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The following notes are meant to accompany lectures given March 27, 28,
31 and April 1, 2014, for the session “Banach and Operator Algebras over
Groups”, in the Thematic Program on Abstract Harmonic Analysis, Banach
and Operator Algebras, at the Fields Institute. The author is grateful to
session organizer H. G. Dales, and to the general organizers of the thematic
program, for the invitation to speak in this capacity. The author is very
grateful to the audience for attending and asking valuable questions, and is
further grateful to H. G. Dales for necessary copy editing.

Since these notes are accompanying a series of lectures, there will be only
sketches of proofs, at best, possibly at the level of heuristics. The author has
made an effort to thoroughly and accurately reference the sources of known
facts. Any (inevitable) failure to do so is his fault.

My goal is for these notes to serve as an invitation to the study harmonic
analysis, in particular on Fourier algebras, with the advent of operator spaces.
The scope is being purposely and brutally limited in order to gain some depth
and highlight some key results of about 10 years ago. The results being high-
lighted are chosen because they partially, though quite satisfactorily, answer
quite classical-sounding questions with reasonably modern techniques.

Coarsely speaking, the logic flow is given thus.
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Lecture #1: What are Fourier Stieltjes and Fourier algebras?

The Fourier-Stieltjes and Fourier algebras are objects meant to generalize
Pontryagin duality from abelian groups. (Happily, these objects even gener-
alize Tannaka-Krein duality for compact groups, but I will not touch on that
explicitly.)

Measure algebras and group algebras. Let G be a locally compact
group. We let M(G) ∼= C0(G)∗ denote the measure algebra whose algebric
structure is realized by convolution: if µ, ν ∈ M(G), then∫

G

ϕd(µ ∗ ν) =

∫
G

∫
G

ϕ(st) dµ(s) dν(t)

for ϕ in C0(G); hence M(G) is a Banach algebra We now let m denote the
left Haar measure (which is unique up to scalar). Notice that s 7→ δs (Dirac
measure) defines an injective isomorphism form G into M(G) which is a
homeomorphism when the weak* topology is used in the codomain.

We let the group algebra

L1(G) = {µ ∈ M(G) : µ << m}CM(G) (†)

∼=
{
f : G→ C |

∫
G

|f | dm <∞
}
/ ∼a.e. (‡)

where the ideal property (†) holds by virtue of left-invariance on m, and the
identification (‡) is thanks to the Radon-Nikodym Theorem. Observe that,
qua functions (modulo a.e. equivalence), we have convolution

f ∗ g(s) =

∫
G

f(t)g(t−1s) dt

where dt = dm(t). Furthermore we have a contactive approximate identity(
1

m(U)
1U

)
U∈U

, where U denotes the relatively compact neighbourhoods of

the identity eG, partially ordered with respect to reverse inclusion.

Proposition. Let X be a Banach space. Then there is a bijective correspon-
dence between:

(i) weak operator continuous representations π : G → Binv(X ) (bounded
invertible operators) for which ‖π‖∞ = sups∈G ‖π(s)‖ <∞ [resp., the image
is of isometries]; and
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(ii) bounded [resp., contractive] homomorphisms π1 : L1(G)→ B(X ) such
that π1(L1(G))X is dense in X .

Idea. Given π as in (i), let π1(f) = w.o.t.-
∫
G
f(s)π(s) ds. Thanks to approx-

imation by compactly supported elements and a Krein-Smulian argument –
see [Joh-Mem, §2] – this integral defines an element of B(X ). Conversely,
π(s)π1(f)ξ = π1(δs ∗ f)ξ extends uniquely to a representation of G on X . �

Moral:

G“ = ”L1(G), with respect to actions on Banach spaces.

Let us finish this section by noting the unitary representations. We ob-
serve that L1(G) is an involute algebra via f ∗(s) = 1

∆(s)
f(s−1). We let ΣG

denote the class of weak operator continuous unitary representations of G.
In particular let λ : G → U(L2(G)) denote the left regular representation:
λ(s)f(t) = f(s−1t). Notice that λ1(f)ξ = f ∗ ξ. We then let for f in L1(G)

‖f‖∗ = sup{‖π1(f)‖ : π ∈ ΣG}

which clearly defines a C*-seminorm: ‖f ∗ ∗ f‖∗ = ‖f‖2
∗. Observe that

‖λ1(f)‖ ≤ ‖f‖∗ ≤ ‖f‖1, from which it follows that ‖·‖∗ is, in fact, a
norm. Then let the universal group C*-algebra be given by the completion

C∗(G) = L1(G)
‖·‖∗ .

Proposition. There is a bijective correspondence between:
(i) π in ΣG;
(ii) continuous ∗-representations π1 : L1(G)→ B(Hπ) for which π1(L1(G))Hπ

is dense in Hπ; and
(iii) ∗-representations π∗ : C∗(G) → B(Hπ) for which π∗(C

∗(G))Hπ is
dense in Hπ.

While the reader is encouraged to try this as an exercise, more detailed
discussions can be found in [Dix-C*].

Pontryagin duality of abelian groups. Letting T = U(C), Schur’s lemma
provides for a locally compact abelian G the identification

Ĝ = {π ∈ ΣG : π is irreducible}/ ∼=u = Homc(G,T)

3



where ∼=u is the relation of unitary equivalence. Thus Ĝ is a group via
pointwise multiplication: στ(s) = σ(s)τ(s); and further is a locally compact
group when equipped with topology of uniform convergence on compacta.
The latter unobvious fact should be checked in [HewRos-I, Fol-AbHarAn], as
well as the following beautiful theorem.

Pontryagin’s duality theorem.
̂̂
G ∼= G isomorphically and homeomorphi-

cally; in fact,
̂̂
G = {ŝ : s ∈ G}.

For non-abelian G, Ĝ 6∼= Homc(G,T). For example Homc(G,T) = {1}, the
trivial character, if G = S is itself a connected simple Lie group or G =
RnoS, where S acts on Rn without non-trivial fixed points (say S = SO(n)
or SLn(R)). Indeed, the Lie algebra of S admits no proper ideals, from which
it can be deduced that any continuous finite-dimensional representation has
either discrete kernel or is trivial. Hence any multiplicative character σ on
Rn o S, restricted to Rn must be constant on orbits of S, in particular
on orbits of the maximal compact subgroup K of S (K = SO(n) in the
case S = SLn(R)), which means that σ(Rn) = {1}, as can be checked.
In particular, this naive approach to Pontryagin duality is doomed to fail.
Tannaka-Krein-duality in compact groups attempts to rectify this, but is
very complicated; see, for example, [HewRos-II].

Hence we are motivated to see if the philosophy Ĝ“ = ”L1(Ĝ) may point

us in the correct direction. We let F̂ : L1(Ĝ) → C0(G) denote the Fourier
transform

F̂ (f̂)(s) =

∫
Ĝ

f̂(σ)σ(s) dσ.

(That its range is within C0(G) is the Riemann-Lebesgue lemma.) Again, see
[HewRos-I, Fol-AbHarAn] for the following.

Plancherel’s Theorem. F̂ (L1 ∩ L2(Ĝ)) ⊂ L2(G) and this map extends to

a unitary U : L2(Ĝ)→ L2(G).

Notice that U(ŝξ̂) = λ(s)ξ where ξ = Uξ̂. We then compute for f̂ in L1(Ĝ),

which we factor pointwise a.e. as a product of elements of L2(Ĝ), f̂ = ξ̂ ¯̂η:

F̂ (f̂)(s) =

∫
Ĝ

ξ̂(σ)η̂(σ)σ(s) ds =

∫
G

U(ŝf̂)Uη̂ dm = 〈λ(s)ξ|η〉.
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Hence A(G) := F̂ (L1(Ĝ)) = {〈λ(·)ξ|η〉 : ξ, η ∈ L2(G)}. We also have that
F̂ (f̂ ∗ ĝ) = F̂ (f̂)F̂ (ĝ) (pointwise product), from which it follows that A(G)
is a subalgebra of C0(G), in fact a Banach algebra when equipped with the
norm ‖F̂ (f̂)‖A = ‖f̂‖1.

Construction of Fourier-Stieltjes and Fourier algebras for general
locally compact G. The last result above suggests that matrix coefficient
functions of unitary representations may be useful. Let us advance this
theme, albeit a tad circuitously. We begin by defining functions of positive
type (or “positive definite” functions, as used more widely in the English
language literature) by

P(G) = {u ∈ Cb(G) : ∀s1, . . . , sn ∈ G, n ∈ N, [u(sjsi)] is positive semidefinite}.

As an example, if π ∈ ΣG, ξ ∈ Hπ, then 〈π(·)ξ|ξ〉 is of positive type. Try, as
an exercise, to see the converse, below; or look in [Dix-C*].

Gelfand-Naimark construction. The following are equivalent:
(i) u ∈ P(G);
(ii) u = 〈π(·)ξ|ξ〉, where π ∈ ΣG, ξ ∈ Hπ

(iii) u ∼a.e. u′, u′ ∈ L∞(G) and u′ defines a state on C∗(G) via the natural
extentsion of the L1-L∞ duality. 〈π(·)ξ|ξ〉 for some π in ΣG and ξ in Hπ.

We thus define the Fourier-Stieltjes algebra by

B(G) = spanP(G).

Proposition. (i) B(G) = {〈π(·)ξ|η〉 : π ∈ ΣG, ξ, η ∈ Hπ}.
(ii) We have that

B(G) ∼=
{
u ∈ L∞(G) : ‖u‖B = sup

{∣∣∣∣∫
G

uf dm

∣∣∣∣ : f ∈ L1(G), ‖f‖∗ ≤ 1

}
<∞

}
and B(G) ∼= C∗(G)∗.

Observe that (i) is a direct application of the polarization identity 4〈ξ|η〉 =∑3
k=0 i

k〈ξ + ikη|ξ + ikη〉, and (ii) follows from the fact that states span the
the dual of a C*-algebra. Furthermore, observe that B(G) is an algebra

〈π(·)ξ|η〉〈π′(·)ξ′|η′〉 = 〈π ⊗ π′(·)ξ ⊗ ξ′|η ⊗ η′〉.
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To see that B(G) is a Banach algebra with respect to ‖·‖B, we introduce the
universal von Neumman algebra W∗(G) ∼= C∗(G)∗∗, which is hence the dual
of B(G). If we let for each u in P1(G) (i.e. ‖u‖B = 1), πu denote the associated
Gelfand-Naimark cyclic representation and $ = $G =

⊕
u∈P1(G) πu on H$ =

`2-
⊕

u∈P1(G)Hu, then W∗(G) = $(G)′′ (second commutant). If π ∈ ΣG, we

let VNπ = π(G)′′ and there is a unique ∗-homomorphism

π′′ : W∗(G)� VNπ such that π′′($(s)) = π(s) for s in G.

Hence $ ⊗ $ : G → U(H$ ⊗2 H$) begets ∆ = ($ ⊗ $)′′ : W∗(G) →
W∗(G)⊗̄W∗(G) (von Neumann tensor product), which is a weak*-weak* con-
tinuous map satisfying ∆($(s)) = $(s) ⊗ $(s). Let ι : B(G) ⊗γ B(G) →
(W∗(G)⊗̄W∗(G))∗ (projective tensor product to predual) be the natural con-
tractive map. Then ∆∗ ◦ ι : B(G)⊗γ B(G)→ B(G) is contractive pointwise
multiplication.

Returning briefly to abelian G, we observe the Jordan decomposition M(G) =
span M(G)+ where M(G)+ = R≥0Prob(G).

Bochner’s Theorem. The Fourier-Stieltjes transform F̂S satisfies
F̂S(M(Ĝ)+) = P(G).

Hence for abelian G it follows that B(G) ∼= M(Ĝ). The fact that C∗(G) ∼=
C0(Ĝ) (Gelfand Theorem for commutative C*-algebras), in this case, shows
that the above identification is isometric. We recall, from above, that A(G) =
F̂ (L1(G)) = {〈λ(·)ξ|η〉 : ξ, η ∈ L2(G)}. This motivates us to the next step.

Let us return to a general locally compact G. If π ∈ ΣG we set

Aπ = span‖·‖B{〈π(·)ξ|η〉 : ξ, η ∈ Hπ}.

Theorem. [Ars] A∗π
∼= VNπ

∼= zπW∗(G), where zπ is the central coverof π.

Now we define the Fourier algebra [Eym, Stin59, Kre]:

A(G) = Aλ.

Outside of abelian or compact groups (where thanks to the Peter-Weyl the-
orem λ enjoys a natural quasi-equivalence to $), it may be hard, a priori, to
get excited by this definition. Allow me to try to generate some enthusiasm.
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Theorem. A(G) is an ideal in B(G), in particular a closed subalgebra.

Idea 1. Fell’s absorption principle: λ ⊗ π ∼=u λ
(dimπ), where dim π is the

Hilbertian dimension ofHπ. More specifically, we obtain unitary intertwiners
L2(G) ⊗2 Hπ

∼= L2(G,Hπ) ∼= L2(G)(dimπ). Notice that on L2(G,Hπ), λ ⊗ π
takes the form ξ 7→ π(s)ξ(s−1·). Check that the unitary map ξ 7→ π(·)∗ξ(·)
intertwines this representation with λ(·)⊗ idH ∼= λ(dimπ).

Idea 2. [Eym] A(G) = B ∩ Cc(G)
‖·‖B . In [Ped-C*] there is a proof that

P ∩ Cc(G) ⊂ A(G), which helps establish the non-trivial inclusion, above. �

In light of the results for abelian groups, above, we philosophically think that

A(G) = “L1(Ĝ)”, B(G) = “M(Ĝ)”

even when the space Ĝ = {π ∈ ΣG : π irreducible}/ ∼=u does not admit
a structure as a Hausdorff topological space, hence the obnoxious “green-
grocer’s quotes”.

Theorem. (i)[Eym, Herz] We have Gelfand spectrum ΓA(G) = λ(G) ∼= G.
(ii) [Eym, Haag75] A(G) = {〈λ(·)ξ|η〉 : ξ, η ∈ L2(G)}, i.e. we do not

require closed linear span.

A consequence of Pontryagin’s duality theorem for abelian groups tells us
that Ĝ ∼= Ĥ isomorphically and homeomorphically only if G ∼= H. The
following should be regarded as generalizations of this fact for general locally
compact G and H.

Theorem. (i)[Wen] L1(G) ∼= L1(H) isometrically isomophically exactly
when G ∼= H.

(ii) [Wal] A(G) ∼= A(H) isometrically isomophically exactly when G ∼= H.

Group C*-algebras do not admit such a nice theorem as above. Consider
the discrete direct sum groups Gn = (Z/nZ)⊕N for n = 2, 3, . . . . Then

C∗(Gn) ∼= C(Ĝn), where Ĝn
∼= (Z/nZ)N (direct product, product topology)

is a Cantor set. For a non-abelian example, if G is either the dihedral group
of order 8, or the quaternion group, then C∗(G) ∼= `∞4 ⊕`∞ B(`2

2).
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We close by giving a list of conditions relating locally compact groups to
their algebras. What is not referenced entails an exercise for the reader.

G L1(G) A(G)

compact Haar idempotent (HI) unital
abelian commutative maximal operator

space (Lec. 2)
amenable amenable (Lec. 3) bounded approximate

identity [Lep] (Lec. 3)
compact normal contractive δG-invariant translation & conjugation
subgroup projection [Wen, KawIto] invariant subalgebra [BekLauSch]
compact connected admits idempotent admits idempotent
component of eG
totally disconnected bounded approximate identity span of idempotents

consisting of idempotents (∗) dense
discrete unital Haar idempotent (HI’)

(HI) There is norm 1 h in L1 ∩ Prob(G) for which h ∗ f =
(∫

G
f dm

)
h

(HI’) There is norm 1 u in A ∩ P(G) for which uv = v(e)u.
Note that in the case of abelian G that F̂ (f̂)(e) =

∫
Ĝ
f̂(σ) dσ.

The author is grateful to G. Willis for suggesting the characterization (∗).
Thanks to [Glea], G is Lie if it admits no small normal subgroups, i.e.

there exists neighbourhood U of e which contains no normal subgroup. Hence
Lieness of G can be witnessed by L1(G) in the absence of proper net of δG-
invariant projections which tend strictly to δe; likewise by an absence of a
dense family of proper translation and conjugation-invariant closed subalge-
bras of A(G).
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Lecture #2: What are operator spaces?

The goal is to give a brief introduction to operator spaces, ultimately with
specific emphasis on the preduals of von Neumann algebras. My main sources
for this are the books [EffRuan-OpSp, Pis-OpSp].

Before beginning, let me summarize the desired objects. My goal is to
suggest that defining and understanding the morphisms is the goal for un-
derstanding the objects.

objects morphisms

complex vector spaces linear maps
normed/Banach spaces bounded linear maps

or, contractive linear maps
operator spaces completely bounded linear maps

or, completely contractive linear maps

Note that in the category (BanSp,bounded), invertible morphisms are typ-
ically called isomorphisms, whilst in (BanSp,contractive), invertible mor-
phisms are the isometric isomorphisms.

Definition of the objects. Let V be a complex vector space. We let Mn(V)
denote the vector space of matrices with entries in V ; write V = [vij] for an
element of Mn(V).

1st definition. An operator space structure is a sequence
(
‖·‖n : Mn(V)→

[0,∞)
)∞
n=1

which satisfies

(D)

∥∥∥∥[V 0
0 V ′

]∥∥∥∥
n+m

= max{‖V ‖n , ‖V
′‖m}, and

(M) ‖αV β‖ ≤ ‖α‖B(`2n) ‖V ‖n ‖β‖B(`2n) where α, β ∈ Mn
∼= B(`2

n).

Notice that if µ, ν ∈ U(n) (unitary scalar), then ‖µV ν‖n = ‖V ‖n.

2nd definition. We consider norms ‖ · ‖n, each on the tensor product space
Mn ⊗ V , for which

(D′) (Mn ⊗ V)⊕`∞ (Mm ⊗ V) ↪→ Mn+m ⊗ V isometrically, and

(M′) ‖α · V · β‖ ≤ ‖α‖B(`2n) ‖V ‖n ‖β‖B(`2n) where α, β ∈ Mn
∼= B(`2

n)
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where, in (M’), α · (κ⊗ v) · β = ακβ ⊗ v.

3rd definition. Let K = K(`2(N)) denote the C*-algebra of compact op-
erators. We consider a norm on the algebraic tensor product K ⊗ V such
that

(R)

∥∥∥∥∥
n∑
i=1

αi · Vi · βi

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

αiα
∗
i

∥∥∥∥∥
1/2

max
i=1,...,n

‖Vi‖

∥∥∥∥∥
n∑
i=1

β∗i βi

∥∥∥∥∥
1/2

where α · V · β is defined analogously as above.

It is an exercise to see that these three definitions are equivalent. Axioms
(D) and (M) are due to Ruan; the formulation (R), named in honour of
you-know-who, is given in [Pis-OpSp]. Let us consider some examples.

(O1) Let V be a normed space, and J : V → B(H) an isometry. Then let
‖[vij]‖J,n = ‖[Jvij]‖B(Hn), i.e. we identify Mn(B(H)) ∼= B(Hn)) in the usual
way of multiplying columns of vectors by matrices.

(O2) Let A be a C*-algebra, π : A → B(H) a faithful representation. Then
the norms (‖·‖π,n)∞n=1 are the unique operator space norms for which each
∗-algebra Mn(A) is a C*-algebra. We shall deem this the “canonical” oper-
ator space structure on A. In the context of the 2nd or 3rd definition, the
uniqueness of C*-norms is exactly the fact that each Mn, or K, is a nuclear
C*-algebra.

(O3) Let V be a normed space and Mn⊗λV denote the injective tensor norm
for Banach spaces. Then injectivity of this norm shows we get (D’), and (M’)
follows from the uniformity of this cross norm, i.e. the operator T on Mn,
T (κ) = ακβ, satisfies ‖T ⊗ id‖B(Mn)⊗λV ≤ ‖T‖.
(O3’) Let V be a normed space. Consider the evaluation map isometry E :
V → C(ball(V∗),weak∗), E(v)(f) = f(v). Letting B = (ball(V∗),weak∗), we
observe that Mn(C(B)) ∼= C(B,Mn) as C*-algebras. It follows injectivity of
injective tensor norm that (‖·‖E,n)∞n=1 gives the same operator space structure
as (O3), above. We shall soon see that this should be called the “minimal”
operator space structure on V .

Definition of the morphisms. Let V andW be operator spaces, i.e. vector
spaces equipped with fixed operator space structures. The amplification of a
linear map T : V → W is given by T (n)[vij] = [Tvij]. We shall say that T is

10



• completely bounded (c.b.) if ‖T‖cb = supn
∥∥T (n)

∥∥ <∞,
• completely contractive (c.c.) if ‖T‖cb ≤ 1; and/or
• completely isometric (c.i.) if each T (n) is an isometry.

We shall have limited need for complete isomorphisms, so the short-form c.i.
should cause no confusion ... to the author. The space (CB(V ,W), ‖·‖cb) of
completely bounded maps is a normed space. It is complete if the normed
space (W ∼= M1(W), ‖·‖1) is complete.

The following shows that (O1), above, is actually the whole story about
operator spaces, and is probably the reason we call them “operator spaces”.

Ruan’s Theorem. If (V , ‖·‖∞n=1)∞n=1 satisfies (D) and (M), then there is a
complete isometry J : V → B(H).

(O4) Given a normed space V define for V in Mn(V)

‖V ‖max,n = sup
{
‖J (n)V ‖B(Hn) | J : V → B(H) is an isometry, H a Hilbert space

}
.

Convince yourself that ‖[vij]‖max,n ≤
∑n

i,j=1 ‖vij‖, so that this supremum is
finite. We call this the maximal operator space structure on V , and write
maxV = (V , (‖·‖max,n)∞n=1). Based on Ruan’s theorem we have ‖V ‖n ≤
‖V ‖max,n for any operator space structure (‖·‖n)∞n=1 on V for which ‖·‖1 is
the norm on V . It follows that B(V ,W) = CB(maxV ,W), isometrically, for
any other operator space W .

Proposition. V∗ = BC(V ,C), isometrically.

Proof. C admits only one operator space structure. If f ∈ V∗, V ∈ Mn(V),
ξ, η ∈ `2

n (vectors are column matrices) we have

〈f (n)(V )ξ|η〉 = f(ξ∗V η)

from which it follows that ‖f (n)‖ ≤ ‖f‖. �

Exercise. Show that if W ⊆ C(B) (B compact Hausdorff space) then for
any operator space V , B(V ,W) = CB(V ,W), isometrically.

We call W , with the operator space structure of (O3) or (O3’), the minimal
operator space structure; we write minW for this operator space. If (‖·‖n)∞n=1

is any operator space on a normed space V for which ‖·‖1 is the norm on V ,
we have for V in Mn(V) that

‖V ‖min,n ≤ ‖V ‖n ≤ ‖V ‖max,n .
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The following two results are extremely important and intimately inter-
twined as is shown in the proof of [Pis-SiPr]. These results go back to
[Witt, Haag80], and are related to [Stin55, Arv]. See [Paul, Paul-CBOA]
as well as [EffRuan-OpSp].

Structure theorem. If A is a C*-algebra and T : A → B(H) is a completely
bounded map, then there exist a ∗-representation π : A → B(H′) and linear
maps v, w : H → H′ such that

T = v∗π(·)w and ‖T‖cb = ‖v‖ ‖w‖ .

Extension Theorem. Given operator spaces V0 ⊂ V and T in CB(V0,B(H)),
there is T̃ in CB(V ,B(H)) such that

T̃ |V0 = T and ‖T̃‖cb = ‖T‖cb .

Notice that if W ⊆ B(H), then W is injective amongst operator spaces
with c.c’ve maps if and only if there is a completely contractive projection
E : B(H) → W . If W is a unital C*-algebra, any contractive projection E
is automatically c.c’ve [Tom57, NakTakUme] — see also [Li-OA] (in fact a
unital completely positive map).

Corollary. Any f ∈ A∗ is of the form f = 〈π(·)ξ|η〉 with ‖ξ‖ ‖η‖ = ‖f‖.

Mapping spaces, quotient spaces. We observe that for any operator
space, the c.i’c identifications Mn(Mm(V)) ∼= Mnm(V) allow us to identify
each Mm(V) as an operator space. Given two operator spaces we let

Mn(CB(V ,W)) ∼= CB(V ,Mn(W)) : [Tij] 7→ (v 7→ [Tijv])

isometrically. Check that (D) and (M) are satisfied. In particular we see that
V∗ is an operator space:

Mn(V∗) ∼= CB(V ,Mn).

See also [Ble], where a direct embedding into B(H) is exhibited. We also
consider isometric identifications for closed V0 ⊂ V :

Mn(V/V0) ∼= Mn(V)/Mn(V0).
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A map T : V → W is a complete quotient (c.q.) map if each T (n) is a
quotient map; i.e. each T (n)(ball(Mn(V))) is contained in and is a dense
subset of ball(Mn(W)). Notice that if both V ∼= M1(V) and W ∼= M1(W)
are complete, hence each higher matrix space is complete, then the open
mapping theorem shows that each T (n) takes the open ball of the domain
space onto that of the codomain. We observe the following relationships,
whose proofs vary greatly in depth.

Proposition. (i) The evaluation mapping V ↪→ V∗∗ is a complete isometry.

Let V ,W be operator space and T : V → W be linear.
(ii) T is c.b. ⇔ T ∗ is c.b.
(iii) T is a c.q. ⇔ T ∗ is c.i’c.
(iv) T is c.i’c ⇔ T ∗ is a c.q.

Proposition. We have completely isometric identifications for any normed
space

(maxV)∗ = min(V∗) and (minV)∗ = max(V∗).

Preduals of von Neumann algebras. Thanks to [Sak-C*W*], any von
Neumann algebra M has a unique isometric predual M∗. We assign M∗
the operator space structure it gains as a subspace of M∗. We observe that
M, being a von Neumann algebra itself, admits withinM∗∗ a unique central
projection z for which M∼= zM∗∗. The adjoint of the inclusion M∗ ↪→M∗

is the c.q. map X 7→ zX : M∗∗ � zM∗∗ ∼= M. Hence it follows from one
of the recent propositions that M, qua dual space of M∗, is c.i. to M, qua
von Neumann algebra.

Let (X,µ) be any decomposable measure space (or σ-finite, if you prefer).
Then since L∞(X,µ) is a commutative von Neumann algebra, it is a minimal
operator space. Thus L1(X,µ) ∼= L∞(X,µ)∗ is a maximal operator space.
We shall deem this a certain “spatial” commutivity of the operator space
structure.

Theorem. (Grothendieck) L1(X,µ)⊗γ L1(Y, ν) ∼= L1(X×Y, µ× ν), isomet-
rically.
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Theorem. (folklore, see [Los]) For von Neumann algebras M,N , we have
M∗ ⊗γ N∗ ∼= (M⊗̄N )∗ isomorphically [resp., isometrically] ⇔ at least one
of M,N is subhomogeneous [commutative].

The rather sorry state of affairs for non-subhomogeneous preduals begs for a
resolution. Operator space theory provides this elegantly.

Given two complete operator spaces there is a sequence of norms ‖·‖∧,n :
Mn(V ⊗ W) → [0,∞) which gives the largest operator space structure for
which ‖[vij ⊗ wkl]‖∧,nm = ‖[vij]⊗ [wkl]‖∧,nm = ‖[vij]‖n ‖[wkl]‖m, i.e. is a
“matricial-cross” structure. The completion of V ⊗W with respect to ‖·‖∧,1
is denoted V⊗̂W and called the operator projective tensor product. Let us
observe its naturally properties.

Proposition. (Duality) (V⊗̂W)∗ ∼= CB(V ,W∗), c.i’lly.
(Uniformity & projectivity) If Tj : Vj → Wj (j = 1, 2) are c.c’s, then
T1 ⊗ T2 forms a complete contraction V1⊗̂W1 → V2⊗̂W2. If each Tj is a
complete quotient map, then so too is T1 ⊗ T2.

Finally we come to the elegant non-commutative Grothedieck formula of
[EffRuan]. Though the commutative result admits an elementary proof,
the present result actually requires the commutation theorem from Tomita-
Takesaki theory. To my knowledge, no elementary proof is known.

Effros-Ruan tensor product formula. There is a c.i’c identification

M∗⊗̂N∗ ∼= (M⊗̄N )∗.

From the perspective of non-commutative harmonic analysis, preduals of von
Neumann algebras are the most basic spaces. Hence we consider the operator
projective tensor product ⊗̂ as more natural and assign it the “default”
symbol – as opposed to ⊗γ for Banach space projective tensor product.

Notice that since B(max L1(X,µ),W) = CB(max L1(X,µ),W), isometrically
it follows from duality that L1(X,µ)⊗γW = max L1(X,µ)⊗̂W , isometically.
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Lecture #3: Amenability!

Our goal is to relate amenability of groups, to amenability of group al-
gebras, to (operator) amenability of Fourier algebras. In particular, we wish
to illustrate the necessity of the predual operator space structure to under-
standing the latter.

Amenable groups. A locally compact group G is amenable if it admits a
Følner net: an increasing directed subset F ⊂ Borel(G) for which
• 0 < m(F ) <∞ for F in F ; and

• m(sF4F )

m(F )

F∈F−−−→ 0 uniformly for s in compacta.

We prove the easy direction of the following; a general proof of the hard
direction can be found in [Green-Mean, Pat-Amen], and an easier proof for
discrete group can be found in [BroOza-C*App].

Theorem. G is amenable ⇔ there is a left-invariant mean M on L∞(G).

Proof (⇒). M is any weak* cluster point of
(

1
m(F )

1F

)
F∈F

in L∞(G)∗. �

Let us observe some examples and stability properties. Any unobvious fact
should be checked in [Green-Mean, Pat-Amen], though they amount to ex-
ercises in the case of discrete groups.

(A1) Compact ⇒ amenable: take F = {G}.

(A2) Rd is amenable: Fn = [−n, n]d; similar is true for Zd. We quickly
obtain all compactly generated abelian groups.

(A3) G =
⋃
i∈I Gi, increasing union, Gi open and amenable⇒ G amenable.

From (A2) we obtain all l.c. abelian groups. [If you prefer means, apply the
Markov-Kakutani fixed point theorem to translations by abelian G on the
weak*-compact convex set of means on L∞(G).]

(A4)G amenable⇒ all closedH ≤ G, all continuous quotientG/N amenable;
N ↪→ G� G/N with N,G/N amenable ⇒ G amenable.

Any group gained from (A1) and (A2), via operations of (A3) and (A4) is
called elementarily amenable.
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(N1) Any non-abelian free group Fn is not amenable. Draw the Cayley
graph and convince yourself that for any finite F ⊂ Fn that there is c > 0
such that for s 6= e

c ≤ |∂F |
2|F |

≤ |sF4F |
|F |

where ∂F is the boundary of F .

(N2) Any non-compact semisimple connected Lie group is known to contain
a discrete copy of F2. Compare with (A4). Notice that semi-simple Lie
groups contain dense copies of F2 in abundance: the equation on the group
in any finite 2-alphabet word generates a closed subset nowhere dense since
we can find some free group; appeal to Baire category theorem. Why, for a
compact such group, does this not contradict (A1) and (A4)?

Amenable Banach algebras. We observe that A⊗γA is a Banach algebra
in the obvious manner. We let π : A ⊗γ A → A denote the product map.
We interpret a ⊗ 1, 1 ⊗ a as elements in the multiplier algebra, in the event
that A is not unital.

We say that a Banach algebra A is amenable if there is a net (mα)α ⊂
A⊗γ A such that
• supα ‖mα‖γ <∞;
• (π(mα))α is an approximate identity for A; and
• (a⊗ 1) ·mα −mα · (1⊗ a)

α−→ 0 for a in A.
The net (mα)α is called a bounded approximate diagonal (b.a.d.) Standard
references for what follows are [Dal-BanAlg, ?]

Let us note some (non-)stability properties of amenability. Proofs of the first
two are exercises; the latter follows from the cohomological characterization
which follows shortly.

(B1) If Φ : A → B is a continuous homomorphism with dense range and A
is amenable, then B is amenable.

(B2) If
⋃
i∈I Ai is an increasing dense union of closed amenable subalgebras

ofA, and each with a b.a.d. (mi,α(i))α(i) for which supi supα(i)

∥∥mi,α(i)

∥∥
Ai⊗γAi

<
∞, then A is amenable.

(NB) It is not the case that a closed subalgebra of amenable A is amenable.
Consider the disc algebra A(D) as a subalgebra of C(T). See the exercise
below, to show that the latter is amenable. The derivation criterion we shall
see shortly shows that A(D) is not amenable.
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The following punctuates our Lecture #1 philosophy that G“ = ”L1(G). We
sketch the easy direction, only.

Theorem. [Joh-Mem, Run-Amen, Dal-BanAlg] G is amenable ⇔ L1(G) is
amenable.

Sketch (⇒). If G is discrete, index over a Følner net

mF =
1

|F |
∑
s∈F

δx ⊗ δx−1 .

If G is not discrete, we work a bit harder. Thanks to [LosRin], by way of the
fact that there is an inner-invariant mean of L∞(G), there exists a contactive
quasi-central approximate identity (q.c.a.i.) for L1(G): (eα)α, which means
that

‖δx ∗ eα − eα ∗ δx‖1

α−→ 0 uniformly for x in compacta.

Now build a net with constituent elements

(eα ⊗ eα) ∗
[

1

m(F )

∫
F

δx ⊗ δx−1 dx

]
where we build the index set in a manner such that we take the limit in F
first, then in α; see [Kel-Top] and a use of this technique in [S]. �

Exercise. Show that any commutative Banach algebra, generated by its
invertible elements, is amenable.

A (contractive) Banach A-module is a Banach space X which is a bimodule in
the sense that there are a contractive homomorphism A → B(X ) : a 7→ (x 7→
a · x) and a contractive anti-homomorphism A → B(X ) : a 7→ (x 7→ x · a)
with commuting ranges: (a ·x) ·b = a · (x ·b). The dual space X ∗ with adjoint
actions a ·f ·b(x) = f(b ·x ·a) is called a (contractive) dual Banach A-module.

Within the next theorem lies Johnson’s original formulation of the defi-
nition of amenability. The “averaging” nature of the b.a.d. (mα)α is slightly
apparent in the proof.

Theorem. [Joh72, Run-Amen, Dal-BanAlg] Let BD(A,X ∗) be the space of
bounded derivations: D(ab) = a · D(b) + D(a) · b. Then A is amenable ⇔
BD(A,X ∗) = {a 7→ a · f = f · a : f ∈ X ∗}.
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Sketch (⇒). We may suppose by density that mα =
∑nα

i=1 ai,α ⊗ bi,α. Then
(
∑nα

i=1 ai,α ·D(bi,α))α can be shown to admit a weak* limit point f in X ∗. �

The condition that BD(A,A∗) = {a 7→ a · f = f · a : f ∈ A∗} is called weak
amenability. For commutative A this notion was introduced in [BadCurDal]
and means that BD(A,A∗) = {0}; in fact BD(A,S) = {0} for any symmetric
Banach A-bimodule: a · s = s · a. [This is not to be confused with the notion
of weak amenability for groups [deCaHaa]. To the authors knowledge there
is no relationship between these notions.]

Theorem. [Joh91, DesGha] L1(G) is always weakly amenable.

(Non-)Amenability of Fourier algebras. With the definition I have
used, it is a tautology that amenability of an algebra entails that the algebra
admits a bounded approximate identity (b.a.i.)

Leptin’s theorem. [Lep] G is amenable ⇔ B(G) admits a b.a.i.

Sketch (⇒). Check that a Følner net satisfies

uF (s) =

〈
λ(s)

1

m(F )1/2
1F

∣∣∣∣ 1

m(F )1/2
1F

〉
=
m(sF ∩ F )

m(F )

F∈F−→ 1.

If v ∈ P ∩ A(G), uFv
F∈F−→ v; see [GranLei]. Notice that the b.a.i. is really a

contractive a.i., and, in fact, comprised of positve-type elements. �

The following result was considered surprising at the time of its publication.

Theorem. [Joh94] A(SO(3)) is not weakly amenable.

See [Ply, ForSamS] for extensions built on structure theory of compact groups.
A different perspective is taken in [ChoGha], where the result is extended to
such groups as the ax+ b-group, SL2(R) and its universal cover. It is widely
suspected that A(G) is weakly amenable if and only the connected compo-
nent of the identity Ge is abelian. See [ForRun], and other references in this
paragraph.

Since amenability is a desirable property, it is regrettable that A(G) is
infrequently amenable.

Theorem. [LauLoyWil, ForRun] A(G) is amenable ⇔ G admits an abelian
subgroup of finite index(a).
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(a) It seems best to refer to these as virtually abelian, which is consistent
with group theory literature. In such literature almost abelian often refers
to groups which are extensions of abelian groups by finite groups, though
a Google search revealed as many uses as a synonym for virtually abelian.
Interestingly ““almost abelian”” (scare-quotes within scare-quotes) is used
casually by some authors to motivate intuition on finite nilpotent groups. I
have never seen R2 o S0(2) referred to as “almost abelian”, so this phrase
seems almost never to admit the connotation of a compact extension of an
abelian group.

Operator spaces to the rescue. Let us recall the happy fact that A(G)∗ ∼=
VNλ =: VN(G). Now we have a unitary equivalence

L2(G)⊗2 L2(H) ∼= L2(G×H) (Hilbertian tensor product)

which intertwines λG×λH ∼= λG×H , and hence gives us a spatial equivalence

VN(G)⊗̄VN(H) ∼= VN(G×H).

Hence the Effros-Ruan tensor product formula gives us

A(G)⊗̂A(H) ∼= A(G×H), c.i’lly.

We note that [Los] has shown that A(G)⊗γA(H) ∼= A(G×H), isomorphically,
only when one of G or H admits an abelian subgroup of finite index. In
fact, unless we know that one of A(G),A(H) has the metric approximation
property, it is not even clear to the author that A(G)⊗γ A(H) is semisimple
[Tom60], hence injects into A(G×H).

C.c’ve Banach algebras. A completely contractive Banach algebra (c.c.B.a)
is an associative algebra equipped with an operator space structure with re-
gards to which the product map extends to a complete contraction
π : A⊗̂A → A.

By comments at the end of the last lecture for any Banach algebra A,
maxA is trivially a c.c.B.a. Of course B(G) and A(G) should be considered
with their predual operator space structures.

Proposition. B(G), hence A(G), is a c.c.B.a.
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Proof. Consider the chain of normal ∗-homomorphisms

W∗(G)→W∗(G×G)→W∗(G)⊗̄W∗(G)→W∗(G)⊗̄VN(G)

$G(s) 7→ $G×G(s, s) 7→ $G(s)⊗$G(s) 7→ λG(s)⊗ λG(s)

which admits c.c’ve preadjoint

A(G)⊗̂A(G) ↪→ B(G)⊗̂B(G) ↪→ B(G×G)
Rdiag−−−→ B(G).

The composition of these maps gives pointwise product. �

Operator amenability. A c.c.B.a. is operator amenable if it admits a b.a.d.
(mα)α which is bounded in A⊗̂A.

The contractive map A ⊗γ A → A⊗̂A shows that amenability implies
operator amenability.

For a C*-algebra A we have a facorization π : A⊗̂A → A⊗h A → A, where
⊗h denotes the Haagerup tensor product. For lack of time and space I will
not discuss this remarkable construction beyond this point.

The next result is famous and deep.

Theorem. [Con, Haag83, Ruan, EffKis] Let A be a C*-algebra. Then the
following are equivalent:

(i) A is nuclear; (ii) A is amenable; and (iii) A is operator amenable.

However, for my present purposes, the following result, which motivates op-
erator amenability, will be more useful.

Theorem. [Ruan] A(G) is operator amenable ⇔ G is amenable.

Sketch. (⇒) See Leptin’s theorem, above.

(⇐) We follow [AriRunS, IlieS]. In [Stok04] a bounded q.c.a.i. (eα)α for L1(G)
which is composed of compactly supported probabilities whose supports tend
down to {eG}. We set ξα = e

1/2
α and then let

wα(s, t) = 〈λ(s)ρ(t)ξα|ξα〉 ∈ P(G×G).

We have
wα(s, s)

α−→ 1 uniformly for s in compacta. (♥)
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We also have that (wα)α is eventually 0 on any compact set K such that
K∩Gdiag = ∅, where Gdiag is the diagonal subgroup. The latter is a spectral
subset for A(G × G); see [Herz, TakTat]. In particular, approximating by
compactly supported elements of A(G×G) which are supported away from
Gdiag, we establish that

wαv
α−→ 0 for v|Gdiag

in A(G×G).

Hence it follows that for u in A(G) and any c.a.i. (vβ)β ⊂ P ∩A(G×G), we
have

lim
β

lim
α

(u⊗ 1− 1⊗ u)wαvβ = 0. (♦)

Combining (♥) and (♦) in light of [GranLei], we can form the elements wαvβ
into a b.a.d. for A(G)⊗̂A(G); see [S]. �

In pleasing analogy with [Joh91], the property of operator weak amenability,
i.e. that completely bounded derivations to the dual space satisfy CBD(A,A∗)
= {a 7→ a · f − f · a : f ∈ A∗}, is known for A(G).

Theorem. [S, Sam] A(G) is always operator weakly amenable.

Let us re-emphasize the fact that L1(G), while often non-commutative qua
Banach algebra, is “spatially” commutative: L1(G)∗ ∼= L∞(G). Meanwhile
A(G) while being commutative qua Banach algebra is often “spatially” non-
commutative: A(G)∗ ∼= VN(G), the latter admits arbitrarily large matrix
units if G is not virtually abelian.

Summary Theorem. The following are equivalent:
(i) G is amenable;
(ii) L1(G) is amenable;
(ii’) L1(G) is operator amenable;
(iii) A(G) is operater amenable.

Furthermore L1(G) is always (operator) weakly amenable and A(G) is always
operator weakly amenable.

The author self-indulgently recommends the survey article [S-Surv] for more
on this theme.
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Lecture #4: Applications of operator amenability
to two problems in harmonic analysis.

Application #1: Homomorphisms of Fourier algebras. In a de-
lightfully whimsical bout of harmonic analysis chauvinism, a colleague of
mine characterised the main result of [Coh] as “Cohen’s last great theorem”.
Therein, for abelian groups G and H, the structure of all bounded homomor-
phisms from A(G) ∼= L1(Ĝ) to B(H) ∼= M(Ĥ) were characterized. This result
was extended to the case that G is virtually abelian, in [Host], and to the
case that G is discrete in [Ilie]. The latter, implicitly rediscovered (and used)
the fact that A(G) is operator biprojective in this case; see [Wood, Ari].

A complete characterisation for the analogous problem on L1(G) for non-
commutative G remains unknown. See [Gre, Stok12] for more on this. Let
me hint that this problem will be completely understood if we can under-
stand both the structure of the idempotents and the structure of the groups
supported by the said idempotents. For discrete groups this entails no less
than a resolution of Kaplansky’s idempotent conjecture in C[G].

My goal now is to look at a procedure from [IlieS] to indicate how operator
amenability gives an appealing partial resolution of the problem of under-
standing bounded homomorphisms between A(G) and B(H). Notice that we
recover, and hence generalize, the results of [Coh, Host], mentioned above.

Piecewise affine maps. A coset of H is any C ⊆ H for which

r, s, t ∈ C ⇒ rs−1t ∈ C.

Notice that C−1C,CC−1 are groups and C = sC−1C = CC−1s for any s in
C. We let Ω(H) denote the coset ring, the Boolean algebra generated by
cosets G. A map α : C ⊂ H → G is called affine provided that C is a coset
and α(rs−1t) = α(r)α(s)−1α(t) for r, s, t in C. A map α : Y ⊆ H → G is
called piecewise affine (p.a.) if
• Y admits a partition Y1, . . . , Yn ⊂ Ω(H),
• ∃ cosets Cj ⊇ Yj and affine maps αj : Cj → G such that

α|Yj = αj|Yj , j = 1, . . . , n.

This family of maps contains homomorphisms from subgroups and well as
translations. Verify (i), below, as an exercise.
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Proposition. Let α : Y ⊆ H → G. Then:
(i) α is affine ⇔ Graph(α) ⊂ H ×G is a coset; and
(ii) α is p.a. ⇔ Graph(α) ∈ Ω(H ×G).

The main result of [Host] is not a homomorphism theorem but an idempotent
theorem. Let Ωo(H) be the Boolean algebra generated by the open cosets.

Host’s Theorem. {u ∈ B(H) : u = u2} = {1Y : Y ∈ Ωo(H)}.

Now suppose that we have a bounded homomorphism Φ : A(G) → B(H).
Note that Gelfand spectrum H ∼= $H(H) ⊆ ΓB(H) (the so-called Wiener-Pitt
phenomenon, see [Kat-HarAn], for example, tells us that $Z(Z) is not even
dense in ΓB(Z)

∼= ΓM(T)), while ΓA(G) = λG(G) ∼= G. Hence Φ∗($H(H)) ⊆
λG(G) ∪ {0}. Let Y = {s ∈ H : Φ($H(s)) 6= 0}. We thus induce a map
α : Y ⊂ H → G. We have for u in A(G) that

Φu(s) =

{
u(α(s)) if s ∈ Y
0 if s 6∈ Y

, i.e. Φu = 1Y u ◦ α. (♠)

We wish to understand α, and it is here that we shall

assume that Φ is completely bounded and that G is amenable.

The value of c.b’ness of Φ can be observed in the following analogue of a
proposition in [deCaHaa], with practically the same proof.

Proposition. The following are equivalent:
(i) Φ is c.b.
(ii) Φ⊗ id : A(G)⊗̂A(S)→ B(H)⊗̂A(S) is bounded for any l.c. group S
(iii) Φ⊗ id : A(G)⊗̂A(SU(2))→ B(H)⊗̂A(SU(2)) is bounded.

We now consider the following sequence of c.q. ∗-homomorphisms

W∗(Hd ×Gd)�W∗(H ×G)�W∗(H)⊗̄VN(G)

where Fd is the discretised version of F , F = G,H. We thus consider the
composition of maps

A(G)⊗̂A(G)
Φ⊗id−−−→ B(H)⊗̂A(G) ↪→ B(Hd ×Gd)
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which is bounded. Notice that (Φ ⊗ id)w(s, t) = 1Y (s)w(α(s), t). Now we
invoke the assumption that G is amenable, hence A(G) is operator amenable
and has a b.a.d. (mι)ι. We observe that in the pointwise topology in B(Hd×
Gd) — which equals the weak* topology on bounded sets — that

(Φ⊗ id)mι(s, t) = 1Y (s)mι(α(s), t)
ι−→

{
1 if s ∈ Y, t = α(s)

0 otherwise

}
= 1Graph(α).

Hence 1Graph(α) ∈ B(Hd×Gd). Then Host’s theorem tells us that Graph(α) ∈
Ω(H ×G) (all sets are open in discrete topology) and hence α is p.a. Using
regularity of A(G) we may determine that α is continuous, and some more
effort then reveals that Y partitions with components in Ωo(H).

Establishing that a continuous p.a. map on such open Y gives rise to a c.b.
homomorphism form A(G) to B(H) is tedious, but easier. We summarise.

Theorem. [IlieS] If G is amenable, then there is a bijection between c.b.
homomorphisms Φ : A(G)→ B(H) and continuous p.a. maps α : Y ⊂ H →
G, as given by (♠). Furthermore, Φ(A(G)) ⊆ A(H) ⇔ α is proper, i.e.
α−1(K) is compact whenever K is compact.

Let us consider the necessity of our assumptions.
(i) Let Fn be a non-commutative free group and E an infinite free set

in Fn. Then u 7→ 1Eu : A(Fn) → A(Fn) is a c.b. homomorphism but
1E 6∈ B(A(Fn), [Lei, BozFen]. The associated α : E → Fn is not p.a. as
E 6∈ Ω(Fn).

(ii) The map u 7→ ǔ : A(G) → A(G) (ǔ(s) = u(s−1)) is contractive, but
c.b. ⇔ G is virtually abelian; [ForRun]. It follows that the anti-diagonal
{(s−1, s) : s ∈ G} ∈ Ω(G × G) ⇔ G is virtually abelian. It seems that it
should be possible to verify this by group theory techniques alone, but no
such proof is known to the author.

An anti-affine map is a map α : C ⊂ H → G from a coset which satisfies
α(rs−1t) = α(t)α(s)−1α(r), i.e. and affine map composed with inversion.
Techniques, much different form ours, were used to show the following.

Theorem. [Pham] There is a bijection between contractive homomorphisms
Φ : A(G) → B(H) and continuous affine or anti-affine maps α : Y ⊂ H →
G, as given by (♠).
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I leave it to the reader to formulate a reasonable conjecture about the struc-
ture of bounded homomorphisms Φ : A(G) → B(H), at least when G is
amenable. I would be delighted to learn, and learn of, any new results in the
direction.
Application #2: Ideals with bounded approximate identities in
Fourier algebras. The problem of considering, for an abelianG, those ideals
in A(G) ∼= L1(Ĝ) admitting a b.a.i. goes back over 40 years. See [Ros, Gil,
Sch, LiuRooWan]. Advances were made for small invariant neighbourhood
groups in [For].

Let us first consider where to look. If J C A(G) is such an ideal with b.a.i.
(uα)α, then in B(Gd) ⊇ A(G), the regularity of G can be used to show that
weak*-limα uα = 1E where E = hull(J ) = {s ∈ G : u(s) = 0 ∀u ∈ J }. But
Host’s theorem tells us E ∈ Ω(G) and further that E is closed. Based on
[Gil, Sch], it was shown in [For] that

E =
n⋃
i=1

(
Ci \

ni⋃
j=1

Kij

)

where each Ci is a closed coset and each Kij is a relatively open coset in Ci,
hence closed in Ci, whence closed in G. We may allow ni = 0 and understand
that empty unions represent the empty set. At this point we may conclude
that J ⊆ k(E); if we knew that E were spectral we would be able to conclude
that J = k(E) := {u ∈ A(G) : u|E = 0}.

Closed subgroups, hence closed cosets, are spectral [Herz, TakTat]; note
that translations are isometric automorphisms of A(G). However, the union
problem for spectral sets is unsolved, even for abelian G. But, if each closed
coset C allowed that k(C) admitted a bounded approximate identity, then
each such C would be a Ditkin set (i.e. we approximate each element of the
b.a.i. by elements from j(C)). Since Ditkin sets satisfy that unions of such are
Ditkin, it seems as if it is possible to conclude that such E is spectral. Indeed
it is possible, but takes some effort: see [KanForLauS]. A good introduction
to sets of spectral synthesis is in [Kan-CBA].

My main goal is to summarise how we show that k(H) admits a b.a.i. for
every closed subgroup of an amenable group G. The role of a b.a.i. for A(G)
will be indispensable beyond a certain point, so Leptin’s theorem tells us
that we might as well assume from the beginning that G is amenable.
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If, for example, G is discrete and non-amenable and F ⊂ G is finite, then
k(F ) will not admit a b.a.d.

Observe that the statement of the result below has no reliance on the operator
space structure of A(G). The fact that they are so useful in the proof speaks
to the naturality of using this extra structure.

Theorem. [KanForLauS] If G is amenable and H ≤ G is closed, then k(H)
admits a b.a.i.

Outline of proof. (1) We will first see that the annihilator k(H)⊥ is
completely complemented in VN(G).

We first observe the restriction theorem [Herz, McM, Ars]: RH : A(G)→
A(H) is surjective. Its adjoint R∗H : VN(H) → VN(G) satisfies R∗HλH(s) =
λG(s) which can be seen to extend to an injective ∗-homomorphims VN(H)→
VNG(H) := spanw∗λG(H) ⊂ VN(G), hence a c.i. Furthermore, it is then ba-
sic to observe that k(H) = kerRH thus satisfies that k(H)⊥ = VNG(H).

Since H is amenable (closed subgroup of G), there is a left-invariant mean
M on L∞(H). We use this to see that VN(H) is injective as an operator
space:

E : B(L2(H))→ VN(H), 〈E(a)ξ|η〉 = M(s 7→ 〈ρ(s)aρ(s−1)ξ|η〉)

where ρ : H → U(L2(H)) is the right regular representation. It is well-
known, but non-trivial, that VN(H) = VN′′ρ; see [Dix-vN]. It follows that
ranE = VN(H) and E2 = E. The complete boundedness is automatic, but
is easily checked manually:〈

E(n)[aij]

ξ1
...
ξn


∣∣∣∣∣∣∣
η1

...
ηn

〉 = M

s 7→ 〈
[aij]

ρ(s−1)ξ1
...

ρ(s−1)ξn


∣∣∣∣∣∣∣
ρ(s−1)η1

...
ρ(s−1)ηn

〉
 .

The extension theorem provides us a c.i. J making the diagram, below, com-
mute.

VN(G)
J

// B(L2(H))

Evv
VNG(H)
?�

OO

∼ VN(H)
+ �

88

Let P = E ◦ J : VN(G)→ VNG(H) = k(H)⊥.
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(2) We now use a b.a.d. (mα)α, provided by the operator amenability of
A(G), to “average P to invariance”. This device is from [CurLoy] but was
first discovered by Helemskii. See [Hel-Hom, Run-Amen].

By density we may suppose each mα =
∑nα

i=1 u
α
i ⊗ vαi . Let Pα(x) =∑nα

i=1 u
α
i · P (vαi · x). The fact that P is c.b. allows (Pα)α to be bounded in

CB(VN(G), k(H)⊥) ∼= (VN(G)⊗̂(A(G)/k(H))∗, hence bounded in
B(VN(G), k(H)⊥) ∼= (VN(G) ⊗γ (A(G)/k(H))∗. [If we only knew that P
were bounded, we would have no means to arrive at this conclusion, since
(mα)α is generally not bounded in A(G) ⊗γ A(G).] Hence we may obtain a
weak* cluster point P̃ and we have

P̃ (u · x) = u · P̃ (x).

[If we could construct a net (uα)α ⊂ P(G) for which uα
α−→ 1H pointwise, this

would allow a different construction to obtain P̃ . This is trivially available
for H open, and easy to find if H C G. Indeed, we would take Pα = Suα ,
Sux = u · x, and extract a cluster point.

J. Crann kindly informs me that a method in [CraNeu] allows one to
generally and directly to obtain P̃ without taking a limit, assuming that H
is amenable but without assuming G is amenable! The proof is very nice, but
requires introduction of some fundamental unitaries, and circumvents the use
of operator space techniques. This is adding to evidence that these techniques
are valuable, even in the setting of cocommutative quantum groups, of the
type the author adores.]

(3) We continue with devices from [CurLoy, Hel-Hom] to use the invariant
projection P̃ to obtain a b.a.i. for k(H). From here on we need to know only
that A(G) has a b.a.i. and that our invariant projection is bounded.

We have a split short exact sequence of A(G)-module maps:

k(H)⊥ �
� // VN(G)
P̃

mm Q
// // VN(G)/k(H)⊥ ∼= k(H)∗.

Hence we may obtain an A(G)-linear embedding i : k(H)∗ ∼= ker P̃ ⊂ VN(G)
for which Q ◦ i = id, and hence i∗ : A(G)∗∗ ∼= VN(G)∗ → k(H)∗∗ is a
surjective A(G)-linear map. For any b.a.i. (uβ)β for A(G), any cluster point
U of (i∗(uβ))β can be shown to satisfy u · U = U (second adjoint action
of u in k(H) on k(H)∗∗) so U is called a mixed identity. It is shown in
[BonDun-CNA] that this implies that k(H) itself admits a b.a.d. �

27



We note in passing that the property that J CA (A [c.c’ve] Banach algebra)
admitting a b.a.i. (uβ)β implies that J ⊥ is complemented in A; we call this
weakly complemented. Indeed let P be any weak*-cluster point of of Suβ
where Suf = u · f . Hence we have for [op.] amenable A that J admits a
b.a.i. ⇔ J is weakly [c.ly] complemented.
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