Totally Disconnected L.C. Groups: Subgroups associated with an automorphism

> George Willis The University of Newcastle

February $10^{\text{th}}-14^{\text{th}}\ 2014$

Lecture 1: The scale and minimizing subgroups for an endomorphism

Lecture 2: Tidy subgroups and the scale

Lecture 3: Subgroups associated with an automorphism Contraction groups The structure of closed contraction groups The nub of α

Lecture 4: Flat groups of automorphisms

The contraction group for α

Definition Let $\alpha \in Aut(G)$. The contraction group for α is $con(\alpha) := \{x \in G \mid \alpha^n(x) \to 1 \text{ as } n \to \infty\}.$

Then $con(\alpha)$ is an α -stable subgroup of *G*. Examples show that it need not be a closed subgroup.

Examples of contraction groups

Examples

- 1. $F^{\mathbb{Z}}$, where *F* is a finite group, with the product topology. Let α be the shift: $\alpha(g)_n = g_{n+1}$.
- (F_p((t)), +), the additive group of the field of formal Laurent series over the field of order *p*. Let *α* be multiplication by *t*.
- Aut(*T_q*), the automorphism group of the regular tree with every vertex having valency *q*. Let *α* be the inner automorphism *α_q*, *g* a translation of *T*.
- SL(n, Q_p), the special linear group over the field of *p*-adic numbers.

Let α be conjugation by $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$.

Contraction groups in representation theory

Proposition (Mautner phenomenon)

Let $\rho : G \to \mathcal{L}(X)$ be a bounded, strongly continuous representation of *G* on the Banach space *X*. Suppose, for some $g \in G$ and $x \in X$, that $\rho(g)x = x$. Then $\rho(h)x = x$ for every $h \in \operatorname{con}(g)$.

Non-triviality of $con(\alpha)$

The following were shown by U. Baumgartner & W. in the case when *G* is metrizable. The metrizability condition was removed by W. Jaworski.

Theorem

Suppose that $s(\alpha^{-1}) > 1$. Then $con(\alpha)$ is not trivial.

The converse does not hold.

Theorem Let $\alpha \in Aut(G)$ and $V \in \mathcal{B}(G)$ be tidy for α . Then

$$V_{--} = V_0 \operatorname{con}(\alpha). \tag{1}$$

Moreover,

$$\bigcap \{ U_{--} \mid U \text{ tidy for } \alpha \} = \overline{\operatorname{con}(\alpha)}.$$
 (2)

Normal closures

Proposition Let $\alpha \in Aut(G)$. Then the map

$$\eta: \overline{\operatorname{con}(\alpha)} \to \overline{\operatorname{con}(\alpha)}$$
 defined by $\eta(x) = x\alpha(x^{-1})$

is surjective.

Proposition

Let $g \in G$. Then $\overline{\operatorname{con}(g)}$ is contained in every (abstractly) normal subgroup of *G* that contains *g*.

The Tits core

Definition The *Tits core* of the t.d.l.c. group *G* is

$${old G}^{\dagger} = \langle \overline{{
m con}(g)} \mid g \in {old G}
angle.$$

Theorem (Caprace, Reid & W.)

Let D be a dense subgroup of the t.d.l.c. group G. If G^{\dagger} normalises D, then $G^{\dagger} \leq D$.

Corollary (Caprace, Reid & W.)

Suppose that G belongs to S, that is, G is compactly generated and topologically simple. Then G^{\dagger} is either trivial or it is the smallest non-trivial normal subgroup of G.

Closed contraction groups

Theorem (Glöckner & W.)

Let G be a t.d.l.c. group and suppose that $\alpha \in Aut(G)$ is such that $\alpha^n(g) \to 1$ as $n \to \infty$ for every $g \in G$. Then the set tor(G)of torsion elements and the set div(G) of divisible groups are α -stable closed subgroups of G and

 $G = tor(G) \times div(G).$

Furthermore div(G) is a direct product

$$div(G) = G_{p_1} \times \cdots \times G_{p_n},$$

where each G_{p_i} is a nilpotent p_i -adic Lie group.

Closed contraction groups 2

Every group *G* with a contractive automorphism α has a composition series of closed α -stable subgroups where each of the composition factors is a *simple* contraction group in the sense that it has no closed, proper, non-trivial α -stable subgroups.

Theorem (Glöckner & W.)

Let G be a t.d.l.c. group, $\alpha \in Aut(G)$ and suppose that (G, α) is simple. Then G is either:

- a torsion group and isomorphic to F^(-N) × F^{N0} with F a finite simple group and α the shift; or
- 2. torsion free and isomorphic to a p-adic vector space with α a contractive linear transformation.

Ergodic actions by automorphisms

Conjecture (Halmos)

Let *G* be a l.c. group and suppose that there is $\alpha \in Aut(G)$ that acts ergodically on *G*. Then *G* is compact.

Proved for G connected in the 1960's and for G totally disconnected in the 1980's. Short proof by Previts & Wu uses the scale.

S. G. Dani, N. Shah & W. show that, if *G* has a finitely generated abelian group of automorphisms that acts ergodically, then *G* is, modulo a compact normal subgroup, a direct product of vector groups over \mathbb{R} and \mathbb{Q}_p .

The largest subgroup on which α acts ergodically

Definition The *nub* of $\alpha \in Aut(G)$ is the subgroup

$$\mathsf{nub}(\alpha) = \bigcap \{ V \mid V \text{ is tidy for } \alpha \} (= \mathsf{nub}(\alpha^{-1})).$$

The nub of α is trivial if and only if $con(\alpha)$ is closed.

Theorem

 $\mathsf{nub}(\alpha)$ is the largest closed α -stable subgroup of G on which α acts ergodically.

Theorem

The compact open subgroup V is tidy below for $\alpha \in Aut(G)$ if and only if $nub(\alpha) \leq V$.

The structure of $nub(\alpha)$

(B. Kitchens & K. Schmidt. W. Jaworski)

Theorem

The nub of α is isomorphic to an inverse limit

$$(\mathsf{nub}(\alpha), \alpha) \cong \varprojlim(G_i, \alpha_i),$$

where G_i is a compact t.d. group, $\alpha_i \in Aut(G_i)$ and G_i has a composition series

$$\{1\} = H_0 < H_1 < \cdots < H_r = G_i,$$

of α_i stable subgroups, with the composition factors H_{j+1}/H_j isomorphic to $F_j^{\mathbb{Z}}$, for a finite simple group F_j and the induced automorphism the shift.

The nub and contraction groups

Theorem Let $\alpha \in Aut(G)$. Then

$$\mathsf{nub}(\alpha) = \overline{\mathsf{con}(\alpha)} \cap \overline{\mathsf{con}(\alpha^{-1})}$$

and

 $\mathsf{nub}(\alpha) \cap \mathsf{con}(\alpha) = \{ g \in \mathsf{con}(\alpha) \mid \{ \alpha^n(g) \}_{n \in \mathbb{Z}} \text{ is bounded} \}$

is dense in $nub(\alpha)$. Denote this set by $bcon(\alpha)$. The intersection $bcon(\alpha) \cap bcon(\alpha^{-1})$ need not be dense in $nub(\alpha)$ but

 $\mathsf{nub}(\alpha)/\overline{\mathsf{bcon}(\alpha) \cap \mathsf{bcon}(\alpha^{-1})}$

is abelian.

References

- 1. N. Aoki, 'Dense orbits of automorphisms and compactness of groups', Topology Appl. 20 (1985), 1–15.
- U. Baumgartner & G. Willis, 'Contraction groups for automorphisms of totally disconnected groups', Israel J. Math., 142 (2004), 221–248.
- 3. P.-E. Caprace, C. Reid and G. Willis, 'Limits of contraction groups and the Tits core', arXiv:1304.6246.
- S. Dani, N. Shah & G. Willis, 'Locally compact groups with dense orbits under Z^d-actions by automorphisms', *Ergodic Theory & Dynamical Systems*, 26 (2006), 1443–1465.
- J. Dixon, M. Du Sautoy, A. Mann & D. Segal, *Analytic pro-p groups*, Cambridge Studies in Advanced Mathematics 61.
- H. Glöckner & G. Willis, 'Classification of the simple factors appearing in composition series of totally disconnected contraction groups', J. Reine Angew. Math., 634 (2010), 141–169.
- 7. P. Halmos, Lectures on Ergodic Theory, Publ. Math. Soc. Japan, Tokyo (1956).
- W. Jaworski, Contraction groups, ergodicity, and distal properties of automorphisms of compact groups, preprint.
- 9. M. Lazard, 'Groupes analytiques p-adiques', Publications mathématiques de l'I.H.É.S., 26(1965), 5–219.
- W. Previts & T.-S. Wu, 'Dense orbits and compactness of groups', Bull. Austral. Math. Soc., 68(1) (2003), 155–159.
- 11. K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser, Basel, (1995).
- G. Willis, The nub of an automorphism of a totally disconnected, locally compact group, *Ergodic Theory & Dynamical Systems*, C.U.P. Firstview (2013) 1–30.

