### Multiroute Flows & Node-weighted Network Design

#### Chandra Chekuri

Univ of Illinois, Urbana-Champaign

Joint work with Alina Ene and Ali Vakilian

# Survivable Network Design Problem (SNDP)

#### Input:

- undirected graph G=(V,E)
- integer requirement r(st) for each pair of nodes st

**Goal:** *min-cost* subgraph H of G s.t H contains r(st) *disjoint* paths for each pair st



Steiner forest for pairs



 $r(s_1t_1) = r(s_2t_2) = 2$  and  $r(s_3t_3) = 1$ 



# **SNDP** Variants

#### Requirement

- EC-SNDP : paths are required to be edge-disjoint
- Elem-SNDP: element disjoint
- VC-SNDP: vertex/node disjoint

#### Cost

- edge-weights
- node-weights

# Known Approximations

|                | Edge Weights                    | Node Weights                                                        |
|----------------|---------------------------------|---------------------------------------------------------------------|
| Steiner forest | <mark>2 - 1/k</mark> [AKR'91]   | O(log n) [KleinRavi'95]                                             |
| EC-SNDP        | 2 [Jain'98]                     | O(k log n) [Nutov'07]                                               |
| Elem-SNDP      | <b>2</b> [FJW'01]               | O(k log n) [Nutov'09]                                               |
| VC-SNDP        | O(k <sup>3</sup> log n) [CK'09] | <mark>O(k<sup>4</sup> log<sup>2</sup> n)</mark><br>[CK'09+Nutov'09] |

 $k := \max_{st} r(st)$ 



#### Cut-LP for EC-SNDP





**Theorem:** [Jain] Integrality gap of Cut-LP is 2

### Multi-route flows

 $\mathcal{P}(st) = \{ p \mid p \text{ is a } st \text{ path } \}$ 

s-t flow, path-based defn  $f : \mathcal{P}(st) \rightarrow \mathcal{R}^+$ 

f(p) flow on path p

 $\mathcal{P}(st, h) = \{ \mathbf{p} = (p_1, p_2, ..., p_h) \mid each \ p_j \in \mathcal{P}(st) \text{ and the } paths \text{ are edge-disjoint } \}$ 

h-route s-t flow  $f : \mathcal{P}(st, h) \to \mathcal{R}^+$ 

**f(p)** flow on path-tuple **p** 



# Multiroute flows: basic theorem

[Kishimoto, Aggarwal-Orlin]

**Theorem:** An acyclic edge s-t flow  $\mathbf{x} : \mathbf{E} \to \mathcal{R}^+$  with value v can be decomposed into a h-route flow *iff*  $\mathbf{x}(\mathbf{e}) \leq \mathbf{v}/\mathbf{h}$  for all edges e



### Multi-route flow LP for SNDP

 $\begin{array}{l} \displaystyle \min \sum_{e} c(e) \; x(e) \\ \\ \displaystyle \sum_{p \in \mathcal{P}(st, \; r(st))} f(p) \geq 1 & \text{ for all st} \\ \\ \displaystyle \sum_{p \in \mathcal{P}(st, \; r(st)):e \; \in \; p} \; f(p) \leq x(e) & \text{ for all } e, \; st \\ \\ \displaystyle 0 \leq x(e) \end{array}$ 

### Multi-route flow LP for SNDP

$$\begin{split} & \min \sum_{e} c(e) \; x(e) \\ & \sum_{p \; \in \; \mathcal{P}(st, \; r(st))} f(p) \geq 1 & \text{ for all st} \\ & \sum_{p \; \in \; \mathcal{P}(st, \; r(st)):e \; \in \; p} \; f(p) \leq x(e) & \text{ for all } e, \; st \\ & 0 \leq x(e) \end{split}$$

Solving the LP: Separation oracle for dual is *min-cost* s-t flow

### Cut-LP vs Multi-route LP

**Claim:** Cut-LP and MRF-LP are "equivalent" Follows from multiroute-flow theorem

# Prize-collecting SNDP

#### Input:

- undirected graph G=(V,E)
- integer requirement r(st) for each pair of nodes st
- non-negative penalty  $\pi(st)$  for each pair st
- **Goal:** subgraph H of G to minimize  $cost(H) + \pi(S)$  where S is set of unsatisfied pairs in H

*All-or-nothing*: **st** satisfied if **r(st)** disjoint paths in **H** 

# Prize-collecting SNDP

[BienstockGSW'93] Scaling trick to obtain algorithm for PC-Steiner-tree from Steiner-tree LP

[SSW'07, NSW'08] PC-SNDP for higher connectivity

[HKKN'10] First constant factor for PC-SNDP in allor-nothing model via "stronger" LP.

# Prize-collecting SNDP

[BienstockGSW'93] Scaling trick to obtain algorithm for PC-Steiner-tree from Steiner-tree LP

[SSW'07, NSW'08] PC-SNDP for higher connectivity

[HKKN'10] First constant factor for PC-SNDP in allor-nothing model via "stronger" LP.

**Claim:** Scaling trick of [BGSW'93] works easily for PC-SNDP via MRF-LP

"stronger" LP of [HKKN'10] equivalent to MRF-LP

$$\begin{split} \min \sum_{e} c(e) \ x(e) + \sum_{st} \pi(st) \ z(st) \\ \sum_{\mathbf{p} \in \mathcal{P}(st, \ r(st))} f(\mathbf{p}) \geq 1 \text{-} \ z(st) \quad \text{for all st} \\ \sum_{\mathbf{p} \in \mathcal{P}(st, \ r(st)):e \ \in \ \mathbf{p}} \ f(\mathbf{p}) \leq x(e) \ \text{for all } e, \ st \\ x(e) \geq 0 \quad \text{for all } e \end{split}$$

$$\begin{split} \min \sum_{e} c(e) \ x(e) + \sum_{st} \pi(st) \ z(st) \\ \sum_{p \in \mathcal{P}(st, \ r(st))} f(p) \geq 1 \text{-} \ z(st) \quad \text{for all st} \\ \sum_{p \in \mathcal{P}(st, \ r(st)):e \in p} f(p) \leq x(e) \text{ for all } e, \text{ st} \\ x(e) \geq 0 \quad \text{for all } e \end{split}$$

#### **Rounding:**

- $A = \{ st | z(st) \ge \frac{1}{2} \}$
- Pay penalty for pairs in A
- Connect pairs *not* in A

$$\begin{split} \min \sum_{e} c(e) \ x(e) + \sum_{st} \pi(st) \ z(st) \\ \sum_{\mathbf{p} \in \mathcal{P}(st, \ r(st))} f(\mathbf{p}) \geq 1 \text{-} \ z(st) \quad \text{for all st} \\ \sum_{\mathbf{p} \in \mathcal{P}(st, \ r(st)): e \in \mathbf{p}} f(\mathbf{p}) \leq x(e) \text{ for all } e, \text{ st} \end{split}$$

 $x(e) \geq 0 \quad \text{for all } e$ 

#### **Rounding:**

- $A = \{ st | z(st) \ge \frac{1}{2} \}$
- Pay penalty for pairs in A
- Connect pairs *not* in A

#### Analysis:

- Penalty for pairs in A is  $\leq 2OPT$
- x'(e) = min{1,2x(e)} is feasible for MRF-LP to connect pairs not in A

Also extends easily to "submodular" penalty functions Use Lovasz-extension with variables z(st) ([Chudak-Nagano'07] did this for Steiner tree)

Main message: [0,1] variables instead of [0,k] variables

# Another "easy" application of multi-route flows

[Srinivasan'99] *Dependent* randomized rounding for multipath-routing to minimize congestion

No need for dependent rounding. [Raghavan-Thompson'87] style independent rounding works with multi-route flow decomposition

#### Advantages:

- Simpler and transparent
- Allows improvement via Lovasz-Local-Lemma for the short-paths case

# Node-Weighted SNDP

# Node-Weighted SNDP

[Klein-Ravi'95] Node-weighted Steiner tree/forest

- O(log n) approximation via "spiders"
- Reduction from Set Cover to show  $\Omega(\log n)$  hardness

# Node-Weighted SNDP

[Nutov'07,Nutov'09] Node-weighted SNDP

- O(k log n) approximation via generalization of spiders and augmentation framework of [Williamson etal]
- Combinatorial algorithms, not LP based

### Advantages of LP-approach

[Guha-Moss-Naor-Schieber'99] LP gap of O(log n) for NW Steiner tree/forest

[Demaine-Hajia-Klein'09] LP gap of O(1) for NW Steiner tree/forest in planar graphs

Via [BGSW'93] similar bounds for NW PC-ST/SF

# LP for NW SNDP

Not clear! Why?

# LP for NW SNDP

Not clear! Why?

EC-SNDP for a *single pair* is NP-Hard for large **k** 

- $\Omega(\log n)$  hardness: easy reduction from set cover
- [Nutov'07] Related to bipartite k-densest-subgraph problem. Polylog approx unlikely.
- Consequence: Approx ratio depends on **k**

**Open:** approximability of single-pair for fixed **k** 

## MRF-LP for node weights

$$\begin{split} & \min \sum_{v} c(v) \; x(v) \\ & \sum_{p \in \mathcal{P}(st, \; r(st))} f(p) \geq 1 \; \text{for all st} \\ & \sum_{p \in \mathcal{P}(st, \; r(st)): v \; \in \; p} \; f(p) \leq x(v) \; \text{for all } v, \; \text{st} \\ & 0 \leq x(v) \end{split}$$

# MRF-LP for node weights

 $min \sum_{v} c(v) x(v)$ 

 $\sum_{\mathbf{p} \in \mathcal{P}(st, r(st))} f(\mathbf{p}) \geq 1$  for all st

 $\sum_{p \in \mathcal{P}(st, r(st)): v \in p} f(p) \leq x(v)$  for all v, st

 $x(v) \ge 0$  for all v

Solving MRF-LP for EC-SNDP is hard

MRF-LP can be solved in poly-time for VC-SNDP!

Can solve MRF-LP for EC-SNDP within a factor of k

# Integrality gap of MRF-LP

**Theorem:** Integrality gap of MRF-LP is O(k log n) for EC-SNDP and Elem-SNDP

**Theorem:** Integrality gap of MRF-LP is O(k) for EC-SNDP and Elem-SNDP on planar graphs

Results extend to VC-SNDP and PC-SNDP via reductions

# Approximations for SNDP

|                | Edge Weights                                   | Node Weights                                                        | Node-Weights<br>Planar Graphs |
|----------------|------------------------------------------------|---------------------------------------------------------------------|-------------------------------|
| Steiner forest | <mark>2 - 1/k</mark> [AKR'91]                  | <mark>O(log n)</mark><br>[KleinRavi'95]                             | <mark>O(1)</mark> [DHK'09]    |
| EC-SNDP        | 2 [Jain'98]                                    | <mark>O(k log n)</mark><br>[Nutov'07]                               | O(k)                          |
| Elem-SNDP      | 2 [FJW'01]                                     | <mark>O(k log n)</mark><br>[Nutov'09]                               | O(k)                          |
| VC-SNDP        | <mark>O(k<sup>3</sup> log n)</mark><br>[CK'09] | <mark>O(k<sup>4</sup> log<sup>2</sup> n)</mark><br>[CK'09,Nutov'09] | O(k <sup>4</sup> log n)       |

Approx ratios for prize-collecting problems within O(1) for all probs.

### Proving Integrality Gap for MRF-LP

- Augmentation framework [Williamson etal]
- Yet another LP (Aug-LP)
- Spiders and dual-fitting for general graphs following ideas from [Guha etal'99, Nutov'07,'09]
- Primal-dual for planar graphs following [Demaine-Hajia-Klein'09]

Some subtle technical issues

 $r(s_1t_1) = r(s_2t_2) = 2$  and  $r(s_3t_3) = 1$ 



 $r(s_1t_1) = r(s_2t_2) = 2$  and  $r(s_3t_3) = 1$ 

Iteration 1

Node-weighted Steiner forest problem



 $r(s_1t_1) = r(s_2t_2) = 2$  and  $r(s_3t_3) = 1$ 



Iteration 2

Increase connectivity by 1 for  $s_1t_1$  and  $s_2t_2$ 

Residual graph

Covering skewsupermodular function (but arising from proper func) in residual graph

 $r(s_1t_1) = r(s_2t_2) = 2$  and  $r(s_3t_3) = 1$ 



Iteration 2

Increase connectivity by 1 for  $s_1t_1$  and  $s_2t_2$ 

Residual graph

Covering skewsupermodular function (but arising from proper func) in residual graph

 $r(s_1t_1) = r(s_2t_2) = 2$  and  $r(s_3t_3) = 1$ 



# Augmentation Problem

 $X_{i-1}$ : nodes selected in iterations 1 to i-1  $E_{i-1}$ : edges in  $G[X_{i-1}]$ ,  $G_i$ : residual graph  $G \setminus E_{i-1}$  $f_i$  is residual covering function  $f_i(A) = 1$  if A seps st with  $r(st) \ge i$  and  $|\delta_{E_{i-1}}(A)| = i-1$ **Problem:** find min-cost set of nodes to cover  $f_i$  in  $G_i$ (cost of nodes in  $X_{i-1}$  to 0)

### Augmentation LP for phase i

 $min \sum_{v} c(v) x(v)$ 

 $\sum_{v \in I(A)} x(v) \ge f_i(A)$  for all A

 $x(v) \geq 0 \qquad \qquad \text{for all } v$ 



### Augmentation LP for phase i

 $min \sum_{v} c(v) x(v)$ 

 $\sum_{v\,\in\,\varGamma(S)} x(v) \geq f_i(A) \quad \text{for all } A$ 

 $x(v) \ge 0$  for all v

**Theorem:** Integrality gap is O(log n) for general graphs and O(1) for planar graphs.

If (f,x) is feasible for MRF-LP then x is feasible for Aug-LP

### Augmentation LP for phase i

 $min \sum_{e} c(v) x(v)$ 

 $\sum_{v \in \varGamma(S)} x(v) \ge f_i(A)$  for all A

 $x(v) \ge 0$  for all v

**Theorem:** Integrality gap is O(log n) for general graphs and O(1) for planar graphs.

If (f,x) is feasible for MRF-LP then x is feasible for Aug-LP

Caveat: Integrality gap is unbounded for general skew-supermodular function!

# Analysis Aug-LP

- Spiders for general graphs via dual fitting
- Primal-dual for planar graphs
  - Useful lemma on *node-minimal* augmentation



[Williamson etal] average degree of sets in C wrt to edges in an *edge-minimal* feasible solution is  $\leq 2$ 

**Lemma:** Number of nodes adjacent to sets in C in a *node-minimal* feasible solution is at most 4 |C|



**Lemma:** Number of nodes adjacent to sets in C in a *node-minimal* feasible solution is at most 4 |C|

By *planarity* average # of nodes that a set  $C \in C$  is adjacent to is O(1)

Thank You!