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NEF versus CSK families
The talk will switch between two examples of kernel families

K(µ) = {Pθ(dx) : θ ∈ Θ}

I Natural exponential families (NEF) :

Pθ(dx) =
1

L(θ)
eθxµ(dx)

µ is a σ-finite measure, Θ = (θ−, θ+).

I Cauchy-Stieltjes kernel families (CSK):

Pθ(dx) =
1

L(θ)

1

1− θx
µ(dx)

µ is a probability measure with support bounded from above.
The ”generic choice” for Θ is Θ = (0, θ+).
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A specific example of CSK
Noncanonical parameterizations

Let µ = 1
2δ0 + 1

2δ1 be the Bernoulli measure

I ”Noncanonical” parametrization:

I Pθ = 1−θ
2−θδ0 + 1

2−θδ1, θ ∈ (−∞, 1).

I ”Canonical” parametrization: p = 1
2−θ

I Qp := P2− 1
p

= (1− p)δ0 + pδ1, p ∈ (0, 1)

I Bernoulli family parameterized by probability of success p.

I p =
∫
xQp(dx) (parametrization by the mean)
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Parametrization by the mean

m(θ) =

∫
xPθ(dx) =


L′(θ)
L(θ) NEF

L(θ)−1
θL(θ) CSK

I For non-degenerate measure µ, function θ 7→ m(θ) is strictly
increasing and has inverse θ = ψ(m).

I θ 7→ m(θ) maps (0, θ+) onto (m0,m+), ”the domain of
means”.

I Parameterizations by the mean:

K(µ) = {Qm(dx) : m ∈ (m0,m+)}

where Qm(dx) = Pψ(m)(dx)
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Variance function

V (m) =

∫
(x −m)2Qm(dx)

I Variance function always exists for NEF.

I Variance function exists for CSK when µ(dx) has the first
moment.

I Variance function V (m) (together with the domain of means
m ∈ (m−,m+)) determines NEF uniquely (Morris (1982)).

I Variance function V (m) (together with m0 = m(0) ∈ R, the
mean of µ) determines measure µ uniquely (hence determines
CSK uniquely).
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Example: a CSK with quadratic variance function

I Bernoulli measures Qm = (1−m)δ0 + mδ1 are parameterized
by the mean, with the ”domain of means” m ∈ (0, 1).

I The variance function is V (m) = m(1−m)

I The generating measure µ = 1
2δ0 + 1

2δ1 is determined uniquely
once we specify its mean m0 = 1/2.
That is, there is no other µ that would have mean 1/2 and
generate CSK with variance function V (m) that would equal
to m(1−m) for all m ∈ (1/2− δ, 1/2 + δ)
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All NEF with quadratic variance functions are known
Morris class. Meixner laws

I The NEF with the variance function V (m) = 1 + am + bm2

was described by Morris (1982), Ismail-May (1978)

I Letac-Mora (1990): cubic V (m)

I Various other classes Kokonendji, Letac, ...
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All CSK with quadratic variance functions are known

Suppose m0 = 0, V (0) = 1.

Theorem (WB.-Ismail (2005))

1. µ is the Wigner’s semicircle (free Gaussian) law iff V (m) = 1

K(µ) are the (atomless) Marchenko-Pastur (free Poisson)
type laws

2. µ is the Marchenko-Pastur (free Poisson) type law iff
V (m) = 1 + am with a 6= 0

3. µ is the “free Gamma” type law iff V (m) = (1 + bm)2 with
b > 0

4. µ is the free binomial type law (Kesten law, McKay law) iff
V (m) = 1 + am + bm2 with −1 ≤ b < 0

End now
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Reproductive properties of NEF and CSK

Theorem (NEF: Jörgensen (1997))

If µ is a probability measure in NEF with variance function V (m),
then for r ∈ N the r -fold convolution µr := µ∗r , is in NEF with
variance function rV (m/r).

Theorem (CSK: WB-Ismail (2005), WB-Hassairi (2011))

If a probability measure µ generates CSK with variance function
Vµ(m) , then the free additive convolution power µr := µ�r

generates the CKS family with variance function rVµ(m/r).

Note

I If rV (m/r) is a variance function for all r ∈ (0, 1) then µ is
infinitely divisible.

I The domains of means behave differently.

I The ranges of admissible r ≥ 1 are different.

End now
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Pseudo-Variance function for CSK
I The variance

V (m) =
1

L(ψ(m))

∫
(x −m)2

1− ψ(m)x
µ(dx)

is undefined if m0 =
∫
xµ(dx) = −∞. (This issue does not

arise for NEF)

I When V (m) exists, consider

V(m) =
m

m −m0
V (m)

I It turns out that

V(m) = m

(
1

ψ(m)
−m

)
(1)

where ψ(·) is the inverse of θ 7→ m(θ) =
∫
xPθ(dx) on (0, θ+).

I Expression (1) defines a ”pseudo-variance” function V(m)
that is well defined for all non-degenerate probability measures
µ with support bounded from above.
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Properties of pseudo-variance function

I Uniqueness: measure µ(dx) is determined uniquely by V

I Explicit formula for the CSK family:

Qm(dx) =
1

L(ψ(m))(1− ψ(m)x)
µ(dx)

=
V(m)

V(m) + m(m − x)
µ(dx)

I Reproductive property still holds

Theorem (WB-Hassairi (2011))

Let Vµ be a pseudo-variance function of the CSK family generated
by a probability measure µ with support bounded from above and
mean −∞ ≤ m0 <∞. Then for m > rm0 close enough to rm0,

Vµ�r (m) = rVµ(m/r). (2)
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Example: CKS family with cubic pseudo-variance
function

Measure µ generating CSK with V(m) = m3 has density

f (x) =

√
−1− 4x

2πx2
1(−∞,−1/4)(x) (3)

From reproductive property it follows that µ is 1/2-stable with
respect to �, a fact already noted before: [Bercovici and Pata, 1999,

page 1054], [Pérez-Abreu and Sakuma, 2008]

{
Qm(dx) =

m2
√
−1− 4x

2π(m2 + m − x)x2
1(−∞,−1/4)(x)dx : m ∈ (−∞,m+)

}
What is m+?

End now
25 min?



Domain of means: {Qm : m ∈ (m0,m+)}

For V(m) = m3 the domain of means is (−∞,m+), where:

1. θ 7→ m(θ) is increasing, so m+ = limθ↗θmax m(θ). This gives
m+ = −1

2. 1
1−θx 1(−∞,−1/4)(x) is positive for θ ∈ (0,∞) ∪ (−∞,−4).
The domain of means can be extended to
m+ = limθ↗−4 m(θ). This extends the domain of means up
to m+ = −1/2

3. m2

m2+m−x 1(−∞,−1/4)(x) is positive for m 6= −1/2.

I But
∫
Qm(dx) < 1 for m > 1/2.

I Qm(dx) = m2

(m2+m−x)
µ(dx) + (1+2m)+

(m+1)2 δm+m2 is well defined

and parameterized by the mean for all m ∈ (−∞,∞).

End now
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Summary
Kernels eθx and 1/(1− θx) generate NEF and CSK families

Similarities

I parameterizations by the mean

I Quadratic variance functions determine interesting laws

I Convolution affects variance function for NEF in a similar way
as the additive free convolution affects the variance function
for CSK

Differences

I The generating measure of a NEF is not unique.

I A CSK family in parameterizations by the mean may be well
defined beyond the “domain of means”

I For CSK family, the variance function may be undefined.
Instead of the variance function [Bryc and Hassairi, 2011] look
at the ”pseudo-variance” function m 7→ mV (m)/(m −m0)
which is well defined for more measures µ.
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Pérez-Abreu, V. and Sakuma, N. (2008).

Free generalized gamma convolutions.
Electron. Commun. Probab., 13:526–539.



References

Bercovici, H. and Pata, V. (1999).

Stable laws and domains of attraction in free probability theory.
Ann. of Math. (2), 149(3):1023–1060.
With an appendix by Philippe Biane.

Bryc, W. (2009).

Free exponential families as kernel families.
Demonstr. Math., XLII(3):657–672.
arxiv.org:math.PR:0601273.

Bryc, W. and Hassairi, A. (2011).

One-sided Cauchy-Stieltjes kernel families.
Journ. Theoret. Probab., 24(2):577–594.
arxiv.org/abs/0906.4073.

Bryc, W. and Ismail, M. (2005).

Approximation operators, exponential, and q-exponential families.
Preprint. arxiv.org/abs/math.ST/0512224.
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Pérez-Abreu, V. and Sakuma, N. (2008).

Free generalized gamma convolutions.
Electron. Commun. Probab., 13:526–539.


	Kernel families
	Natural exponential families
	Parametrization by the mean*
	Variance function*
	Reproductive property*
	A class of families with cubic pseudo-variance function


