Centrality of Trees for Capacitated k-Center

Hyung-Chan An

École Polytechnique Fédérale de Lausanne

July 29, 2013

Joint work with Aditya Bhaskara & Ola Svensson Independent work of Chandra Chekuri, Shalmoli Gupta & Vivek Madan

• Given a metric on nodes (called servers and clients)

- Need to connect every client to a server
- Need to choose a subset of servers to be used

k-center k-median

facility location

- Given a metric on nodes (called servers and clients)
 - Need to connect every client to a server
 - Need to choose a subset of servers to be used

k-center	minimize <i>maximum</i> connection cost
k-median	
facility location	

- Given a metric on nodes (called servers and clients)
 - Need to connect every client to a server
 - Need to choose a subset of servers to be used

k-center	minimize <i>maximum</i> connection cost
k-median	minimize average connection cost
facility location	

- Given a metric on nodes (called servers and clients)
 - Need to connect every client to a server
 - Need to choose a subset of servers to be used

k-center	minimize <i>maximum</i> connection cost
k-median	minimize average connection cost
facility location	minimize <i>average</i> connection cost opening cost instead of hard budget

- Uncapacitated problems
 - Assumes an open server can serve unlimited # clients

	complexity-theoretic lower bound	approximation ratio
k-center	2	2
k-median	1.735	2.733
facility location	1.463	1.488

[Gonzales 1985] [Hochbaum & Shmoys 1985] [Jain, Mahdian & Saberi 2002] [Li & Svensson 2013] [Guha & Khuller 1999] [Li 2011]

Capacitated problems

	complexity-theoretic lower bound	approximation ratio
k-center	3	O(1)
k-median	1.735	
facility location	1.463	5

[Cygan, Hajiaghayi & Khuller 2012] [Jain, Mahdian & Saberi 2002] [Guha & Khuller 1999] [Bansal, Garg & Gupta 2012]

Bridging this discrepancy

Þ

- How does the capacity impact the problem structure?
- How can we use mathematical programming relaxations?

The problem

- Capacitated k-center
 - Very good understanding of the uncapacitated case
 - Reduced to a combinatorial problem on unweighted graphs

Problem

Given k and a metric cost c on V with vertex capacities L, choose k centers to open, along with an assignment of every vertex to an open center that:

- minimizes longest distance between a vertex & its server
- each open center v is assigned at most L(v) clients

Main result

- Simple algorithm with clean analysis
 - Improvement in approximation ratio & integrality gap (9-approximation)
 - Tree instances

Reduction to unweighted graphs

- Guess the optimal solution value *t*
- Consider a graph G representing admissible assignments: G has an edge (u, v) iff $c(u, v) \leq \tau$

Will either

- certify that G has no feasible assignment
- ▶ find an assignment that uses paths of length $\leq \rho$
 - ightarrow
 ho-approximation algorithm

Standard LP relaxation

Feasibility LP

- Assignment variables x_{uv}
- Opening variables y_u

 $\sum_{u \in V} y_u = k;$ $x_{uv} \leq y_u, \quad \forall u, v \in V;$ $\sum_{v:(u,v)\in E} x_{uv} \leq L(u) \cdot y_u, \quad \forall u \in V;$ $\sum_{u:(u,v)\in E} x_{uv} = 1, \quad \forall v \in V;$ $0 \leq x, y \leq 1.$

Standard LP relaxation

Unbounded integrality gap

Þ

k = 3, uniform capacity of 2

Standard LP relaxation

Unbounded integrality gap

k = 3, uniform capacity of 2

Lemma (Cygan et al.)

It suffices to solve this combinatorial problem only for connected graphs.

Outline

- Basic definitions
 - distance-r transfer
 - tree instance
- Solving a tree instance
- Applications

Þ

Future directions

What does it mean to round an LP soln?

- (x^*, y^*) : LP solution
- ▶y* fractionally opens vertices
- ▶ If y* integral, done

•We will "transfer" openings between vertices to make them integral

- No new opening created
- Need to ensure that a small-distance assignment exists

What does it mean to round an LP soln?

- We will "transfer" openings between vertices to make them integral
 - Need to ensure that a small-distance assignment exists
 - transfers in small vicinity
 - Iocally available capacity does not decrease

Distance-r transfer

- Fractionally open vertex u has "fractional capacity" $L(u)y_u$
- Our rounding procedure "redistributes" these frac. cap.
- A distance-r transfer give a redistribution where locally available capacity does not decrease

Definition

y' is a distance-r transfer of y if

•
$$\sum_{u} y'_{u} = \sum_{u} y_{u}$$

• $\sum_{u \in U} L(u) y_u \leq \sum_{v:d(v,U) \leq r} L(v) y'(v)$ for all $U \subset V$

Distance-r transfer

y' is a distance-r transfer of y if

•
$$\sum_{u} y'_{u} = \sum_{u} y_{u}$$

• $\sum_{u \in U} L(u) y_u \leq \sum_{v: d(v,U) \leq r} L(v) y'(v)$ for all $U \subset V$

Distance-r transfer

Lemma

If we can find a distance-8 transfer of an LP solution, we obtain a 9-approximation solution

Definition

y' is a distance-r transfer of y if

•
$$\sum_{u} y'_{u} = \sum_{u} y_{u}$$

• $\sum_{u \in U} L(u) y_u \leq \sum_{v: d(v,U) \leq r} L(v) y'(v)$ for all $U \subset V$

Tree instance

Definition

A tree instance is a rooted tree of fractionally open vertices where every internal node v is fully open: i.e. $y_v = 1$

- Focusing on servers only
- Why is this interesting?

Reduction to a tree instance

Lemma (Khuller & Sussmann, informal)

A connected graph can be partitioned into small-diameter clusters

Reduction to a tree instance

Lemma

If we can find an integral distance-r transfer of a tree instance, we obtain a (3r+3)-approximation algorithm for capacitated k-center

Want: distance-2 transfer of a tree instance

Example (uniform capacity)

Example (uniform capacity)

- Closing a fully open center
 - Useful strategy; but its viability depends on the choice of open centers in the neighborhood
 - Our algorithm departs from previous approaches by using a simple *local* strategy for every internal node

Our algorithm

- Locally round a height-2 subtree to obtain a smaller instance
- Would want to open Y+1 centers in the subtree
 - Instead will open either [Y]+1 or [Y]+1 centers
 - Choose [Y]+1 centers and commit now to open them
 - Choose one additional candidate for which the decision is postponed

Y: total opening of children (2.1)

Our algorithm

▶ [Y]+1 centers to commit

Our algorithm

Þ

- ▶ [Y]+1 centers to commit
 - Choose [Y] children of highest capacities

Our algorithm

D

- [Y]+1 centers to commit
 - Choose [Y] children of highest capacities
 - Between the next highest and the subtree root, choose the higher capacity

• Our algorithm

- Additional candidate
 - Would want to fractionally open the other node by Y-[Y]
 - This node becomes the candidate

Our algorithm

- Contract the subtree, replaced with a new node with
 - Capacity equal to the candidate
 - ▶ Opening Y [Y]
- Recursively solve the new instance; if the new node gets opened, the candidate gets opened

- Our algorithm
 - Choose highest capacity children, as many as allowed
 - Choose one more: root or next highest child
 - The other becomes the candidate
 - Contract the subtree into a new node
 - Recursively solve the new instance; if the new node gets opened, the candidate gets opened

- Natural algorithm
 - chooses highest-capacity nodes in a small vicinity and opens opportunity to the next highest

Correctness

- Candidate may be coming from deep inside the subtree
- Subtree root either gets opened or becomes the candidate

Optimal

Main result & applications

Lemma We can find an integral distance-2 transfer of a tree instance

Lemma If we can find an integral distance-r transfer of a tree instance, we obtain a (3r+3)-approximation algorithm for capacitated k-center

Theorem \exists **9**-approximation alg for capacitated k-center

Theorem \exists II-approximation alg for capacitated k-supplier Theorem \exists 9-approximation alg for budgeted-center w/ uniform cap.

Future directions

- Can we do better?
 - Integrality gap lower bound is 7
 - Our algorithm runs in three phases:
 - Preprocessing (finding connected components)
 - Reduction to a tree instance
 - Solving the tree instance
- {0, L}-instances
 - Inapproximability and integrality gap lower bound both comes from this special case
 - Better preprocessing gives a 6-approximation algorithm: improved integrality gap!

- Is there a better preprocessing for the general case?
- Is there a notion that incorporates these preprocessings?
- Would such a notion be applicable to other network location problems using similar relaxations?

Thank you.