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The gap problem

Que: If a geometry is not flat, how much symmetry can it have?

Often there is a gap between maximal and submaximal symmetry
dimensions, i.e. ∃ forbidden dimensions.

Example (Riemannian geometry in dim = n)

n max submax

2 3 1
3 6 4
4 10 8

≥ 5
(

n + 1
2

) (
n
2

)
+ 1

Darboux, Koenigs:
n = 2 case

Wang, Egorov:
n ≥ 3 case

For other signatures the result is the same, except the 4D case
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Parabolic geometry

We consider the gap problem in the class of parabolic geometries.

Parabolic geometry: Cartan geometry (G → M, ω) modelled on
(G → G/P, ωMC ), where G is ss Lie grp, P is parabolic subgrp.

Examples

Model G/P Underlying (curved) geometry

SO(p + 1, q + 1)/P1 sign (p, q) conformal structure
SLm+2/P1,2 2nd ord ODE system in m dep vars
SLm+1/P1 projective structure in dim = m

G2/P1 (2, 3, 5)-distributions
SLm+1/P1,m Lagrangian contact structures
Sp2m/P1,2 Contact path geometry

SO(m,m + 1)/Pm Generic (m,
(m+1

2

)
) distributions

EDS and Lie theory 2013 ? Fields Institute Gaps, Symmetry, Integrability ? Boris Kruglikov



Gaps and Symmetreis: Old and New
Symmetry and Integrability: Perspective

Introduction to the gap problem and parabolic geometries
Tanaka theory, Kostant’s BBW thm and our results

Known gap results for parabolic geometries

Geometry Max Submax Citation

scalar 2nd order ODE 8 3 Tresse (1896)
mod point

projective str 2D 8 3 Tresse (1896)

(2, 3, 5)-distributions 14 7 Cartan (1910)

projective str n2 + 4n + 3 n2 + 4 Egorov (1951)

dim = n + 1, n ≥ 2

scalar 3rd order ODE 10 5 Wafo Soh, Qu
mod contact Mahomed (2002)

conformal (2, 2) str 15 9 Kruglikov (2012)

pair of 2nd order ODE 15 9 Casey, Dunajski,
Tod (2012)
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Main results of Kruglikov & The (2012)

If the geometry (G, ω) is flat κH = 0, then its (local) symmetry
algebra has dimension dimG . Let S be the maximal dimension of
the symmetry algebra S if M contains at least one non-flat point.

Prev estimates of S: Čap–Neusser (2009), Kruglikov (2011)

Problem: Compute the number S

For any complex or real regular, normal G/P geometry we
give a universal upper bound S ≤ U, where U is algebraically
determined via a Dynkin diagram recipe.

In complex or split-real cases, we establish models with
dim(S) = U in almost all cases. Thus, S = U almost always,
exceptions are classified and investigated.

Moreover we prove local homogeneity of all submaximally
symmetric models near non-flat regular points.
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Sample of new results on submaximal symmetry dimension

Geometry Max Submax

Sign (p, q) conf geom
n = p + q, p, q ≥ 2

(n+2
2

) (n−1
2

)
+ 6

Systems 2nd ord ODE
in m ≥ 2 dep vars

(m + 2)2 − 1 m2 + 5

Generic m-distributions

on
(m+1

2

)
-dim manifolds

(2m+1
2

) {
m(3m−7)

2 + 10, m ≥ 4;

11, m = 3

Lagrangian contact str m2 + 2m (m − 1)2 + 4, m ≥ 3

Contact projective str m(2m + 1)

{
2m2 − 5m + 8, m ≥ 3;

5, m = 2

Contact path geometries m(2m + 1) 2m2 − 5m + 9, m ≥ 3

Exotic parabolic contact
structure of type E8/P8

248 147
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Tanaka theory in a nutshell

Input: Distribution ∆ ⊂ TM (possibly with structure on it) with
the weak derived flag ∆−(i+1) = [∆,∆−i ].

filtration ∆ = ∆−1 ⊂ ∆−2 ⊂ · · · ⊂ ∆−ν = TM, ν - depth

GNLA m = g−1 ⊕ g−2 ⊕ . . .⊕ g−ν , gi = ∆i/∆i+1

Graded frame bundle: G0 → M with str. grp. G0 ⊂ Autgr (m).

Tower of bundles: ...→ G2 → G1 → G0 → M. If finite, then

Output: Cartan geometry (G → M, ω) of some type (G ,H).

Tanaka’s algebraic prolongation: ∃! GLA g = pr(m, g0) s.t.

1 g≤0 = m⊕ g0.

2 If X ∈ g+ s.t. [X , g−1] = 0, then X = 0.

3 g is the maximal GLA satisfying the above properties.
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Tanaka’s prolongation of a subspace a0 ⊂ g0

Lemma

If a0 ⊂ g0, then a = pr(m, a0) ↪→ g = pr(m, g0) is given by

a = m⊕ a0 ⊕ a1 ⊕ . . . , where ak = {X ∈ gk : adkg−1
(X ) ⊂ a0}.

Let p ⊂ g be parabolic, so g =

m︷ ︸︸ ︷
g−ν ⊕ ...⊕

p︷ ︸︸ ︷
g0 ⊕ ...⊕ gν .

Theorem (Yamaguchi, 1993)

If g is semisimple, p ⊂ g is parabolic, then pr(m, g0) = g except for
projective (SLn/P1) and contact projective (Sp2n/P1) str.
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Example (2nd order ODE y ′′ = f (x , y , y ′) mod point transf.)

M : (x , y , p), ∆ = {∂p} ⊕ {∂x + p∂y + f (x , y , p)∂p}.
m = g−1 ⊕ g−2, where g−1 = g′−1 ⊕ g′′−1. Also, g0 ∼= R⊕ R.

Same as SL3/B data:

sl3 =

 0 1 2
-1 0 1
-2 -1 0

⇔ ⇔ × ×

sl3 = g−2 ⊕ g−1 ⊕
b=p1,2︷ ︸︸ ︷

g0 ⊕ g1 ⊕ g2 .g−1 = g′−1 ⊕ g′′−1, g0 ∼= R⊕ R

Yamaguchi: pr(m, g0) = sl3.
Any 2nd order ODE = (SL3,B)-type geom.
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Example ((2, 3, 5)-distributions)

Any such ∆ can be described as Monge eqn z ′ = f (x , z , y , y ′, y ′′).
M : (x , z , y , p, q), ∆ = {∂q, ∂x + p∂y + q∂p + f ∂z}, fqq 6= 0.
m = g−1 ⊕ g−2 ⊕ g−3 with dims (2, 1, 2), and g0 = gl2.

Same as
G2/P1 data:

⇔ 〈× •

Lie(G2) = g−3 ⊕ g−2 ⊕ g−1 ⊕
p1︷ ︸︸ ︷

g0 ⊕ g1 ⊕ g2 ⊕ g3

Yamaguchi pr(m, g0) = Lie(G2).
Any (2, 3, 5)-dist. = (G2,P1)-type geom.
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Example (Conformal geometry)

Let (M, [µ]) be sig. (p, q) conformal mfld, n = p + q. Here,
∆ = TM, m = g−1, and g0 = co(g−1).

Same as SOp+1,q+1/P1 data: if g =
(

0 0 1
0 Ip,q 0
1 0 0

)
, then

sop+1,q+1 =

 0 1 ·
-1 0 1
· -1 0

 ⇔

 〉 (n odd);

(n even).

sop+1,q+1 = g−1 ⊕
p1︷ ︸︸ ︷

g0 ⊕ g1

Yamaguchi pr(m, g0) = sop+1,q+1.
Any conformal geometry = (SOp+1,q+1,P1)-type geom.
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Harmonic curvature

Curvature: K = dω + 1
2 [ω, ω] ⇔ κ : G →

∧2(g/p)∗ ⊗ g.

Kostant:
∧2 g∗− ⊗ g =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

(as g0-modules)

Normality: ∂∗κ = 0. A simpler object is harmonic curvature κH :

κH : G0 → H2
+(m, g) (G0-equivariant)

(G → M, ω) is locally flat iff κH = 0.

Examples

Geometry Curvature κH
conformal Weyl (n ≥ 4) or Cotton (n = 3)

(2,3,5)-distributions Cartan’s binary quartic
2nd order ODE Tresse invariants (I ,H)
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Kostant’s version of Bott–Borel–Weil thm (1961)

Input: G/P & p-rep V. Output: H∗(m,V) as a g0-module.

Baston–Eastwood (1989): Expressed H2
+(m, g) (the space where

κH lives) in terms of weights and marked Dynkin diagrams.

Example (G2/P1 geometry ⇔ (2, 3, 5)-distributions)

Here, g0 = Z(g0)⊕ gss0 = C⊕ sl2(C) = gl2(C). The output of
Kostant’s BBW thm is:

H2(m, g) = 〈× •
−8 4

=
⊙

4(g1) =
⊙

4(R2)∗.

c.f. Cartan’s 5-variables paper (1910) via method of equivalence.
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General dim bound for regular normal parabolic geometries

φ ∈ H2
+, aφ0 = ann(φ) ⊆ g0, aφ = pr(g−, a

φ
0 ) = g− ⊕ aφ0 ⊕ aφ1 ⊕ . . .

Theorem

For G/P geom: dim(inf(G, ω)) ≤ inf
x∈M

dim(aκH(x)).

To maximize the r.h.s. decompose into g0-irreps: H2
+ =

⊕
i Vi ,

φ =
∑

i φi . Let vi ∈ Vi be the lowest weight vectors.

Proposition (Complex case)

max
06=φ∈H2

+

dim(aφk ) = max
i

dim(avik ), ∀k ≥ 0.

This implies the universal upper bound U = max
i

dim(avi )
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General dim bound for regular normal parabolic geometries

Theorem

We have S ≤ U and the bound is sharp in almost all cases.

More precisely we have: S = U except in the following cases.

List of exceptions:

A2/P1 (2D projective structure). Here S = 3 < 4 = U.

A2/P1,2 (scalar 2nd ord ODE mod point ≡ 3D CR str). Here
S = 3 < 4 = U.

B2/P1 (3D conformal Riemannian/Lorenzian structures).
Here S = 4 < 5 = U.

G/P = A1/P1 × G ′/P ′ (semi-simple case with split
curvature). Here U− 1 ≤ S ≤ U.
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Dynkin diagram recipes - 1

1 From g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+, we have g0 = Z(g0)⊕ (g0)ss with{
dim(Z(g0)) = # crosses;
(g0)ss D.D.→ remove crosses.

Since dim(g−) = dim(g+), get n = dim(g/p) and dim(p).

Example (G2/P1)

, dim(g0) = 4, n = 5.
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Dynkin diagram recipes - 2

Let V ⊂ H2
+ be a g0-irrep.

2 dim(ann(φ)) (0 6= φ ∈ V) is max on l.w.vector φ = φ0 ∈ V,
q := {X ∈ (g0)ss | X · φ0 = λφ0} is parabolic, and

dim(ann(φ0)) = (#crosses)− 1 + dim(q) .

D.D. notation: If 6= 0 on uncrossed node, put ∗.

Example (G2/P1)

H2
+ =

−8
∗4 , dim(ann(φ0)) = 2.
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Dynkin diagram recipes - 3

Let V ⊂ H2
+ be a g0-irrep.

Lemma

dim(aφ+) (0 6= φ ∈ V) is max on l.w.vector φ = φ0 ∈ V.

D.D. notation: If 0 over ×  put �.

3 Remove all ∗ and ×, except �, and the adjacent edges.
Remove connected components without �. Obtain (ḡ, p̄).

Example (C6/P1,2,5  A1/P1 × C3/P2 : M32 = G̃ 51/H19)

0 −5
∗4 0 0 0

 

Proposition

No �⇔ dim(aφ0+ ) = 0. Otherwise dim(aφ0+ ) = dim(ḡ/p̄).
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Examples of computations

Example

G/P H2
+ components n dim(aφ0

0 ) dim(aφ0
+ ) dim(aφ0)

G2/P1

−8
∗
4

5 2 0 7

A4/P1,2

0 −4
∗
3
∗
1

7 6 1 14

−4 1
∗
1
∗
1

7 6 0 13

E8/P8
0

0

0 0 0 ∗1 ∗1 −4
57 90 0 147

Proposition (Maximal parabolics)

Single cross ⇒ no �, so aφ0+ = 0.

We classified all complex (g, p) with aφ0+ 6= 0 with g simple. This
gives all complex nonflat geometries with higher order fixed points.
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Gaps and Symmetreis: Old and New
Symmetry and Integrability: Perspective

Introduction to the gap problem and parabolic geometries
Tanaka theory, Kostant’s BBW thm and our results

Ex of finer str’s: 4D Lorentzian conformal geometry

SO(2, 4)/P1 geometry: g0 = R⊕ so(1, 3) = R⊕ sl(2,C)R,

H2
+
∼=
⊙

4C2 (as a sl(2,C)R-rep)

and Z ∈ Z(g0) acts with homogeneity +2. C-basis of sl(2,C):

H =

(
1 0
0 −1

)
,X =

(
0 1
0 0

)
,Y =

(
0 0
1 0

)
Petrov type Normal form in

⊙4(g1) Annihilator h0 dim(h) sharp?

N ξ4 X , iX , 2Z − H 7 X
III ξ3η Z − 2H 5 ×
D ξ2η2 H, iH 6 X
II ξ2η(ξ − η) 0 4 X
I ξη(ξ − η)(ξ − kη) 0 4 X

Thus, submax ≤ 7 . Sharp for CKV’s of the (1, 3) pp-wave:

ds2 = dx2 + dy2 + 2dz dt + x2dt2.
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Symmetry and Integrability: Perspective

Introduction to the gap problem and parabolic geometries
Tanaka theory, Kostant’s BBW thm and our results

Further developments

We proved (Kruglikov & The) recently: Every automorphism
of a parabolic geometry is 2-jet determined; in non-flat regular
points it is 1-jet determined.

In several occasions we classified all sub-maximal models via
deformations of the filtered Lie algebras of symmetries. The
general question is however open.

Non-split real parabolic geometries are still open. Recently
Doubrov & The found the submaximal dimensions for
Lorentzian conformal structures in dim ≥ 4 (for other
signatures and in 3D this was done by Kruglikov & The).

Some geometric structures that are specifications of parabolic
geometries can be elaborated using our results. Recently
Kruglikov & Matveev obtained submaximal dimensions for
metric projective and metric affine structures.
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Gaps and Symmetreis: Old and New
Symmetry and Integrability: Perspective

Phenomenology of submaximal structures
New trends in integrability

Examples of submaximal symmetric models

General signature conformal str: The submaximal structure is
unique and is given by the pp-wave metric

ds2 = dx dy + dz dt + y2dt2 + ε1du2
1 + · · ·+ εn−4du2

n−4.

It is Einstein (Ricci-flat) in any dimension and self-dual in 4D. Its
geodesic flow is integrable in both classical and quantum sense.

(2,3,5)-distributions: The submaximal structures have 1D
moduli. They are parametrized by the Monge underdetermined
ODE y ′ = (z ′′)m, 2m − 1 6∈ {±1/3,±1,±3}, and also a separate
model y ′ = ln(z ′′). Deformations of these structures lead via
Fefferman-Graham and Nurowski constructions to Ricci flat
metrics with special holonomies (G2, Heiseinberg).

3rd ord ODE mod contact: Maximal structures y ′′′ = 0 have
10D symm. Submaximal structures have 5D symm, and are
linearizable (with constant coefficients). They are exactly solvable.

EDS and Lie theory 2013 ? Fields Institute Gaps, Symmetry, Integrability ? Boris Kruglikov



Gaps and Symmetreis: Old and New
Symmetry and Integrability: Perspective

Phenomenology of submaximal structures
New trends in integrability

Examples of submaximal symmetric models

General signature conformal str: The submaximal structure is
unique and is given by the pp-wave metric

ds2 = dx dy + dz dt + y2dt2 + ε1du2
1 + · · ·+ εn−4du2

n−4.

It is Einstein (Ricci-flat) in any dimension and self-dual in 4D. Its
geodesic flow is integrable in both classical and quantum sense.

(2,3,5)-distributions: The submaximal structures have 1D
moduli. They are parametrized by the Monge underdetermined
ODE y ′ = (z ′′)m, 2m − 1 6∈ {±1/3,±1,±3}, and also a separate
model y ′ = ln(z ′′). Deformations of these structures lead via
Fefferman-Graham and Nurowski constructions to Ricci flat
metrics with special holonomies (G2, Heiseinberg).

3rd ord ODE mod contact: Maximal structures y ′′′ = 0 have
10D symm. Submaximal structures have 5D symm, and are
linearizable (with constant coefficients). They are exactly solvable.

EDS and Lie theory 2013 ? Fields Institute Gaps, Symmetry, Integrability ? Boris Kruglikov



Gaps and Symmetreis: Old and New
Symmetry and Integrability: Perspective

Phenomenology of submaximal structures
New trends in integrability

Examples of submaximal symmetric models

General signature conformal str: The submaximal structure is
unique and is given by the pp-wave metric

ds2 = dx dy + dz dt + y2dt2 + ε1du2
1 + · · ·+ εn−4du2

n−4.

It is Einstein (Ricci-flat) in any dimension and self-dual in 4D. Its
geodesic flow is integrable in both classical and quantum sense.

(2,3,5)-distributions: The submaximal structures have 1D
moduli. They are parametrized by the Monge underdetermined
ODE y ′ = (z ′′)m, 2m − 1 6∈ {±1/3,±1,±3}, and also a separate
model y ′ = ln(z ′′). Deformations of these structures lead via
Fefferman-Graham and Nurowski constructions to Ricci flat
metrics with special holonomies (G2, Heiseinberg).

3rd ord ODE mod contact: Maximal structures y ′′′ = 0 have
10D symm. Submaximal structures have 5D symm, and are
linearizable (with constant coefficients). They are exactly solvable.

EDS and Lie theory 2013 ? Fields Institute Gaps, Symmetry, Integrability ? Boris Kruglikov



Gaps and Symmetreis: Old and New
Symmetry and Integrability: Perspective

Phenomenology of submaximal structures
New trends in integrability

Scalar 2nd ord ODE mod point: Submaximal metrizable models
here represent super-integrable geodesic flows. Non-metrizable
equations are also integrable (solvable in quadratures).

Systems of 2nd ord ODE: The submaximal structure is given by

ẍ1 = 0, . . . , ẍn−1 = 0, ẍn = ẋ1
3.

It is solvable via simple quadrature, and is an integrable extension
of the flat ODE system in (n − 1) dim (uncoupled harmonic
oscillators). Moreover for this system Fels’ T -torsion vanishes, and
so it determines an integrable Segré structure.

Projective structures: Every projective structure can be written
via its equation of geodesics (defined up to projective
reparametrization). The submaximal model then writes

ẍ1 = x1ẋ1
2ẋ2, ẍ2 = x1ẋ1ẋ2

2, ẍ3 = x1ẋ1ẋ2ẋ3, . . . , ẍn = x1ẋ1ẋ2ẋn.

This system is solvable via quadrature. Its Fels’ S-curvature is 0.
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Nice properties of the submaximal symmetric structures should not
be overestimated. Examples:

submaximal projective structures are not metrizable,

submax 2nd ord ODE systems are not projective connections.

Parabolic geometries with additional structures also have nice
properties. Example:

Both submaximal projective metric structures and submaximal
affine metric structures have integrable geodesic flows.

The gap problem is more complicated for general geometries.
Already for vector distributions, the maximal and submaximal
dimensions of the symmetry group often differ by 1. This absence
of gap is related to the structure of the max symmetry groups.
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Generalizations

Similar problem arises for infinite-dimensional pseudogroups acting
on differential equations and soft geometric structures. Examples:

♦ Parabolic Monge-Ampére equations in 2D have the symmetry
pseudogroup depending on at most 3 function of 3 arguments. In
the case of elliptic/hyperbolic equations it reduces to 2 functions
of 2 arguments. In higher dimensions non-degeneracy of the
symbol also reduces the possible functional dimension.

♦ For the Cauchy-Riemann equation, describing
pseudoholomorphic curves and submanifolds, the maximal
functional dimension corresponds to the integrable almost complex
structure. In the submaximal cases integrability is manifested by
the existence of pseudoholomorphic foliations.
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Integrable symplectic Monge-Ampére equations

In 4D such equations of Hirota type were classified up to Sp(8) by
Doubrov & Ferapontov. There are 5 non-linearizable PDEs, all
kinds of the heavenly equations.

An important fact is that all of them possess a huge algebra of
symmetries – it is parametrized by 4 functions of 2 arguments: the
symmetry pseudogroup consists of 4 copies of SDiff (2) (joint work
BK & Morozov). Moreover these compose into a graded group,
exhausting all monoidal structures on the set of 4 elements, and
the symmetry pseudogroup uniquely determines the corresponding
integrable equation via differential invariants (following the general
theory developed by BK & Lychagin).
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Integrable dispersionless PDEs in 3D etc

The symbol of the formal linearization of a scalar PDE is an
important geometric invariant reflecting the integrability properties.

For example, linearization of the 2nd order dispersionless PDE can
be expressed as flatness (maximal symmetry) of the conformal
metric that is the inverse of the symbol symmetric bivector. It is
yet to interpret the submaximal property of the symbol.

Integrability of the 2nd order dispersionless PDE is a more subtle
property, but it can also be tested via the geometry of the formal
linearization (joint project BK & Ferapontov). Namely (under
some assumptions) integrability is equivalent to Einstein-Weyl
property of the conformal structure of the inverse to linearization
on the solution space. Similar results hold in 4D, where the
Einstein-Weyl property is changed by the self-duality of the symbol.
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