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Setting the scene

This talk is only about commutative Banach algebras

a Banach A-bimodule X is called symmetric if a · x = x · a for all

a ∈ A and all x ∈ X.

a bounded linear map D : A → X is a derivation if

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A).

This talk is only about continuous derivations

Der(A,X) := {continuous derivations A → X}.

Remark

If A is a semisimple CBA then Der(A,A) = {0}. (SINGER–WERMER,

1955.)
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Given a character ϕ on A, let Cϕ be the corresponding 1-dimensional

A-bimodule.

Theorem

Der(A,Cϕ) ∼=
(
ker(ϕ)/ker(ϕ)2

)∗
.

Therefore, if ker(ϕ)2 is dense in ker(ϕ), Der(A,Cϕ) = {0}. For

example, this happens if {ϕ} is a set of synthesis for A (when A is

semisimple and regular).
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Heuristic

If Der(A,Cϕ) 6= {0} then this may indicate one of the following:

some kind of “analytic structure” in a suitable neighbourhood

of ϕ;

some kind of differentiability at ϕ.

Conversely, if you already know your algebra has analytic structure

or smoothness, it is unsurprising to find Der(A,Cϕ) 6= {0} for some

ϕ.
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Definition (BADE–CURTIS–DALES, 1987)

Let A be a commutative Banach algebra. We say A is weakly amenable if

Der(A,X) = {0} for every symmetric Banach A-bimodule X.
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Definition (BADE–CURTIS–DALES, 1987)

Let A be a commutative Banach algebra. We say A is weakly amenable if

Der(A,X) = {0} for every symmetric Banach A-bimodule X.

Remark

In fact, if A is commutative and Der(A,A∗) = {0} then A is weakly

amenable.

In many examples where A is commutative and semisimple and

Der(A,A∗) 6= {0}, derivations arise from vestigial “analytic

structure” or “smoothness”. Today’s talk is about the latter case.
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Some Banach function algebras on T

Example 1. C1(T) with the norm ‖f‖ := ‖f‖∞ + ‖f ′‖∞

Example 2. Given α ≥ 0, consider

Aα(T) := {f ∈ C(T) : ∑
n∈Z

|̂f (n)|(1+ |n|)α
< ∞}

with norm ‖f‖(α) = ∑n |̂f (n)|(1+ |n|α).

(The case α = 0 is the usual Fourier algebra A(T).)
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Examples of derivations

Folklore

C1(T) has non-zero point derivations, namely: f 7→
∂f

∂θ
(p) for some

choice of p ∈ T.

We then get derivations C1(T) → C1(T)∗ by e.g.

D(f )(g) :=
∫

T

∂f

∂θ
(p)g(p) dµ(p)

where µ is normalized Lebesgue measure on the circle.

What about the algebras Aα(T), for α ≥ 0? When do they have point

derivations? when are they weakly amenable?
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Folklore

Let p ∈ T. Then Der(Aα(T),Cp) 6= {0} iff α ≥ 1.

Theorem (BADE–CURTIS–DALES, 1987)

Der(Aα(T), Aα(T)∗) 6= {0} if and only if α ≥ 1/2.

Proof of sufficiency: a direct calculation, using orthonormality of the

standard monomials, shows
∣∣∣∣
∫

T

∂f

∂θ
(p)g(p) dµ(p)

∣∣∣∣ ≤ ‖f‖(1/2) ‖g‖(1/2)

Informally: pointwise differentiation can be bad on a function

algebra, but averaging can smooth it out.
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Philosophical remarks

Why was it so easy to show that Aα(T) is not weakly amenable when

α is sufficiently large?

We had an explicit guess for what a derivation should look like:

namely, a (partial) derivative of functions.

The norm on Aα(T) is defined in terms of Fourier coefficients; and

the Fourier transform intertwines differentiation (hard) with

multiplication (easy).
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The Fourier algebra: a brief résumé

If G is LCA, with Pontryagin dual Γ, then A(G) is the range of the

Fourier/Gelfand transform L1(Γ) → C0(G), equipped with the norm

from L1(Γ).

If G is compact, there is a notion of matrix-valued Fourier transform:

f (x) ∼ ∑
π∈Ĝ

dπ Tr(f̂ (π)π(x)∗)

and

A(G) =

{
f ∈ C(G) : ∑

π

dπ

∥∥∥f̂ (π)
∥∥∥
1
< ∞

}

For a general locally compact group G, EYMARD (1964) gave a

definition of A(G) which generalizes both these cases.

9 / 27



If π : G → U (Hπ) is a cts unitary rep, a coefficient function

associated to π is a function of the form

ξ ∗π η : p 7→ 〈π(p)ξ, η〉 (ξ, η ∈ Hπ).

Define Aπ to be the coimage of the corresponding map

θπ : Hπ⊗̂Hπ → Cb(G): that is, the range of θλ equipped with the

quotient norm.

We have Aπ +Aσ ⊆ Aπ⊕σ and Aπ Aσ ⊆ Aπ⊗σ.

10/ 27



Let λ : G → U (L2(G)) be the left regular representation:

λ(p)ξ(s) = ξ(p−1s) (ξ ∈ L2(G); p, s ∈ G).

Define A(G), the Fourier algebra of G, to be the coefficient space Aλ.

It is a subalgebra of Cb(G) (by e.g. Fell’s absorption principle).

Example 3. Suppose G is compact. Then: every cts unitary rep

decomposes as a sum of irreps; and the left regular representation

λ : G → U (L2(G)) contains a copy of every irrep. It follows that

A(G) =
⊕

π∈Ĝ

Aπ

where the RHS is an ℓ1-direct sum.
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Derivations on Fourier algebras?

Theorem (folklore)

Der(A(G), A(G)) = {0}.

Proof. A(G) is semisimple. Apply Singer–Wermer. �

Theorem (FORREST 1988)

Let p ∈ G. Then Der(A(G),Cp) = 0.

Proof. {p} is a set of synthesis, so (Jp)2 is dense in Jp. �

So when is A(G) weakly amenable?

Note that if G is totally disconnected, the idempotents in A(G) have

dense linear span, hence A(G) is WA. (FORREST, 1998)
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As a special case of the results for Aα(T) we know A(T) is weakly

amenable.

In fact, for any LCA group G, A(G) = L1(Ĝ) is amenable and hence

weakly amenable.
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As a special case of the results for Aα(T) we know A(T) is weakly

amenable.

In fact, for any LCA group G, A(G) = L1(Ĝ) is amenable and hence

weakly amenable.

Theorem (JOHNSON, 1994)

Let G be either SO(3) or SU(2). Then A(G) is not weakly amenable.

This theorem seems to have come as a surprise to people in the field.

A close reading of the last section in Johnson’s paper shows that he

has an explicit construction of a non-zero derivation

A(SO(3)) → A(SO(3))∗, not relying on abstract characterizations

of WA.
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Constructing Johnson’s derivation

Embed T in SU(2) as eiφ 7→ sφ =

(
eiφ 0

0 e−iφ

)
.

For f ∈ C1(SU(2)) define

∂f (p) :=
∂

∂φ
f (psφ)

∣∣∣∣
φ=0

then we get a derivation C1(SU(2)) → C(SU(2))∗

D(f )(g) =
∫

SU(2)
(∂f )g dµ (f ∈ C1(SU(2)), g ∈ C(SU(2)).
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The part which needs work is to show that

∣∣∣∣
∫

SU(2)
(∂f )g dµ

∣∣∣∣ . ‖f‖A ‖g‖A

but then, with some book-keeping, one gets a non-zero derivation

A(SU(2)) → A(SU(2))∗.

One way to prove this estimate (not the approach in Johnson’s paper,

but probably known to him) is to use orthogonality relations for

coefficient functions.
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Schur orthogonality for compact groups

Let G be compact. If π and σ are irreps, ξ1 and η1 ∈ Hπ , ξ2 and

η2 ∈ Hσ:

∫

G
ξ1 ∗π η1 ξ2 ∗σ η2 dµ =

{
dim(Hπ)

−1〈ξ1, ξ2〉〈η2, η1〉 if π = σ

0 if π 6∼ σ

16/ 27



Schur orthogonality for compact groups

Let G be compact. If π and σ are irreps, ξ1 and η1 ∈ Hπ , ξ2 and

η2 ∈ Hσ:

∫

G
ξ1 ∗π η1 ξ2 ∗σ η2 dµ =

{
dim(Hπ)

−1〈ξ1, ξ2〉〈η2, η1〉 if π = σ

0 if π 6∼ σ

Remark

When G = T this is just the observation that {einθ : n ∈ Z} form an

orthonormal basis for L2(T).
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We return to SU(2) and the operator ∂. For any ξ, η ∈ Hπ

∂(ξ ∗π η)(p) =
∂

∂φ
〈π(psφ)ξ, η〉 = 〈π(p)Fπξ, η〉

where

Fπ =
∂

∂φ
π(sφ)

∣∣∣∣
φ=0

∈ B(Hπ).

So if f and g are coeff. fns of inequivalent irreps,
∫
SU(2)(∂f )gdµ = 0.
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If f = ξ1 ∗π η1 and g = ξ2 ∗π η2 are coeff. fns of the irrep π,

∣∣∣∣
∫

SU(2)
(∂f )gdµ

∣∣∣∣ ≤ dim(Hπ)
−1 ‖Fπ‖ ‖ξ1‖ ‖ξ2‖ ‖η1‖ ‖η2‖

. ‖f‖A ‖g‖A

(Use representation theory for SU(2) to get ‖Fπ‖ . dim(Hπ).)

With some book keeping and the decomposition of A(SU(2)) in

terms of the Aπ , we obtain Johnson’s inequality/result.
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Weak amenability of A(G), G compact

Theorem (Restriction theorem for Fourier algebras)

If G is a locally compact group and H is a closed subgroup, there is a

quotient homomorphism of Banach algebras A(G) → A(H).

For compact G this is due to DUNKL (1969); the general case is due to

HERZ (1973), see also ARSAC (1976).
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Weak amenability of A(G), G compact

Theorem (Restriction theorem for Fourier algebras)

If G is a locally compact group and H is a closed subgroup, there is a

quotient homomorphism of Banach algebras A(G) → A(H).

For compact G this is due to DUNKL (1969); the general case is due to

HERZ (1973), see also ARSAC (1976).

Easy exercise

If A is a WA commutative Banach algebra, then so are all its quotient

algebras.

Corollary

If G is locally compact and contains a closed subgroup isomorphic to SO(3)

or SU(2) then A(G) is not weakly amenable.
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Theorem (PLYMEN, unpublished manuscript)

Let G be a compact, connected, non-abelian Lie group. Then A(G) is not

weakly amenable.

Proof. By structure theory for compact groups, G contains a closed

copy of either SU(2) or SO(3). �

Remark

It was observed in FORREST–SAMEI–SPRONK (2009) that the same

holds for all compact connected groups (not just the Lie ones)

Theorem (FORREST–RUNDE, 2005)

If Ge is abelian then A(G) is weakly amenable.

It is an open question whether the converse holds.
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A conjecture, and recent progress

Conjecture

If G is a connected, non-abelian Lie group then A(G) is not weakly

amenable.

Impasse

The results that “just use Johnson” can tell us nothing about

connected Lie groups where every compact connected subgroup is

abelian, e.g. SL(2,R), the ax+ b group, or the Heisenberg group.
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A conjecture, and recent progress

Conjecture

If G is a connected, non-abelian Lie group then A(G) is not weakly

amenable.

Impasse

The results that “just use Johnson” can tell us nothing about

connected Lie groups where every compact connected subgroup is

abelian, e.g. SL(2,R), the ax+ b group, or the Heisenberg group.

Theorem (C.+GHANDEHARI, 2014)

The Fourier algebra of the ax+ b group is not weakly amenable.

The key insight which makes this example accessible: the ax+ b

group is, like all compact groups, an AR group.
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Outline of the proof for the ax+ b group

This group, which we denote by Aff, consists of all matrices of the

form

(
a b

0 1

)
where a ∈ R∗

+ and b ∈ R.

For f ∈ C1(Aff), let M∂f (b, a) = −
1

2πi
a

∂f

∂b
(b, a). Then set

D0(f )(g) =
∫

Aff

(M∂f )g dµ

for all f and g in a suitable dense subalgebra B ⊂ A(Aff).

A(Aff) decomposes as Aπ+ ⊕Aπ− where the representations π± are

irreducible and their coefficient functions satisfy generalized

versions of the Schur orthogonality relations.
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Explicitly: we can realize both π+ and π− on the same Hilbert space

L2(R∗
+, t

−1dt):

π+(b, a)ξ(t) = e−2πibtξ(at)

π−(b, a)ξ(t) = e2πibtξ(at)

We have a densely-defined, unbounded, self-adjoint operator K on

L2(R∗
+, t

−1dt):

(Kξ)(t) = tξ(t) (t ∈ R+)

Provided ξ, η lie in the appopriate domains, we have:

Orthogonality relations

〈ξ1 ∗π+ η1, ξ2 ∗π+ η2〉L2(G) = 〈η2, η1〉H〈K
− 1

2 ξ1,K
− 1

2 ξ2〉H.

〈ξ1 ∗π− η1, ξ2 ∗π− η2〉L2(G) = 〈η2, η1〉H〈K
− 1

2 ξ1,K
− 1

2 ξ2〉H.

〈ξ1 ∗π+ η1, ξ2 ∗π− η2〉L2(G) = 0.
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The trick to our choice of M∂

Provided ξ and η are well-behaved,

M∂(ξ ∗π+ η) = Kξ ∗π+ η

for some densely defined self-adjoint operator K. Similarly for π−.
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The trick to our choice of M∂

Provided ξ and η are well-behaved,

M∂(ξ ∗π+ η) = Kξ ∗π+ η

for some densely defined self-adjoint operator K. Similarly for π−.

This turns out to make things similar enough to the compact case that

we can push through (our version of) BEJ’s methods, and get

|
∫

Aff

(M∂f )g dµ| . ‖f‖A ‖g‖A

for all f and g in some dense subspace of A(Aff).
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More general connected Lie groups

Theorem (C.+GHANDEHARI, ibid.)

If G is a connected, semisimple Lie group, A(G) is not weakly amenable.

Proof. For compact connected Lie groups, this is Plymen’s result. So

we may WLOG assume G is non-compact and connected SSL. But

then there is an Iwasawa decomposition G = KAN where the closed

subgroup AN contains a copy of the connected real ax+ b group. �
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Theorem (C.+Ghandehari)

If G is connected, simply connected, and non-solvable, then A(G) is not

weakly amenable.

Proof

More structure theory: the assumptions imply (Levi decomposition

of Lie algebras and exponentiation) that G contains a closed,

connected, semisimple subgroup.
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Nilpotent examples?

Can use arguments similar to those for ax+ b to handle the reduced

Heisenberg group. (Previously all the nilpotent examples had been

out of reach.)

Can use different and more technical arguments (based around the

Plancherel formula) to handle the Heisenberg group. (See the next

talk.)
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