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The problem 

• Renewables (Wind, Solar, small Hydro)  are 
the cornerstone of green power initiatives 
both in Ontario and worldwide.  

• Wind “penetration” has increased 
dramatically in recent years 

• But wind and other renewables require 
expensive subsidies and do not result in 
dispatchable power.   

 



Hourly Ontario wind production (MW): 

May 5 – May 8 2011.  Source: IESO, Melissa Mielkie 
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Some see impacts of this on markets 

• Greater price instability 

• Frequent negative prices 



Ontario Open Market Price: Old days 



Ontario Electricity Price, $/MWh 
Source IESO,  



Price summary  

• Prices show calendar year seasonality  

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

8AM-10PM 27.051 23.429 18.087 18.107 30.481 40.151 39.352 38.249 33.612 32.308 31.107 27.384 

11PM-7AM 20.383 19.396 6.8257 14.605 13.873 15.975 27.168 21.355 26.322 20.979 21.69 20.764 
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Monthly average prices in off-peak and peak hours    



• Electricity cannot be stored 
• Demand for electricity is inelastic 
• Electricity produced must be dispatched  
• Engineering system stability requires constant 

balance between demand and supply 
• Electricity markets are regional e.g. Ontario 

prices different from NY prices 

Why Is Electricity Different? 



How does the Ontario market work? 

• Power is traded at each of 24 hours per day. 

• Generators offer power;  users bid for power. 

• Bids/Offers are prepared by 11PM the previous night for 
each hour but can be revised up until 4 hours ahead of 
the beginning of each hour. 

• Each participant submits one or more ordered pairs into 
the market for that hour – (amount bid, price bid)  or 
(amount offered, price offered). 

Market Price 
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Bid/Ask strategy 

• If you “have to have it” you bid a very high 
amount.    For instance GM – cost of power is 
tiny compared to cost of running assembly 
line. 

• If you “have to sell it” you bid a very low, often 
a negative, amount.  For instance Nuclear 
Power Plant. 

• Price is usually set by the flexible people. 



Special players 

• Solar power generators are guaranteed 
$443/MWh for all power they sell;  wind and 
special green microhydro $140/MWh.    

• All of these power are bid in at -$2000 to 
guarantee it is taken. 



Ontario Electricity Market  

• Unique dataset obtained from Environment 
Canada and Independent Electricity System 
Operator (IESO) 

• A whole year (May 2011 – May 2012) hourly 
data containing: 

HOEP (Hourly Ontario Electricity Price, $/MWh) 

Market Demands (MW) 

Generators capabilities and outputs (MW) 

Temperature, wind speed, humidity and etc. 



• Inspired by M. Davison, L. Anderson et al.(2002) 

• Switching variables control the process 

• Switching variable ratio of load to available 
generation 

 

Three-Regime Switching Model 

Pricing Model 



Negative price spikes 

• New phenomenon: negative spikes 

– Associated with low demand states 

– Associated with high wind states 

– Associated with unexpected wind coming into the 
market when other units can’t be ramped down 

– (Test will be look at nuke output, look at rate of 
change).  

 



Low price Percentage for the price 
threshold =10 

Note: For weak negative spikes 

with a $10 threshold,  selecting 

αL = 42%  gives a 25% success 

rate both in terms of the 

probability of seeing a spike 

given the threshold and in terms 

of the number of spikes caught 

by that net 



• Another primary  driver of the switching variable is 

 

 The following should be true: 

 

The Wind -Ratio and its relationship with price 



Wind + Nuclear alpha vs. HOEP 



Some Conclusions from Data 

• Some weak evidence to support the folklore 
that wind physics + nuke physics + regulation 
 negative prices. 

 



Is the solution storage? 

• Is energy storage the solution? 

• Storage could buffer uncertainties. 
(Castrunuovo & Lopes 2004) 

• See recent case study (Connolly et al 2012) 

• But storage is expensive!  



Batteries are expensive! 

• A Nickel-Cadmium AA battery contains 1.2W-h 
of electricity, weighs about 30g and costs 
about $0.50. 

• To store a Megawatt hour in AA batteries 
would take about 800,000 of them,  for a total 
weight of 24,000 kg and cost about $400K. 

• Even industrial size batteries are expensive as 
we’ll see later.  



Who pays for storage?  

• In current Ontario setting, not the wind or 
solar producers 

• The cost of uncertainty is another cost of 
running green markets. 

• In fact, in Ontario if you did build a storage 
facility you’d have to buy and sell at the open 
market price:  No Feed In Tariff 



Existing work on Energy Storage 

• Using detailed stochastic processes for prices 
(Carmona & Ludkovski 2008, 2010; Chen & 
Forsyth 2007) 

• Using detailed engineering and stochastic 
processes (Thompson, MD, Rasmussen 2004, 
2009; Chen & MD 2009a, 2009b) 



Buffering Wind Energy 

• Optimal sizing of PSR facilities: DeCesaro et al. 
2009, Abbey & Joos 2009 

• Optimal PSR facility operation:  Castrunuovo & 
Lopes 2004, Garcia-Gonzalez et al 2008. 

• Optimal  use of large hydro reservoir to  buffer 
wind:  Denault et al. 2009 

• Use of wind forecasts: Xie et al 2012 

• Kim & Powell solve infinite horizon continuous 
time model incorporating much detail.  

 



Impact of regulation on storage 

• Today  I present a very simple model of a storage 
facility with just 4 parameters:   
– the value of a unit of power,   

– the fractional loss in storing the power,   

– the probability of generating the power,   

– and the penalty from bidding power into the market that 
isn’t delivered. 

• The model generates a nonlinear system of difference 
equations that can be solved in closed form!   

• This closed form solution allows us to obtain many 
insights.   



Wind meteorology 

• A wind producer produces $M  of electricity if 
it is windy,  otherwise nothing. 

• Each period it is windy with probability p and 
calm with probability 1-p, 0 ≤ p ≤ 1.  

• No access to forecasts, although many of the 
results shown here also hold for deterministic 
but time varying pk.   

 

 



Market Rules 

• The wind producer must decide in advance 
whether to offer power into the market. 

• If power is offered and it is windy,  producer 
gets $M. 

• If power is not offered it cannot be sold, 
whether or not it is windy.   



Penalties 

• If the producer offers power and can’t deliver 
must pay a penalty of –xM;  x ≥ 0  

• Ontario market:  x = 0;  

• New York market:  x > 0. 

 

 



Storage physics 

• The wind producer has access to a storage 
facility allowing them to store a single unit of 
wind energy.  This storage can be filled or 
withdrawn in a single hour. 

• (No claim that one storage unit is in any way 
optimal) 

• Storage is “lossy”  and we assess the cost of 
this loss at withdrawal.  If a unit of energy is 
withdrawn it earns (1-γ)M,  0 ≤ γ ≤ 1.  



Storage contracts 

• Storage facilities are leased for N periods.    

• At the end of the lease, storage returned to its 
owner.    

• If full, facility gets a cash refund of (1-γ)M,   

• Return empty facility: get nothing.  



V(F,k) and V(E,k) 

• The value of a full storage facility, assuming 
optimal operation,  with k periods left before 
the end of the lease is denoted by V(F,k) 

• The value of an empty storage facility, 
assuming optimal operation,  with k periods 
left before the end of the lease is V(E,k) 

 



V(F,B,k) and V(F,N,k) 

• With k periods remaining we must decide 
whether to offer power or not.   

• The value of a full facility with k periods 
remaining given we offer is V(F,B,k) 

• If we don’t offer power the value of the full 
facility with k periods remaining is V(F,N,k). 

• V(F,k) = max[V(F,B,k),V(F,N,k)] 

 

 



V(E,B,k) and V(E,N,k) 

• The value of an empty facility with k periods 
remaining given that we offer is V(E,B,k) 

• If we don’t offer power the value of the full 
facility with k periods remaining is V(E,N,k). 

• V(E,k) = max[V(E,B,k),V(E,N,k)] 

 



The recursion relation: empty 

• We use dynamic programming to solve this.   

• We’ve already ‘turned around’ time by 
describing everything in terms of time 
remaining. 

• V(E,B,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)] 

• V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1) 

• Since if you don’t bid and it’s empty, you 
might as well fill the facility to sell later.   



The recursion relation: full 

• V(F,N,k) = pV(F,k-1) + (1-p)V(F,k-1) = V(F,k-1). 

• The V(F,B,k) case is a bit harder because if we 
bid and it’s not windy we can choose whether 
to pay the penalty or empty the storage.   
Hence:   

• V(F,B,k) = p[M + V(F,k-1)]  

             +(1-p)max[-xM+V(F,k-1), (1-γ)M+V(E,k-1)]  
 



A note on expectations 

• It probably makes sense to optimize the 
expected value of the cash flows as done 
above since the procedure will be repeated 
many times. 

• If, however, you want to add risk aversion via 
for instance a utility,  that will only have the 
effect of distorting the probability, so replace 
p by q and the structure of the equations 
remains.  



System 0 

V(F,B,k) = p[M+V(F,k-1)]+(1-p)max[-xM+V(F,k-1), (1-γ)M+V(E,k-1)] 

V(F,N,k) = V(F,k-1) 

V(F,k) = max[V(F,B,k),V(F,N,k)] 

V(E,B,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)] 

V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1) 

V(E,k) = max[V(E,B,k),V(E,N,k)] 
V(F,0) = (1-γ)M 
V(E,0) = 0.  

 



Solving this 

• Solution of this system requires at each time: 

• Optimal bidding rules, when empty and when 
full,  before we know if the wind will blow or 
not. 

• The optimal decision about whether to pay 
the penalty or empty the storage in the 
full,bid,no wind case. 

• Expressions for V(F,k) and V(E,k).  

 



Analytic solution 

• We find a complete analytic solution for this 
nonlinear system of difference equations. 

• We could easily code this system  

• Analytic solutions still are nice. 

• I will now describe the proof methodology 

• Draw insights about wind storage from it.  



Theorem 1: Solving for V(F,k)-V(E,k) 

Theorem 1: 
For the above system of difference equations, 
V(F,k)-V(E,k)  = (1- γ)M + min[pγM, (1-pk)xM] 

 

Prove using Lemma 2:  

 



Lemma 2: 

Let V(F,k) – V(E,k) = Mm(k) + (1-γ)M.  Then 

m(k) = m(k-1) + min[x(1-p),γp –pm(k-1)] –   
     min[p,x(1-p),(1-p)m(k-1)];   

m(0) = 0.  

 

Proof:   Insert above ansatz into System 0, use 
tedious but simple algebra and relations like 
max(a+b,a+c) = a + max(b,c) to close.  

 



Proof of Theorem 1: 

Theorem 1 <->  m(k) = min[γp,  x(1-pk)]  solves 
the Lemma 2 system:  

m(k) = m(k-1) + min[x(1-p),γp –pm(k-1)] –   
   min[p,x(1-p),(1-p)m(k-1)];  m(0) = 0.  

Proof:  divide into 4 cases and use induction:   
i) x ≥ γ*max(1,p/(1-p) 
ii)  γ ≤ x < γ max(1,p/(1-p) ( p > ½ ) 
iii)   γp ≤ x < γ  
iv) 0 ≤ x < γp 

 



Discussion 

• V(F,k)-V(E,k)  = (1- γ)M + min[pγM, (1-pk)xM] 

•  Nondecreasing in time remaining like an option. 

• If x ≤ γp, V(F,k)-V(E,k) is always increasing with a 
limit of (1-γ+x)M, 

• If x > γp, V(F,k)-V(E,k) increases until k = k* and 
then reaches a limit of [1-γ(1-p)]M at the finite 
time k*. 

• k* is the largest integer satisfying  
   k* < [ln(x-γp)-ln(x)]/ln(p) 



The optimal control 

The Theorem 1 “backbone” allows all other 
results to come easily. 

Corollary 3:-xM + V(F,k) ≤ (1-γ)M+V(E,k) for all k. 

Proof:   –xM ≤ (1-γ)M –[V(F,k)- V(E,k)] 

 -xM ≤ - min[pγM, (1-pk)xM], (Thm 1) or 

x ≥ min[γp, x(1-pk)]  which is clear.   



Never pay penalty if storage full 

• Corollary 3 implies that, if you bid and the 
wind doesn’t blow, it is never optimal to pay 
the penalty but always better to empty the full 
storage.  This is true even for tiny penalties, or 
for no penalties at all. 

• (So we can simplify System 0 a bit by replacing 
the expression for V(F,B,k) with:  
V(F,B,k) = p[M+V(F,k-1)]+(1-p)[(1-γ)M +V(E,k-1) 

 



Optimal offering rules  

• For p, x, γ constant, all rules in closed form. 

• The result is simple:  

• Always offer power when you are full. 

• Offer power when empty depending on the 
relationship between p, x, γ  

• High x:  don’t offer when empty;  low: never 
offer; medium – sometimes offer 

• Next graphic gives intuition: time varying p.  



Optimal bidding, variable wind p 



Should always bid when full 

Corollary 4:   V(F,B,k) >= V(F,N,k) for all k. 

Proof:  From the above slide and System 0: 

V(F,B,k)-V(F,N,k) = p[M+V(F,k-1)]+(1-p)[(1-γ)M 
+V(E,k-1) – V(F,k-1)] 
= pM + (1-p) ){(1-γ)M – [V(F,k-1) – V(E,k-1)]} 

Using Theorem 1,  = pM – (1-p)min[pγM,x(1-pk-1)M] 

• (1-p)M*max[p/(1-p) - pγ,-x(1-pk-1)]   
= M*max[p(1-γ(1-p), -x(1-p) (1-pk-1) >= 0,   
since γ*(1-p) < 1. 



Bidding rules when empty 

V(E,B,k) – V(E,Nk)  = p[M+V(E,k-1)] +  
(1-p)[-xM+V(E,k-1)] – {pV(F,k-1) + (1-p)V(E,k-1)} 

= pM – p[V(F,k-1)-V(E,k-1)] – (1-p)xM 

= [p-(1-p)x]M – p[(1-γ)M + min{γp,x(1-pk-1)}M] 

= [γp – (1-p)x]M  - pM*min{γp,x(1-pk-1)} 

= [γp – (1-p)x]M  + pM*max{-γp,-x(1-pk-1)} 

= max{γp – (1-p)x, γp - x(1-pk)}M.  But, unless k = 0 
in which case we can’t bid anyway,  1-p ≥ 1-pk, 

Hence V(E,B,k) – V(E,N,k)  = [γp - x(1-pk)]M 



Empty bid rules: Large penalties 

• V(E,B,k) – V(E,N,k) = [γp - x(1-pk)]M 

• Large penalty:  x >= γ*max[1,p/(1-p)] 

• Then, if p < ½,  x(1-pk) > x(1-p) > px > γp and 
the expression is negative.  If p > ½ x(1-pk) > 
x(1-p)  > γp and the expression is still negative.   

• so V(E,B,k) – V(E,N,k) < 0  

• and so it’s optimal not to bid.   



Optimal control:  large penalties 

• If x ≥ γ*max[1,p/(1-p)] then the optimal 
control is to bid when full and not bid when 
empty.  That way you never have to pay 
penalties and you refill the first time it’s windy 
after a calm day. 

• Note that sufficiently huge penalties are never 
collected!  

• Here V(F,k)-V(E,k) = [1-γ(1-p)]M 



Empty bid rules: Small penalties 

• V(E,B,k) – V(E,N,k) = [γp - x(1-pk)]M 

• Small penalty:  x ≤ pγ  

• Then x(1-pk) < x ≤ pγ  

• so V(E,B,k) – V(E,N,k) > 0  

• and so it’s always optimal to bid.   

• Here V(F,k)-V(E,k) = [1-γp + x(1-pk)]M 

 

 



Optimal control: small penalties 

• With small penalties you always bid whether 
you are full or empty.   The effect of this is that 
if you start empty you never fill the storage, 
and if you start full you only use the storage 
once, to empty it.   

• So the penalties are too small to encourage 
use of the storage, even though it looks like 
you are using the storage when it’s full.  



Empty bid rules: medium penalties 

• V(E,B,k) – V(E,N,k) = [γp - x(1-pk)]M 

• Medium penalty:  γp < x < γmax[1,p/(1-p)] 

• Here γp - x(1-pk) is positive (when k < k*)  or 
negative (when k ≥ k*).   

• Here k* is the largest integer satisfying 

•    k* <  ln[1-γp/x]/ln(p) 

• So you don’t bid  (sufficiently far from maturity)  
and then bid (sufficiently close to maturity) 

 



Optimal control: medium penalties 

• With sufficiently small time remaining,  you might 
be able to “get away” with bidding even when 
empty, in the expectation of never having to pay 
a penalty.   

• x(1-pk) is the expected proportional penalty paid  
with k time steps remaining. 

• Eventually it’s better to play it safe and bid, with 
proportional loss of γ incurred with probability p. 

• Hence we compare γp and x(1-pk) . 



Facility values: large penalties 

• Here the equations are: 
V(F,k) = V(F,B,k)  
   = p[M+V(F,k-1)]+(1-p)[ (1-γ)M+V(E,k-1)] 

• V(E,k) = V(E,N,k) = pV(F,k-1) + (1-p)V(E,k-1) 

• So V(E,k) = V(E,k-1) + p[V(F,k-1)-V(E,k-1)] 

• V(E,0) = 0 and V(F,k)-V(E,k) = [1-γ(1-p)]M, so 

• V(E,k) = kp[1-γ(1-p)]M  (k ≥ 0).   

• V(F,k) = (kp+1)[1-γ(1-p)]M (k ≥ 1).   

 

 



Facility Values:  Small penalties 

• Here V(F,k) = V(F,B,k) and V(E,k) = V(E,B,k) so 
the recursion relations are: 

•   V(F,k) = p[M+V(F,k-1)]+(1-p)[ (1-γ)M+V(E,k-1)] 

• V(E,k) = p[M+V(E,k-1)] + (1-p)[-xM+V(E,k-1)] or 

• V(E,k) = V(E,k-1) +  [p-x(1-p)]M 

• Or V(E,k) = k[p-x(1-p)]M 

• V(F,k) = k[p-x(1-p)]M + (1-γ)M + x(1-pk)M. 

 

 



Facility Values:  Medium penalties 

• When k < k*  it’s as if the penalties were small, so 
V(E,k) = k[p-x(1-p)]M,  k < k* 

• When k > k* the penalties are now large, so we 
can solve the large penalty difference equation 
with the “initial condition”  
V(E,k*) = k*[p-x(1-p)]M  

• V(E,k) = V(E,k-1) + p[V(F,k-1)-V(E,k-1)], where for 
k > k*,  V(F,k-1)-V(E,k-1) = [1-γ(1-p)]M, so 

• V(E,k) = kpM –k*x(1-p)M –(k-k*) γ(1-p)M, k ≥ k*. 
• k*: largest int satisfying k* <  ln[1-γp/x]/ln(p) 

 
 
 



Impact on storage values 

• So far the analysis has only told us what to do 
if we were given a storage facility.    

• In this light it’s not so surprising that we’d 
choose to empty a full facility rather than pay 
penalties. 

• But what if we had to rent a storage facility?  
Would it be worth it? 

• We need to compare with a turbine operated 
without a companion storage.   



Compare with turbine with no storage 

• Consider a turbine with no storage.  W(k) is the 
value of this turbine with k periods remaining. 

• W(k) follows the difference equation:  

• W(k) = max[W(B,k), W(N,k)] 

• W(B,k) = p[M + W(k-1)] + (1-p)[-xM + W(k-1)] 

• W(N,K)= pW(k-1) + (1-p)W(k-1) = W(k-1) 

• So W(k)=W(k-1)+max[p-x(1-p),0]*M; W(0) = 0. 

• So W(k) = kM*max[p-x(1-p),0].     

 



No storage wind turbine: controls 

• If x < p/(1-p)  the fines are small enough to 
make it worthwhile to operate, and you will 
always bid, and have W(k) = kM*[p-x(1-p)].  

• If x > p/(1-p)  the fines are large enough for 
the best policy be never to bid,  with W(k) = 0. 

• These are the correct “comparator” values for 
the combined wind– storage facility.   



Added value of high penalty storage 

• Here base case is to have no value from wind, so 
penalty is equivalent to a law requiring wind 
turbine operators to operate storage (or other 
backup) facility. 

• The added value from the storage, for a N period 
facility, is Np[1-γ(1-p)]M  

• Note this value doesn’t depend on the value of x 
(once it’s big enough). 

• It says that the more wind the better,  the longer 
the facility life the better, and the more efficient 
the facility the better.   



Battery costs vs. efficiencies 
(Source:  The Future of Energy Storage, Global Business Insights) 



Estimating p 

• We have access to the total production of 
wind in Ontario at each time and to the total 
availability of wind turbines at each time. 

• If our model were correct for each turbine, 
we’d expect the long run average of this ratio 
to be the probability of full output. 

• Next slide  shows the data 

• Yields (slightly conservative) estimate p = 20% 



Estimating p (data) 
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Ontario Wind:  Generated/Available 
May 5 - Oct 11 2011.  Source: IESO 



Optimal bidding, variable wind p 



Value:  High penalty cost 

• Take M = $140 (i.e. 1MW turbine). 

• Take γ = 15% (Sodium-Sulfur battery) 

• Take p = 20%.   

• Take N = 8760 hours 

• Then the value of the storage is about 
$215,000 per MWh (per year). 

• Cost is about $500,000 but lasts for a number 
of years.  So storage is “in the conversation”.  



Added value of low penalty storage 

• Here x < γp,  so x < p so x < p/(1-p)  and the base 
case is the “always run”  no storage facility with 
value W(k) = kM*[p-x(1-p)].  

• Here, though V(E,k) = k[p-x(1-p)]M, additional 
value of the storage is zero (since it doesn’t 
change bidding behaviour). 

• On the other hand,  in this regime we’d expect 
the regulator to collect on average N*(1-p)xM in 
penalties,  which could be used to defray the 
costs of storage.    With N = 8760, p = 20%, M = 
$140  and x = γp = 3%,  this is about $30,000. 



Conclusions 

• A simple model can be exactly solved and shows 
some interesting intuition. 

• Of course this is way too unrealistic for reality – 
we need correlated wind speeds,  storage with 
ability to store fractional units and seasonality, at 
the very least! 

• Our key focus now is adding simple weather 
forecast models to this. 

• It’s fun to see how much insight we can get 
without a lot of computing.   


