Fractionally route as large of a fraction of
each unit demand as possible

�  wlog capacities are 1 by duplicating edges

Dual LP: Sparsest Priority Cut

� “ILP” = sparsest priority cut problem
�  de = 1/(number of priority cut requests) if e is

in Q, and 0 otherwise
� ηi = 1/(number of priority cut requests) if

request i is cut, and 0 otherwise

�  Defn: (si, ti) are priority
cut by edges Q if
removing Q makes them
disconnected at time i

�  Defn: Priority sparsity of
cut Q = |Q|/ (number of
requests priority
separated by Q

Crux of Offline Analysis

�  Lemma: The priority sparsity of every cut is Ω(1)
�  Proof: Slightly more involved than offline case

�  Lemma: The priority cut “integrality gap” is
O(log2 k loglog k)
�  Comment: No good reason to think this is tight
�  Proof:

� Geometric scaling to make ηi variables equal at
a cost of a log k factor (reduction to multicut)

� Use region growing approach to get “integral” de
variables losing a O(log k loglog k)

�  Corollary: There is a priority flow that has
congestion O(log2 k loglog k)

�  Theorem: The online algorithm is Õ(log 3α+1 k)-
competitive

Say something about:
� Future paper

� Ravishankar Krishnaswamy, Viswanath
Nagarajan, Kirk Pruhs, Cliff Stein, No title
as of yet, hand written notes

� Assumes power management is on the
vertices/router instead of the edges/
links
�  In practice it seems more likely that power

management will be more prevalent in
routers than in links

What Power Management at Vertices is
Different/Harder Mathematically/
Algorithmically

�  Assume flow of 1 emanating
from each leaf of a star-shaped
Steiner tree, and you have to
aggregate flows into groups of
size q
�  There is a low edge congestion

routing
�  There is not a low vertex

congestion routing

�  Upshot: The algorithm has to
pick a Steiner forest so that the
resulting vertex congestion is
minimal

Steiner Tree

Main Result
� Theorem: There is a poly-time poly-log-

approximate algorithm for energy
efficient routing if the power
management happens at the nodes

Research Agenda for This Fall

� Question 1: Can we obtain an analysis
that doesn’t go via congestion?

� Question 2: Can we extend our results to
the case that there is inter-device power
heterogeneity?

Thanks to all my collaborators!
Thanks for listening!

