Introduction to Banach and Operator Algebras Lecture 7

Zhong-Jin Ruan University of Illinois at Urbana-Champaign

> Winter School at Fields Institute Thursday January 16, 2014

Let us first recall from Lecture 6 the following theorem.

Theorem: Let G be a discrete group. TFAE:

(1) G is amenable,

- (2) There exists a net of unit vectors $\xi_{\alpha} \in \ell_2(G)$ (with finite support) such that $\|\lambda_s \xi_{\alpha} \xi_{\alpha}\|_2 \to 0$ for all $s \in G$,
- (3) There exists a net of (positive definite) contractive/bounded $\varphi_{\alpha} \in A(G)$ (with finite support) such that $\varphi_{\alpha}(s) \to 1$ for all $s \in G$.

(4) A(G) has a contractive/bounded appriximate identity,

(5) $C^*(G) = C^*_{\lambda}(G)$ or equivalently $B(G) = B_{\lambda}(G)$.

Theorem: For discrete group G, we can easily prove that TFAE:

(1) G is amenable,

(2) $C^*_{\lambda}(G)$ is nuclear,

(3) $C^*_{\lambda}(G)$ has the CPAP,

(4) $VN_{\lambda}(G)$ is semidiscrete.

How about non-amenable groups ?

What can we say about the free group \mathbb{F}_2 of 2-generators ?

How do we describe the corresponding property for their group C*-algebras and group von Neumann algebras ?

Completely Bounded/Herz-Schur Multipliers

A function $\varphi: G \to \mathbb{C}$ is a multiplier of A(G) if the multiplication map

$$m_{\varphi}$$
: $f \in A(G) \to \varphi f \in A(G)$.

In this case, m_{φ} is automatically bounded on A(G).

Since $A(G) = VN_{\lambda}(G)_*$, there is a natural operator space structure on A(G). A multiplier φ is completely bounded (we also call it Herz-Schur multiplier) if $m_{\varphi} : A(G) \to A(G)$ is a cb map. In this case, we use the notion $\|\varphi\|_{cb} = \|m_{\varphi}\|_{cb}$.

Theorem: A function $\varphi : G \to \mathbb{C}$ is a cb multiplier with $||m_{\varphi}||_{cb} \leq 1$ if and only if there exist contractive maps $\alpha, \beta : G \to H$ for some Hilbert space H such that

 $\varphi(s^{-1}t) = \langle \alpha(t) \mid \beta(s) \rangle = \beta(s)^* \alpha(t).$

We let $M_{cb}A(G)$ denote the space of all cb-multipliers of G.

Since every $\varphi \in B(G)$ is the coefficient of the universal representation of G. We can choose $\xi, \eta \in H_u$ such that

 $\varphi(s) = \langle u_s \xi | \eta \rangle$ and thus $\varphi(s^{-1}t) = \langle u_t \xi | u_s \eta \rangle$

and $\|\varphi\|_{B(G)} = \|\xi\| \|\eta\|$. Therefore, we have

 $B(G) \subseteq M_{cb}A(G)$

and

 $\|\varphi\|_{cb} \le \|\varphi\|_{B(G)}.$

In general, we have

 $A(G) \hookrightarrow B_{\lambda}(G) \hookrightarrow B(G) \subseteq M_{cb}A(G).$

For any $\varphi \in A(G)$, we have

 $\|\varphi\|_{A(G)} = \|\varphi\|_{B_{\lambda}(G)} = \|\varphi\|_{B(G)} \ge \|\varphi\|_{cb}.$

Theorem: A group G is amenable if and only if $B(G) = M_{cb}A(G)$.

So if G is non-amenable, then we have

 $\|\varphi\|_{cb} \le \|\varphi\|_{A(G)}$

for all $\varphi \in A(G)$.

Weakly Amenable Groups

A discrete group G is weakly amenable if there exists a net of finitely supported $\varphi_{\alpha} \in A(G)$ such that $\|\varphi_{\alpha}\|_{cb} \leq C < \infty$ and $\varphi_{\alpha} \to 1$ pointwisely.

Theorem: Let G be a discrete group. TFAE:

(1) G is weakly amenable (with $\|\varphi_{\alpha}\|_{cb} \leq C < \infty$),

- (2) $C^*_{\lambda}(G)$ has the CBAP, i.e. there exists a net of finite rank cb maps $T_{\alpha} : C^*_{\lambda}(G) \to C^*_{\lambda}(G)$ such that $||T_{\alpha}||_{cb} \leq C$ and $||T_{\alpha}(x) x|| \to 0$ for all $x \in C^*_{\lambda}(G)$,
- (3) $VN_{\lambda}(G)$ has the weak* CBAP, i.e. there exists a net of finite rank weak* continuous cb maps $T_{\alpha} : VN_{\lambda}(G) \to VN_{\lambda}(G)$ such that $||T_{\alpha}||_{cb} \leq C$ and $\langle T_{\alpha}(x) - x, \omega \rangle \to 0$ for all $x \in VN_{\lambda}(G)$ and $\omega \in VN_{\lambda}(G)_{*}$.

We let $\Lambda(G) = \inf\{C\}$ denote the Cowling-Haagerup constant. In general, we have $\Lambda(G) \ge 1$. We say that G has the CCAP if $\Lambda(G) = 1$.

Outline of Proof: (1) \Rightarrow (2) and (3) If G is weakly amenable such that we have a net of finitely supported $\varphi_{\alpha} \in A(G)$ such that $\|\varphi_{\alpha}\|_{cb} \leq C < \infty$ and $\varphi_{\alpha} \rightarrow 1$ pointwisely. Then for each α ,

$$m_{\varphi_{\alpha}}: f \in A(G) \to \varphi_{\alpha}f \in A(G)$$

is a finite rank cb map on A(G). Its adjoint map $T_{\alpha} = m_{\varphi_{\alpha}}^{*}$ is a weak* continuous finite rank cb map on the group von Neumann algebra $VN_{\lambda}(G)$ such that $||T_{\alpha}||_{cb} = ||m_{\varphi_{\alpha}}||_{cb} \leq C$ and

$$T_{\alpha}(\lambda_s) = \varphi_{\alpha}(s)\lambda_s.$$

It follows that the restriction of T_{α} to $C^*_{\lambda}(G)$ defines a net of finite rank cb maps on $C^*_{\lambda}(G)$.

Finally since $\varphi_{\alpha}(s) \to 1$ for every $s \in G$, we get

$$T_{\alpha}(\lambda_s) = \varphi_{\alpha}(s)\lambda_s \to \lambda_s$$

in the norm topology on $C^*_{\lambda}(G)$ (resp., in weak* topology on $VN_{\lambda}(G)$). This implies that $T_{\alpha}(x) \to x$ for all finite sum $x = \sum a_i \lambda_{s_i}$. Since $\{T_{\alpha}\}$ is uniformly bounded, this is also true for all $x \in C^*_{\lambda}(G)$) (resp., for all $x \in VN_{\lambda}(G)$). (2) \Rightarrow (1) Suppose that $\{T_{\alpha}\}$ is a net of finite rank maps on $C^*_{\lambda}(G)$ given in condition (2). We can prove that

$$\varphi_{\alpha}(s) = \langle \lambda_{s^{-1}} T_{\alpha}(\lambda_s) \delta_e | \delta_e \rangle = \langle T_{\alpha}(\lambda_s) \delta_e | \lambda_s \delta_e \rangle$$

is a net of bounded functions on G such that (i) each φ_{α} is contained in A(G) and (ii) $\|\varphi_{\alpha}\|_{cb} \leq C$. The norm convergence $T_{\alpha}(\lambda_s) \rightarrow \lambda_s$ implies that

$$\varphi_{\alpha}(s) = \langle T_{\alpha}(\lambda_s)\delta_e|\delta_s \rangle \to \langle \lambda_s\delta_e|\delta_s \rangle = 1$$

for all $s \in G$. This shows that G is weakly amenable with $\Lambda(G) \leq C$.

We can similarly prove (3) \Rightarrow (1).

Proof of (i): It sufficies to consider that T_{α} is a rank one map, i.e. $T_{\alpha}(x) = f_{\alpha}(x)b_{\alpha}$ for some $f_{\alpha} \in B_{\lambda}(G)$ and $b_{\alpha} \in C^*_{\lambda}(G)$. In this case, we get

$$\varphi_{\alpha}(s) = \langle T_{\alpha}(\lambda_s)\delta_e | \delta_s \rangle = f_{\alpha}(\lambda_s) \langle b\delta_e | \lambda_s \delta_e \rangle \in A(G).$$

Proof of (ii): Since $T_{\alpha} : C^*_{\lambda}(G) \to C^*_{\lambda}(G) \subseteq B(\ell_2(G))$ is completely bounded, we have the cb-representation

$$T_{\alpha}(x) = V^* \pi(x) W$$
 with $||V|| ||W|| = ||T_{\alpha}||_{cb}$.

Then we obtain two bounded maps

$$\alpha(t) = \pi(t)W\lambda_{t-1}\delta_e$$
 and $\beta(s) = \pi(s)V\lambda_{s-1}\delta_e$

such that

$$\begin{aligned} \langle \alpha(t) | \beta(s) \rangle &= \langle \pi(t) W \lambda_{t-1} \delta_e | \pi(s) V \lambda_{s-1} \delta_e \rangle = \langle V^* \pi(s^{-1}) \pi(t) W \lambda_{t-1} \delta_e | \lambda_{s-1} \delta_e \rangle \\ &= \langle T_\alpha(\lambda_{s-1t}) \lambda_{t-1} \delta_e | \lambda_{s-1} \delta_e \rangle = \langle T_\alpha(\lambda_{s-1t}) \delta_e | \lambda_{s-1t} \rangle = \varphi_\alpha(s^{-1}t) \end{aligned}$$

This shows that we have

$$\|\varphi_{\alpha}\|_{cb} \le \|V\| \|W\| = \|T_{\alpha}\|_{cb} \le C.$$

Properties About Cowling-Haagerup Constant

- (1) Every amenable group is weakly amenable with $\Lambda(G) = 1$.
- (2) Weak amenability is closed under subgroups, i.e. if $H \leq G$ is a subgroup, then $\Lambda(H) \leq \Lambda(G)$.
- (3) Weak amenability is closed under the cartesian product, i.e. we have $\Lambda(G_1 \times G_2) = \Lambda(G_1) \cdot \Lambda(G_2).$
- (4) Weak amenability is not closed under group quotient or group semidirect product.

Length Function on the Free Group \mathbb{F}_2

Let \mathbb{F}_2 be the free group of 2-generators with generators u and v. Then \mathbb{F}_2 consists of all reduced words e (empty word), $u, v, u^{-1}, v^{-1}, uu, uv, uv^{-1}, vu$

Given a reduced word $s = r_1 r_2 \cdots r_n$ (with $r_i = u, v, u^{-1}$ or v^{-1}), we use |s| = n denote the length of s. This induces a metric

$$d(s,g) = |s^{-1}g|$$

on \mathbb{F}_2 . It is known by Haagerup that there exists a map $f : \mathbb{F}_2 \to H_{\Lambda}$ such that f(e) = 0 and

$$d(s,g) = |s^{-1}g| = ||f(s) - f(g)||^2.$$

Then the length function

$$(s,g) \in \mathbb{F}_2 \times \mathbb{F}_2 \to |s^{-1}g| = ||f(s) - f(g)||^2$$

is a negative definite kernel, i.e. for all $s_1, \dots s_n \in \mathbb{F}_2$ and $\alpha_1 \dots \alpha_n \in \mathbb{C}$ with $\sum \alpha_i = 0$, we have

$$\sum_{i} |s_i^{-1} s_j| \alpha_i \bar{\alpha}_j = \sum_{i} ||f(s_i) - f(s_j)||^2 \alpha_i \bar{\alpha}_j = -2 ||\sum_{i} \alpha_i f(s_i)||^2 \le 0.$$

Positive Definite Functions associated with the Length Function

It follows from Schoenberg theorem that for each real number t > 0,

$$(s,g) \in \mathbb{F}_2 \times \mathbb{F}_2 \to e^{-t|s^{-1}g|}$$

is a positive definite kernel. Therefore,

$$\varphi_t : g \in \mathbb{F}_2 \to e^{-t|g|} \in [0,\infty)$$

is a positive definite function on \mathbb{F}_2 .

Proposition: Let t > 0.

(1) Each φ_t is a positive definite function in B(G) with $\varphi_t(e) = 1$.

(2) Each φ_t is contained in $c_0(G)$ since $\varphi_t(g) \to 0$ as $|g| \to \infty$,

(3) For each
$$g \in \mathbb{F}_2$$
, $\varphi_t(g) \to 1$ as $t \to 0$.

CCAP of $C^*_{\lambda}(\mathbb{F}_2)$

Theorem: $C^*_{\lambda}(\mathbb{F}_2)$ has the CCAP.

Outline of Proof: Let W_n denote the set of words with length n and let $E_n = \bigcup_{k=0}^n W_k$ be the set of all words with length $\leq n$. For $n \geq 1$, we have

$$|W_n| = 4 \times 3^{n-1}$$
 and $|E_n| = 1 + 4(\sum_{k=1}^n 3^{k-1}).$

Then $\varphi_{n,t} = \varphi_t \chi_{E_n}$ is a net of functions on \mathbb{F}_2 with finite support and thus all contained in $A(\mathbb{F}_2)$.

It is known by Haagerup that for each t > 0, $\|\varphi_{n,t}\|_{cb} \to \|\varphi_t\|_{cb} = 1$. Then $\psi_{t,n} = \varphi_{t,n}/\|\varphi_{t,n}\|_{cb}$ is a net of functions with finite support such that $\|\psi_{t,n}\|_{cb} \leq 1$ and $\psi_{t,n}(g) \to 1$ for all $g \in \mathbb{F}_2$. This shows that $C^*_{\lambda}(\mathbb{F}_2)$ is weakly amenable with $\Lambda(\mathbb{F}_2) = 1$.

Corollary: For any $2 \le n \le \infty$, $C^*_{\lambda}(\mathbb{F}_n)$ has the CCAP.

Proof: Since \mathbb{F}_n is a subgroup of \mathbb{F}_2 , we have $\Lambda(\mathbb{F}_n) = \Lambda(\mathbb{F}_2) = 1$.

More Examples

• If G_1 and G_2 are weakly amenable with $\Lambda(G_1) = \Lambda(G_2) = 1$, then the free product $G_1 \star G_2$ is weakly amenable such that $\Lambda(G_1 \star G_2) = 1$.

It follows that $\mathbb{F}_2 = \mathbb{Z} \star \mathbb{Z}$ and $\mathbb{Z}_2 \star \mathbb{Z}_3$ are weakly amenable with Cowling-Haagerup constant 1.

- $\Lambda(SL(2,\mathbb{Z})) = 1.$
- Any lattice Γ of Sp(1,n) is weakly amenable with Cowling-Haagerup constant equal 2n-1.

• $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ and $SL(3,\mathbb{Z})$ are not weakly amenable.

Haagerup Property for Groups

Definition: A group *G* has the Haagerup property (or a-T-menable in Gromov's sense) if there exists a sequence of positive definite functions $\varphi_n : G \to \mathbb{C}$ such that 1) each φ_n is contained in $C_0(G)$, 2) $\varphi_n(s) \to 1$ for every $s \in G$.

Remark: Since $0 < \varphi_n(e) \rightarrow 1$, we can assume that $\varphi_n(e) = 1$ in the definition.

As we have seen from the above discussion, the free group C*-algebra $C^*_{\lambda}(\mathbb{F}_2)$ has the Haagerup property. In this case,

$$\varphi_t(g) = \mathrm{e}^{-t|g|} \ !t > 0$$

is a net of positive definite functions on \mathbb{F}_n satisfying the above conditions 1) and 2).

Groups with the Haagerup Property

- Amenable groups
- Free groups, $SL(2,\mathbb{Z})$,

• subgroups, cartesian product, free product, increasing unions, ...

Groups without the Haagerup Property

• $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ $SL(3,\mathbb{Z})$, Sp(n,1), or any group with property (T)

A group has the property (T) if any sequence of (normalized) positive definite functions, converging uniformly on compact sets, must converge uniformly on G

Von Neumann Algebra Haagerup Property

Definition: A von Neumann algebra M with a normal faithful trace τ has the Haagerup property if there exists a net of unital normal cp maps Φ_i on M such that

$$0) \ \tau \circ \Phi_i \leq \tau$$

- 1) each Φ_i extends to a compact operator on $L_2(M,\tau)$
- 2) $\|\Phi_i(x) x\|_2 \to 0$ for every $x \in M$ (resp. for every $x \in L_2(M, \tau)$).

Theorem [Choda 1983]: A discrete group has the Haagerup property if and only if its group von Neumann algebra L(G) with the canonical trace τ has the von Neumann algebra Haagerup property.

Definition A unital C*-algebra A with a faithful trace (or state) τ has the Haagerup property if there exists a net of unital cp maps Φ_i on A such that

0) $\tau \circ \Phi_i \leq \tau$

- 1) each Φ_i extends to a compact operator on $L_2(A, \tau)$
- 2) $\|\Phi_i(x) x\|_2 \to 0$ for every $x \in A$ (resp. for every $x \in L_2(A, \tau)$).

Theorem [Dong 2010]: A discrete group has the Haagerup property if and only if its reduced group C*-algebra $C^*_{\lambda}(G)$ with the canonical trace τ has the C*-algebra Haagerup property.

References

- M. Bozėjko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group. Boll. Un. Mat. Ital. A (6), 3 1984, 297-302.
- (2) C*-algebras and Finite-Dimensional Approximations, N. Brown and N. Ozawa
- (3) Groups with the Haagerup Property, P-A Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette
- (4) U. Haagerup, An example of nonnuclear C*-algebra which has the metric approximation property. Invent. Math. 50(1979), 279293.
- (5) Introduction to Operator Spaces, G. Pisier