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Let us first recall from Lecture 6 the following theorem.

Theorem: Let G be a discrete group. TFAE:

(1) G is amenable,

(2) There exists a net of unit vectors ξα ∈ `2(G) (with finite support)

such that ‖λsξα − ξα‖2 → 0 for all s ∈ G,

(3) There exists a net of (positive definite) contractive/bounded ϕα ∈
A(G) (with finite support) such that ϕα(s)→ 1 for all s ∈ G.

(4) A(G) has a contractive/bounded appriximate identity,

(5) C∗(G) = C∗λ(G) or equivalently B(G) = Bλ(G).
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Theorem: For discrete group G, we can easily prove that TFAE:

(1) G is amenable,

(2) C∗λ(G) is nuclear,

(3) C∗λ(G) has the CPAP,

(4) V Nλ(G) is semidiscrete.
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How about non-amenable groups ?

What can we say about the free group F2 of 2-generators ?

How do we describe the correspondng property for their group C*-

algebras and group von Neumann algebras ?
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Completely Bounded/Herz-Schur Multipliers

A function ϕ : G→ C is a multiplier of A(G) if the multiplication map

mϕ : f ∈ A(G)→ ϕf ∈ A(G).

In this case, mϕ is automatically bounded on A(G).

Since A(G) = V Nλ(G)∗, there is a natural operator space structure on

A(G). A multiplier ϕ is completely bounded (we also call it Herz-Schur

multiplier) if mϕ : A(G) → A(G) is a cb map. In this case, we use the

notion ‖ϕ‖cb = ‖mϕ‖cb.

Theorem: A function ϕ : G→ C is a cb multiplier with ‖mϕ‖cb ≤ 1 if and

only if there exist contractive maps α, β : G→ H for some Hilbert space

H such that

ϕ(s−1t) = 〈α(t) | β(s)〉 = β(s)∗α(t).

We let McbA(G) denote the space of all cb-multipliers of G.
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Since every ϕ ∈ B(G) is the coefficient of the universal representation

of G. We can choose ξ, η ∈ Hu such that

ϕ(s) = 〈usξ|η〉 and thus ϕ(s−1t) = 〈utξ|usη〉

and ‖ϕ‖B(G) = ‖ξ‖‖η‖. Therefore, we have

B(G) ⊆McbA(G)

and

‖ϕ‖cb ≤ ‖ϕ‖B(G).

In general, we have

A(G) ↪→ Bλ(G) ↪→ B(G) ⊆McbA(G).

For any ϕ ∈ A(G), we have

‖ϕ‖A(G) = ‖ϕ‖Bλ(G) = ‖ϕ‖B(G) ≥ ‖ϕ‖cb.
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Theorem: A group G is amenable if and only if B(G) = McbA(G).

So if G is non-amenable, then we have

‖ϕ‖cb ≤ ‖ϕ‖A(G)

for all ϕ ∈ A(G).
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Weakly Amenable Groups

A discrete group G is weakly amenable if there exists a net of finitely
supported ϕα ∈ A(G) such that ‖ϕα‖cb ≤ C <∞ and ϕα → 1 pointwisely.

Theorem: Let G be a discrete group. TFAE:

(1) G is weakly amenable (with ‖ϕα‖cb ≤ C <∞),

(2) C∗λ(G) has the CBAP, i.e. there exists a net of finite rank cb maps
Tα : C∗λ(G) → C∗λ(G) such that ‖Tα‖cb ≤ C and ‖Tα(x) − x‖ → 0 for
all x ∈ C∗λ(G),

(3) V Nλ(G) has the weak* CBAP, i.e. there exists a net of finite
rank weak* continuous cb maps Tα : V Nλ(G) → V Nλ(G) such
that ‖Tα‖cb ≤ C and 〈Tα(x) − x, ω〉 → 0 for all x ∈ V Nλ(G) and
ω ∈ V Nλ(G)∗.

We let Λ(G) = inf{C} denote the Cowling-Haagerup constant. In gen-
eral, we have Λ(G) ≥ 1. We say that G has the CCAP if Λ(G) = 1.
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Outline of Proof: (1) ⇒ (2) and (3) If G is weakly amenable such that

we have a net of finitely supported ϕα ∈ A(G) such that ‖ϕα‖cb ≤ C <∞
and ϕα → 1 poitwisely. Then for each α,

mϕα : f ∈ A(G)→ ϕαf ∈ A(G)

is a finite rank cb map on A(G). Its adjoint map Tα = m∗ϕα is a

weak* continuous finite rank cb map on the group von Neumann al-

gebra V Nλ(G) such that ‖Tα‖cb = ‖mϕα‖cb ≤ C and

Tα(λs) = ϕα(s)λs.

It follows that the restriction of Tα to C∗λ(G) defines a net of finite rank

cb maps on C∗λ(G).

Finally since ϕα(s)→ 1 for every s ∈ G, we get

Tα(λs) = ϕα(s)λs → λs

in the norm topology on C∗λ(G) (resp., in weak* topology on V Nλ(G)).

This implies that Tα(x) → x for all finite sum x =
∑
aiλsi. Since {Tα}

is uniformly bounded, this is also true for all x ∈ C∗λ(G)) (resp., for all

x ∈ V Nλ(G)).
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(2) ⇒ (1) Suppose that {Tα} is a net of finite rank maps on C∗λ(G)

given in condition (2). We can prove that

ϕα(s) = 〈λs−1Tα(λs)δe|δe〉 = 〈Tα(λs)δe|λsδe〉

is a net of bounded functions on G such that (i) each ϕα is contained in

A(G) and (ii) ‖ϕα‖cb ≤ C. The norm convergence Tα(λs) → λs implies

that

ϕα(s) = 〈Tα(λs)δe|δs〉 → 〈λsδe|δs〉 = 1

for all s ∈ G. This shows that G is weakly amenable with Λ(G) ≤ C.

We can similarly prove (3) ⇒ (1).
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Proof of (i): It sufficies to consider that Tα is a rank one map, i.e.

Tα(x) = fα(x)bα for some fα ∈ Bλ(G) and bα ∈ C∗λ(G). In this case, we

get

ϕα(s) = 〈Tα(λs)δe|δs〉 = fα(λs)〈bδe|λsδe〉 ∈ A(G).

Proof of (ii): Since Tα : C∗λ(G) → C∗λ(G) ⊆ B(`2(G)) is completely

bounded, we have the cb-representation

Tα(x) = V ∗π(x)W with ‖V ‖‖W‖ = ‖Tα‖cb.

Then we obtain two bounded maps

α(t) = π(t)Wλt−1δe and β(s) = π(s)V λs−1δe

such that

〈α(t)|β(s)〉 = 〈π(t)Wλt−1δe|π(s)V λs−1δe〉 = 〈V ∗π(s−1)π(t)Wλt−1δe|λs−1δe〉
= 〈Tα(λs−1t)λt−1δe|λs−1δe〉 = 〈Tα(λs−1t)δe|λs−1t〉 = ϕα(s−1t)

This shows that we have

‖ϕα‖cb ≤ ‖V ‖‖W‖ = ‖Tα‖cb ≤ C.
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Properties About Cowling-Haagerup Constant

(1) Every amenable group is weakly amenable with Λ(G) = 1.

(2) Weak amenability is closed under subgroups, i.e. if H ≤ G is a

subgroup, then Λ(H) ≤ Λ(G).

(3) Weak amenability is closed under the cartesian product, i.e. we have

Λ(G1 ×G2) = Λ(G1) · Λ(G2).

(4) Weak amenability is not closed under group quotient or group semidi-

rect product.
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Length Function on the Free Group F2

Let F2 be the free group of 2-generators with generators u and v. Then
F2 consists of all reduced words e (empty word), u, v, u−1, v−1, uu, uv, uv−1, vv, vu, vu−1, · · · .

Given a reduced word s = r1r2 · · · rn (with ri = u, v, u−1 or v−1), we use
|s| = n denote the length of s. This induces a metric

d(s, g) = |s−1g|

on F2. It is known by Haagerup that there exists a map f : F2 → HΛ
such that f(e) = 0 and

d(s, g) = |s−1g| = ‖f(s)− f(g)‖2.

Then the length function

(s, g) ∈ F2 × F2 → |s−1g| = ‖f(s)− f(g)‖2

is a negative definite kernel, i.e. for all s1, · · · sn ∈ F2 and α1 · · ·αn ∈ C
with

∑
αi = 0, we have∑
|s−1
i sj|αiᾱj =

∑
‖f(si)− f(sj)‖2αiᾱj = −2‖

∑
i

αif(si)‖2 ≤ 0.
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Positive Definite Functions associated with the Length Function

It follows from Schoenberg theorem that for each real number t > 0,

(s, g) ∈ F2 × F2 → e−t|s
−1g|

is a positive definite kernel. Therefore,

ϕt : g ∈ F2 → e−t|g| ∈ [0,∞)

is a positive definite function on F2.

Proposition: Let t > 0.

(1) Each ϕt is a positive definite function in B(G) with ϕt(e) = 1.

(2) Each ϕt is contained in c0(G) since ϕt(g)→ 0 as |g| → ∞,

(3) For each g ∈ F2, ϕt(g)→ 1 as t→ 0.

14



CCAP of C∗λ(F2)

Theorem: C∗λ(F2) has the CCAP.

Outline of Proof: Let Wn denote the set of words with length n and let
En = ∪nk=0Wk be the set of all words with length ≤ n. For n ≥ 1, we
have

|Wn| = 4× 3n−1 and |En| = 1 + 4(
n∑

k=1

3k−1).

Then ϕn,t = ϕtχEn is a net of functions on F2 with finite support and
thus all contained in A(F2).

It is known by Haagerup that for each t > 0, ‖ϕn,t‖cb → ‖ϕt‖cb = 1.
Then ψt,n = ϕt,n/‖ϕt,n‖cb is a net of functions with finite support such
that ‖ψt,n‖cb ≤ 1 and ψt,n(g)→ 1 for all g ∈ F2. This shows that C∗λ(F2)
is weakly amenable with Λ(F2) = 1.

Corollary: For any 2 ≤ n ≤ ∞, C∗λ(Fn) has the CCAP.

Proof: Since Fn is a subgroup of F2, we have Λ(Fn) = Λ(F2) = 1.
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More Examples

• If G1 and G2 are weakly amenable with Λ(G1) = Λ(G2) = 1, then the

free product G1 ? G2 is weakly amenable such that Λ(G1 ? G2) = 1.

It follows that F2 = Z ? Z and Z2 ? Z3 are weakly amenable with

Cowling-Haagerup constant 1.

• Λ(SL(2,Z)) = 1.

• Any lattice Γ of Sp(1, n) is weakly amenable with Cowling-Haagerup

constant equal 2n− 1.

• Z2 o SL(2,Z) and SL(3,Z) are not weakly amenable.
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Haagerup Property for Groups

Definition: A group G has the Haagerup property (or a-T-menable in

Gromov’s sense) if there exists a sequence of positive definite functions

ϕn : G→ C such that

1) each ϕn is contained in C0(G),

2) ϕn(s)→ 1 for every s ∈ G.

Remark: Since 0 < ϕn(e) → 1, we can assume that ϕn(e) = 1 in the

definition.

As we have seen from the above discussion, the free group C*-algebra

C∗λ(F2) has the Haagerup property. In this case,

ϕt(g) = e−t|g| !t > 0

is a net of positive definite functions on Fn satisfying the above condi-

tions 1) and 2).
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Groups with the Haagerup Property

• Amenable groups

• Free groups, SL(2,Z),

• subgroups, cartesian product, free product, increasing unions, ...

Groups without the Haagerup Property

• Z2 o SL(2,Z) SL(3,Z), Sp(n,1), or any group with property (T)

A group has the property (T) if any sequence of (normalized) positive

definite functions, converging uniformly on compact sets, must converge

uniformly on G
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Von Neumann Algebra Haagerup Property

Definition: A von Neumann algebra M with a normal faithful trace τ

has the Haagerup property if there exists a net of unital normal cp

maps Φi on M such that

0) τ ◦Φi ≤ τ
1) each Φi extends to a compact operator on L2(M, τ)

2) ‖Φi(x)− x‖2 → 0 for every x ∈M (resp. for every x ∈ L2(M, τ)).

Theorem [Choda 1983]: A discrete group has the Haagerup property

if and only if its group von Neumann algebra L(G) with the canonical

trace τ has the von Neumann algebra Haagerup property.
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Definition A unital C*-algebra A with a faithful trace (or state) τ has

the Haagerup property if there exists a net of unital cp maps Φi on A

such that

0) τ ◦Φi ≤ τ
1) each Φi extends to a compact operator on L2(A, τ)

2) ‖Φi(x)− x‖2 → 0 for every x ∈ A (resp. for every x ∈ L2(A, τ)).

Theorem [Dong 2010]: A discrete group has the Haagerup property

if and only if its reduced group C*-algebra C∗λ(G) with the canonical

trace τ has the C*-algebra Haagerup property.
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