

The Category Cu. Which maps are the correct ones? *-homomorphisms or cpc order zero?

Joan Bosa University of Glasgow Joan.Bosa@glasgow.ac.uk

(j.w. G. Tornetta, J. Zacharias)

17 June 2014

▲□▶ ▲□▶

Table of Contents

2 The Bivariant Cuntz Semigroup

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Table of Contents

- The Cuntz Semigroup
- Maps between C*-algebras

2 The Bivariant Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?-Joan Bosa Puigredon - Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and a, $b \in A_+$.

a is Cuntz subequivalent to b $(a \preceq b)$

- Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and a, $b \in A_+$.

a is Cuntz subequivalent to b $(a \precsim b)$

$$\longleftrightarrow$$

 \exists a sequence (x_n) in A such that $||x_n b x_n^* - a|| \to 0$

The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps? Joan Bosa Puigredon - Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C^{*}-algebra and a, $b \in A_+$.

a is Cuntz subequivalent to b $(a \preceq b)$

$$\longleftrightarrow$$

 \exists a sequence (x_n) in A such that $||x_n b x_n^* - a|| \rightarrow 0$

a and *b* are *Cuntz* equivalent if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).

The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?-----

- Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and a, $b \in A_+$.

a is Cuntz subequivalent to b $(a \precsim b)$

$$\longleftrightarrow$$

 \exists a sequence (x_n) in A such that $||x_nbx_n^* - a|| \to 0$

a and *b* are *Cuntz* equivalent if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).

Extending this relation to $M_{\infty}(A)_+ = \bigcup_{n=1}^{\infty} M_n(A)_+$, one defines the Cuntz semigroup

$$W(A) = M_{\infty}(A)_{+}/{\sim}$$
.

The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?-----

Joan Bosa Puigredon

- Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and a, $b \in A_+$.

a is Cuntz subequivalent to b $(a \precsim b)$

$$\longleftrightarrow$$

 \exists a sequence (x_n) in A such that $||x_nbx_n^* - a|| \to 0$

a and *b* are *Cuntz* equivalent if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).

Extending this relation to $M_{\infty}(A)_+ = \bigcup_{n=1}^{\infty} M_n(A)_+$, one defines the Cuntz semigroup

$$\mathrm{W}(A) = M_{\infty}(A)_{+}/{\sim}$$
.

Denote the equivalence classes by $\langle a \rangle$. The operation and order are given by

$$\langle a \rangle + \langle b \rangle = \langle \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \rangle, \quad \langle a \rangle \leq \langle b \rangle \text{ if } a \precsim b.$$

The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?-----

- Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and a, $b \in A_+$.

a is Cuntz subequivalent to b (a \precsim b)

$$\longleftrightarrow$$

 \exists a sequence (x_n) in A such that $||x_nbx_n^* - a|| \to 0$

a and *b* are *Cuntz* equivalent if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).

Extending this relation to $M_{\infty}(A)_+ = \bigcup_{n=1}^{\infty} M_n(A)_+$, one defines the Cuntz semigroup

$$\mathrm{W}(A) = M_{\infty}(A)_{+}/{\sim}$$
.

Denote the equivalence classes by $\langle a \rangle$. The operation and order are given by

$$\langle a \rangle + \langle b \rangle = \langle \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \rangle, \quad \langle a \rangle \leq \langle b \rangle \text{ if } a \precsim b.$$

The order in W(A) is usually not the algebraic order.

The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?	— Joan Bosa Puigredon
- Motivation	
L The Cuntz Semigroup	

Continuity of W(A)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• If A is a C*-algebra of the form $A = \varinjlim(A_i)$, then in general $W(A) \neq \varinjlim W(A_i)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• If A is a C*-algebra of the form $A = \varinjlim(A_i)$, then in general $W(A) \neq \varinjlim W(A_i)$.

Remark

The assignment $A \mapsto W(A)$ does not preserve inductive limits

• If A is a C*-algebra of the form $A = \underset{i \to i}{\lim} (A_i)$, then in general $W(A) \neq \underset{i \to i}{\lim} W(A_i)$.

Remark

The assignment $A \mapsto W(A)$ does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C^* -algebra, which is a modified version of the Cuntz semigroup. In fact, Cu(A) can be identified with $W(A \otimes K)$.

Continuity of W(A)

• If A is a C*-algebra of the form $A = \varinjlim(A_i)$, then in general $W(A) \neq \varinjlim W(A_i)$.

Remark

The assignment $A \mapsto W(A)$ does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C^* -algebra, which is a modified version of the Cuntz semigroup. In fact, Cu(A) can be identified with $W(A \otimes K)$.

Properties

- Cu(A) belongs to a category of semigroups called Cu that admits inductive limits that are not algebraic.
- The assignment $A \mapsto Cu(A)$ is sequentially continuous.

The category Cu

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 의 ♥ ♥

Definition

Let a, b be elements in a partially ordered set S. Then, we will say that $a \ll b$ (way-below) if for any increasing sequence $\{y_n\}$ with supremum in S such that $b \leq \sup(y_n)$, there exists m such that $a \leq y_m$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The Cuntz Semigroup

The category Cu

Definition

Let a, b be elements in a partially ordered set S. Then, we will say that $a \ll b$ (way-below) if for any increasing sequence $\{y_n\}$ with supremum in S such that $b \leq \sup(y_n)$, there exists m such that $a \leq y_m$.

Definition (Cu)

An object of Cu is a partially ordered semigroup with zero element S such that:

- The order, in S, is compatible with the addition, i.e., if $x_i \le y_i$, $i \in \{1, 2\}$ then $x_1 + x_2 \le y_1 + y_2$,
- every increasing sequence in S has a supremum,
- for all $x \in S$ there exists a sequence $\{x_n\}$ such that $x = \sup(x_n)$ where $x_n \ll x_{n+1}$,
- $\bullet\,$ the relation $\ll\,$ and suprema are compatible with addition.

The maps of $\rm Cu$ are those morphisms which preserve the order, the zero, the suprema of increasing sequences and the relation $\ll.$

٦	Fhe Category $\mathrm{Cu}.$ Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?—	- Joan Bosa Puigredon
	- Motivation	
	The Cuntz Semigroup	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in Cu(A) for all $\varepsilon > 0$ and for all $a \in A_+$.

Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in Cu(A) for all $\varepsilon > 0$ and for all $a \in A_+$.

Example

• Let X be a compact metric space. Then, if $\mathcal{O}(X)$ is the set of open sets in X ordered by inclusion, it follows that $\mathcal{O}(X) \in Cu$. In this, we have that $U \ll V$ for $U, V \in \mathcal{O}(X)$, if there exists a compact subset $K \subseteq X$ such that $U \subseteq K \subseteq V$.

Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in Cu(A) for all $\varepsilon > 0$ and for all $a \in A_+$.

Example

- Let X be a compact metric space. Then, if $\mathcal{O}(X)$ is the set of open sets in X ordered by inclusion, it follows that $\mathcal{O}(X) \in Cu$. In this, we have that $U \ll V$ for $U, V \in \mathcal{O}(X)$, if there exists a compact subset $K \subseteq X$ such that $U \subseteq K \subseteq V$.
- Let X be a finite-dimensional compact metric space, then Lsc(X, N) ∈ Cu, where N = N ∪ {∞}.

Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in Cu(A) for all $\varepsilon > 0$ and for all $a \in A_+$.

Example

- Let X be a compact metric space. Then, if $\mathcal{O}(X)$ is the set of open sets in X ordered by inclusion, it follows that $\mathcal{O}(X) \in Cu$. In this, we have that $U \ll V$ for $U, V \in \mathcal{O}(X)$, if there exists a compact subset $K \subseteq X$ such that $U \subseteq K \subseteq V$.
- Let X be a finite-dimensional compact metric space, then Lsc(X, N) ∈ Cu, where N = N ∪ {∞}.

Remark

Not all the maps between semigroups preserve \ll , usually maps between two semigroups just preserve (+, \leq , sup).

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Motivation

Maps between C*-algebras

Table of Contents

- The Cuntz Semigroup
- Maps between C*-algebras

2 The Bivariant Cuntz Semigroup

The	Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?	Joan Bosa Puigredon
L	Motivation	
	Maps between C*-algebras	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let A, B be two C*-algebras and $\varphi : A \to B$ a map. There are various types of interesting maps:

Linear Maps

Linear Maps

Continuous *-homomorphisms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

イロト 不得 トイヨト イヨト

3

Definition

A map φ : A → B is positive if ∀a ≥ 0 ⇒ φ(a) ≥ 0, and it is completely positive (c.p.) if φⁿ : M_n(A) → M_n(B) is positive.

• A c.p. map $\varphi : A \to B$ is order zero if for $a, b \in A^+$ such that $ab = 0 \implies \varphi(a)\varphi(b) = 0.$

- Motivation

Maps between C*-algebras

Theorem (Winter-Zacharias '09)

Let A, B be C*-algebras and $\varphi : A \to B$ a cpc order zero map and set $C = C^*(\varphi(A)) \subseteq B$. Then, there exists

- $h_{arphi} \in \mathcal{M}(\mathcal{C}) \cap \mathcal{C}'$ a positive element
- a *-homomorphism $\pi_{\varphi}: A \to \mathcal{M}(\mathcal{C}) \cap \{h\}'$

such that

 $\pi_{\varphi}(a)h_{\varphi}=\varphi(a) \ \, \forall a\in A.$

└─ Maps between C*-algebras

Theorem (Winter-Zacharias '09)

Let A, B be C*-algebras and $\varphi : A \to B$ a cpc order zero map and set $C = C^*(\varphi(A)) \subseteq B$. Then, there exists

- $h_{arphi} \in \mathcal{M}(\mathcal{C}) \cap \mathcal{C}'$ a positive element
- a *-homomorphism $\pi_{\varphi}: A \to \mathcal{M}(\mathcal{C}) \cap \{h\}'$

such that

$$\pi_{\varphi}(a)h_{\varphi}=\varphi(a) \ \, \forall a\in A.$$

Consequences

With the same notation:

• (Functional calculus on cpc_{\perp}) If $f \in C_0((0,1])$, then $f(\varphi) : A \to B$ given by $f(\varphi)(a) = f(h_{\varphi})\pi_{\varphi}(a)$ is a well-defined c.p. order zero map.

└─ Maps between C*-algebras

Theorem (Winter-Zacharias '09)

Let A, B be C*-algebras and $\varphi : A \to B$ a cpc order zero map and set $C = C^*(\varphi(A)) \subseteq B$. Then, there exists

- $h_{\varphi} \in \mathcal{M}(\mathcal{C}) \cap \mathcal{C}'$ a positive element
- a *-homomorphism $\pi_{\varphi}: A \to \mathcal{M}(\mathcal{C}) \cap \{h\}'$

such that

$$\pi_{\varphi}(a)h_{\varphi}=\varphi(a) \ \, \forall a\in A.$$

Consequences

With the same notation:

- (Functional calculus on cpc_{\perp}) If $f \in C_0((0,1])$, then $f(\varphi) : A \to B$ given by $f(\varphi)(a) = f(h_{\varphi})\pi_{\varphi}(a)$ is a well-defined c.p. order zero map.
- φ induces a morphism of ordered semigroups

$$\mathrm{Cu}(\varphi):\mathrm{Cu}(A)\to\mathrm{Cu}(B)$$

via $\operatorname{Cu}(\varphi)(\langle a \rangle) = \langle \varphi^k(a) \rangle$ if $a \in M_k(A)_+$.

└─ Maps between C*-algebras

Theorem (Winter-Zacharias '09)

Let A, B be C*-algebras and $\varphi : A \to B$ a cpc order zero map and set $C = C^*(\varphi(A)) \subseteq B$. Then, there exists

- $h_{\varphi} \in \mathcal{M}(\mathcal{C}) \cap \mathcal{C}'$ a positive element
- a *-homomorphism $\pi_{\varphi}: A \to \mathcal{M}(\mathcal{C}) \cap \{h\}'$

such that

$$\pi_{\varphi}(a)h_{\varphi}=\varphi(a) \ \, \forall a\in A.$$

Consequences

With the same notation:

- (Functional calculus on cpc_{\perp}) If $f \in C_0((0,1])$, then $f(\varphi) : A \to B$ given by $f(\varphi)(a) = f(h_{\varphi})\pi_{\varphi}(a)$ is a well-defined c.p. order zero map.
- φ induces a morphism of ordered semigroups

 $\mathrm{Cu}(\varphi):\mathrm{Cu}(A)\to\mathrm{Cu}(B)$

via $\operatorname{Cu}(\varphi)(\langle a \rangle) = \langle \varphi^k(a) \rangle$ if $a \in M_k(A)_+$. (They don't preserve \ll)

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- Motivation

└─ Maps between C*-algebras

Proposition

Let A, B be C*-algebras. Then every cpc order zero map $\varphi : A \to B$ naturally induces a map $\operatorname{Cu}(\varphi) : \operatorname{Cu}(A) \to \operatorname{Cu}(B)$ which preserves addition, order, the zero element and the suprema of increasing sequences, but, in general, not the way-below.

If, furthermore, φ is an *-homomorphism, then $Cu(\varphi)$ preserves the way-below relation.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Motivation

└─ Maps between C*-algebras

Proposition

Let A, B be C*-algebras. Then every cpc order zero map $\varphi : A \to B$ naturally induces a map $\operatorname{Cu}(\varphi) : \operatorname{Cu}(A) \to \operatorname{Cu}(B)$ which preserves addition, order, the zero element and the suprema of increasing sequences, but, in general, not the way-below.

If, furthermore, φ is an *-homomorphism, then $Cu(\varphi)$ preserves the way-below relation.

Framework to study:

- Motivation

Maps between C*-algebras

Proposition

Let A, B be C*-algebras. Then every cpc order zero map $\varphi : A \to B$ naturally induces a map $\operatorname{Cu}(\varphi) : \operatorname{Cu}(A) \to \operatorname{Cu}(B)$ which preserves addition, order, the zero element and the suprema of increasing sequences, but, in general, not the way-below.

If, furthermore, φ is an *-homomorphism, then $Cu(\varphi)$ preserves the way-below relation.

Question

When maps at the level of Cuntz Semigroup can be lifted to maps between C*-algebras?

Maps between C*-algebras

Proposition

Let A, B be C*-algebras. Then every cpc order zero map $\varphi : A \to B$ naturally induces a map $\operatorname{Cu}(\varphi) : \operatorname{Cu}(A) \to \operatorname{Cu}(B)$ which preserves addition, order, the zero element and the suprema of increasing sequences, but, in general, not the way-below.

If, furthermore, φ is an *-homomorphism, then $Cu(\varphi)$ preserves the way-below relation.

Question

When maps at the level of Cuntz Semigroup can be lifted to maps between *C*-algebras?*

(Possible answer) Study a bivariant verion of Cuntz Semigroup (as done by *KK*-theory)

Table of Contents

The Bivariant Cuntz Semigroup

Definition (Cu(A, B))

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

The Bivariant Cuntz Semigroup

Definition (Cu(A, B))

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

 ψ is Cuntz subequivalent to φ ($\psi \precsim \varphi$)

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

 ψ is *Cuntz subequivalent* to φ ($\psi \preceq \varphi$)

$$\longleftrightarrow$$

$$\exists \{z_n\}_{n \in \mathbb{N}} \in B \mid \\ \|z_n^* \varphi(a) z_n - \psi(a)\| \to 0 \, \forall a \in A.$$

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

$$\begin{array}{c} \psi \text{ is } \textit{Cuntz subequivalent to } \varphi \\ (\psi \precsim \varphi) \end{array} \qquad \longleftrightarrow \qquad \begin{array}{c} \exists \{z_n\}_{n \in \mathbb{N}} \in B \mid \\ \|z_n^*\varphi(a)z_n - \psi(a)\| \to 0 \, \forall a \in A. \end{array}$$

 φ and ψ are *Cuntz equivalent* if $\varphi \preceq \psi$ and $\psi \preceq \varphi$ (denoted $\varphi \sim \psi$).

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

$$\begin{array}{c} \psi \text{ is } \textit{Cuntz subequivalent to } \varphi \\ (\psi \precsim \varphi) \end{array} \longleftrightarrow \qquad \begin{array}{c} \exists \{z_n\}_{n \in \mathbb{N}} \in B \mid \\ \|z_n^*\varphi(a)z_n - \psi(a)\| \to 0 \, \forall a \in A. \end{array}$$

 φ and ψ are *Cuntz equivalent* if $\varphi \preceq \psi$ and $\psi \preceq \varphi$ (denoted $\varphi \sim \psi$).

Using the above equivalence relation, one defines the bivariant Cuntz semigroup as

$$\operatorname{Cu}(A,B) = C^* A lg_0^{++} (A \otimes \mathcal{K}, B \otimes \mathcal{K}) / \sim .$$

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

$$\begin{array}{l} \psi \text{ is } \textit{Cuntz subequivalent to } \varphi \\ (\psi \precsim \varphi) \end{array} \longleftrightarrow \begin{array}{l} \exists \{z_n\}_{n \in \mathbb{N}} \in B \mid \\ \|z_n^*\varphi(a)z_n - \psi(a)\| \to 0 \, \forall a \in A. \end{array}$$

 φ and ψ are *Cuntz equivalent* if $\varphi \preceq \psi$ and $\psi \preceq \varphi$ (denoted $\varphi \sim \psi$).

Using the above equivalence relation, one defines the bivariant Cuntz semigroup as

$$\operatorname{Cu}(A,B) = C^* A lg_0^{++} (A \otimes \mathcal{K}, B \otimes \mathcal{K}) / \sim .$$

Denote the equivalence classes by $\langle \varphi \rangle.$ The operation and order are given by

$$\langle \varphi \rangle + \langle \psi \rangle = \langle \begin{pmatrix} \varphi & 0 \\ 0 & \psi \end{pmatrix} \rangle, \quad \langle \varphi \rangle \le \langle \psi \rangle \text{ if } \varphi \precsim \psi.$$

Let A, B be two C*-algebras and $\psi, \varphi \in C^*Alg_0^{++}(A \otimes \mathcal{K}, B \otimes \mathcal{K})$ be cpc_{\perp} between the C*-algebras A and B.

$$\begin{array}{c} \psi \text{ is } \textit{Cuntz subequivalent to } \varphi \\ (\psi \precsim \varphi) \end{array} \longleftrightarrow \quad \begin{array}{c} \exists \{z_n\}_{n \in \mathbb{N}} \in B \mid \\ \|z_n^*\varphi(a)z_n - \psi(a)\| \to 0 \, \forall a \in A. \end{array}$$

 φ and ψ are *Cuntz equivalent* if $\varphi \precsim \psi$ and $\psi \precsim \varphi$ (denoted $\varphi \sim \psi$).

Using the above equivalence relation, one defines the bivariant Cuntz semigroup as

$$\operatorname{Cu}(A,B) = C^* A lg_0^{++} (A \otimes \mathcal{K}, B \otimes \mathcal{K}) / \sim .$$

Denote the equivalence classes by $\langle \varphi \rangle.$ The operation and order are given by

$$\langle \varphi \rangle + \langle \psi \rangle = \langle \begin{pmatrix} \varphi & 0 \\ 0 & \psi \end{pmatrix} \rangle, \quad \langle \varphi \rangle \leq \langle \psi \rangle \text{ if } \varphi \precsim \psi.$$

It follows that it is an abelian semigroup

Questions?

< □ >

< 凸