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Coding theory

A code C is a space X is a collection of points of X . Usually, we take X to
be compact and C to be finite.

In this talk, we’ll mostly be concerned with special codes on compact
metric spaces, such as Hamming space F

d
2 , spheres S

d−1 ⊂ R
d , projective

spaces such as RPd−1, Grassmannians G(m, n), etc.

Basic problem of coding theory: distribute N points on X in a “good” way
(e.g. spaced far apart).
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Codes and applications

The use of binary codes for error-correction is of course well-known.

Spherical codes are relevant for constant-power continuous signals (e.g.
cellphone signals).

Codes in RP
2: “treatment of tumors using high energy laser beams”.

Codes in CP
d−1: relavant to quantum information theory.

Codes in Grassmannians: multiple-antenna communication.
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Linear programming bounds

A 2-point homogeneous space X is one such that the group of isometries
of X acts transitively on pairs of points at a given distance.
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Linear programming bounds

A 2-point homogeneous space X is one such that the group of isometries
of X acts transitively on pairs of points at a given distance.

When X is a compact 2-point homogeneous space, we can compute linear
programming upper bounds on the size of any code with a specified (lower
bound on) minimal distance.

These come from special positive definite functions, which form a family of
orthogonal polynomials, and arise in representation theory. Schoenberg
constructed these in the 1930s.

Linear programming bounds were originally used by Delsarte for coding
theory/association schemes. But later applied to spherical codes, sphere
packings, energy minimization, etc.
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Example: simplices in Sd−1

Proposition

Let N be a collection of d + 1 unit vectors v1, . . . , vd+1 in Sd−1, with

〈vi , vj〉 ≤ α for i 6= j . Then α ≥ −1/d, with equality iff they form a

regular simplex.
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Example: simplices in Sd−1

Proposition

Let N be a collection of d + 1 unit vectors v1, . . . , vd+1 in Sd−1, with

〈vi , vj〉 ≤ α for i 6= j . Then α ≥ −1/d, with equality iff they form a

regular simplex.

Proof.

0 ≤ 〈
∑

vi ,
∑

vi 〉

= d + 1 +
∑

i 6=j

〈vi , vj〉

≤ d + 1 + (d + 1)dα.

This is the linear programming bound with the positive definite kernel
f (x) = x .
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Positive definite kernels

More generally, for a 2-point homogeneous space with isometry group G ,
the decomposition of L2(X ) into unitary reps of G gives rise to zonal
spherical functions Ck , which happen to be positive definite kernels.
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Positive definite kernels

More generally, for a 2-point homogeneous space with isometry group G ,
the decomposition of L2(X ) into unitary reps of G gives rise to zonal
spherical functions Ck , which happen to be positive definite kernels.

That is, for any code C, the matrix
(

f (x , y)
)

x ,y∈C
is positive semidefinite.

In fact, these zonal spherical functions are polynomials in cosϑ, where ϑ is
the geodesic distance. They are orthogonal polynomials for a certain
measure.

For projective spaces KP
d−1, where K = R,C,H or O they are Jacobi

polynomials P
(α,β)
k , where α = (d − 1)(dimR K )/2− 1 and

β = (dimR K )/2− 1. They can be computed easily. Normalize C0 = 1.
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General LP bounds

Proposition

Let θ ∈ [0, π], and suppose the polynomial

f (z) =
n

∑

k=0

fkCk(z)

satisfies f0 > 0, fk ≥ 0 for 1 ≤ k ≤ n, and f (z) ≤ 0 for −1 ≤ z ≤ cos θ.
Then every code in X with minimal geodesic distance at least θ has size at

most f (1)/f0.
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General LP bounds

Proposition

Let θ ∈ [0, π], and suppose the polynomial

f (z) =
n

∑

k=0

fkCk(z)

satisfies f0 > 0, fk ≥ 0 for 1 ≤ k ≤ n, and f (z) ≤ 0 for −1 ≤ z ≤ cos θ.
Then every code in X with minimal geodesic distance at least θ has size at

most f (1)/f0.

It’s called an LP bound, because typically we take f0 = 1, then f1, . . . , fn
are the variables. The constraints and objective function (i.e. the bound)
are linear in these.
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Proof of LP bound

Proof.

Let C be such a code. Then

∑

x ,y∈C

f (cosϑ(x , y)) =
∑

x ,y∈C

∑

k≥0

fkCk(cosϑ(x , y))

=
∑

k≥0

fk
∑

x ,y∈C

Ck(cosϑ(x , y)) ≥ f0|C|
2,

On the other hand, f (cosϑ(x , y)) ≤ 0 whenever ϑ(x , y) ≥ θ, and hence

∑

x ,y∈C

f (cosϑ(x , y)) ≤ |C|f (1)

because only the diagonal terms contribute positively. It follows that
f0|C|

2 ≤ f (1)|C|, as desired.
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Tight codes

Definition

We say a code C of N points in X is tight if its size matches the linear
programming bound for its distance, i.e. there is a function f as above
such that the upper bound from f matches the lower bound |C|.
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Tight codes

Definition

We say a code C of N points in X is tight if its size matches the linear
programming bound for its distance, i.e. there is a function f as above
such that the upper bound from f matches the lower bound |C|.

Note that this is different from the notion of a tight design in general (as
studied by Delsarte, Goethals, Seidel, Bannai, Hoggar etc.)

In general a tight design is a tight code, but not vice versa.

Many examples of tight codes on spheres and real and complex projective
spaces were described by Levenshtein (some newer examples by others,
too). Cohn-Kumar studied these from the perspective of energy
minimization and universal optimality.
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Projective spaces

Our results pertain to families of tight simplices in projective spaces over
H and O. A regular simplex in a metric space X is a code for which all the
pairwise distances between distinct points are equal.
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Projective spaces

Our results pertain to families of tight simplices in projective spaces over
H and O. A regular simplex in a metric space X is a code for which all the
pairwise distances between distinct points are equal.

Tight codes on the sphere Sd−1 and in real projective space RP
d−1 are

rigid, i.e. cannot be deformed in continuous families. Often they can be
proved to be unique.

The situation is already different for CPd−1, and for HP
d−1 and OP

d−1,
we find fairly large dimensional families of simplices.

Recall: projective space KP
d−1 over K = R,C,H can be thought of as

lines in K d : identify x and xα for x ∈ K d \ {0} and α ∈ K×. For OP
2 the

description is more complicated (need the coordinates of x to associate).
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The LP bounds for projective spaces

Points in projective space may be considered as projectors of rank 1
(namely xx†). The inner product can then be defined as
〈A,B〉 = ReTr(AB), and the chordal distance as

√

2− 2〈A,B〉.
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The LP bounds for projective spaces

Points in projective space may be considered as projectors of rank 1
(namely xx†). The inner product can then be defined as
〈A,B〉 = ReTr(AB), and the chordal distance as

√

2− 2〈A,B〉.

Let e be the dimension of the algebra K over R, i.e. 1, 2, 4, 8 for
K = R,C,H,O respectively.

Proposition (Lemmens-Seidel)

A regular simplex in KP
d−1 can have at most d + e(d2 − d)/2 points. If it

has N points, then the maximal inner product α satisfies

α ≥
N − d

d(N − 1)
.
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LP bounds for projective spaces II

Proof idea.

The bound on N comes from considering the dimension of the space of
Hermitian d × d matrices over K . It can be shown that the projectors
corresponding to the points of a regular simplex are linearly independent.
The bound on α follows from a linear programming bound on N, using a
linear positive definite kernel.
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LP bounds for projective spaces II

Proof idea.

The bound on N comes from considering the dimension of the space of
Hermitian d × d matrices over K . It can be shown that the projectors
corresponding to the points of a regular simplex are linearly independent.
The bound on α follows from a linear programming bound on N, using a
linear positive definite kernel.

Definition

We say a simplex is tight if it matches the bound.

Note: this definition is a priori stronger than saying that it’s a simplex
which is a tight code, since the strongest LP bound could be attained by a
non-linear function.

13 / 29



Tight simplices in real projective spaces

Dimension # points Name/origin

d d cross-polytope
d d + 1 Euclidean simplex
d 2d symm. conf. matrix of order 2d (⋆)
6 16 Clebsch
7 28 equiangular lines
23 276 equiangular lines

v(v−1)
k(k−1) v

(

1 + v−1
k−1

)

Steiner construction (⋆)

strongly regular graph with parameters
d N (N − 1, k , (3k − N)/2, k/2), where

k = N
2 − 1 +

(

1− N
2d

)

√

d(N−1)
N−d

(⋆)

⋆ : The code may exist only for certain parameter settings.
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Tight simplices in complex projective spaces

Dimension # points Name/origin

d 2d skew-symm. conf. matrix of order 2d (⋆)
d d2 SIC-POVMs (⋆)

2k − 1 4k − 1 skew-Hadamard matrix of order 4k (⋆)
2k 4k − 1 skew-Hadamard matrix of order 4k (⋆)

v(v−1)
k(k−1) v

(

1 + v−1
k−1

)

Steiner construction (⋆)

|S | |G | difference set S in abelian group G (⋆)

⋆: The code may exist only for certain parameter settings.
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Previously known families of tight codes in HP
d−1 and OP

2

Space # points max |〈x , y〉|2 Name/origin

HP
d−1 d(2d + 1) 1/d 2d + 1 mutually unbiased bases (⋆)

HP
4 165 1/4 quaternionic reflection group

OP
2 819 1/2 generalized hexagon of order (2, 8)

⋆: The code may exist only for certain parameter settings.
For brevity we omit the tight simplices from RP

d−1 and CP
d−1.
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Our results for HP
d−1 and OP

2

For HP
2 through HP

5, we find positive dimensional families of tight
simplices for many values of N in the allowed range.

Similarly for OP
2.
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Our results for HP
d−1 and OP

2

For HP
2 through HP

5, we find positive dimensional families of tight
simplices for many values of N in the allowed range.

Similarly for OP
2.

Finding the codes: We find an approximate tight simplices in one of two
ways:

through energy minimization (gradient descent).

through a numerical approximate solution to an appropriate system of
equations (use Newton’s method etc.)

Proving existence: through an effective version of the implicit function
theorem. This also allows us to find the local dimension of the space of
solutions to the system of equations, and therefore a lower bound for the
dimension of the space of tight simplices.
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Some highlights

For HP
2, we find tight simplices for all the allowed values of N (i.e.

between 1 and 15) except for N = 14. We conjecture that there does
not exist a tight simplex of 14 points.
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Some highlights

For HP
2, we find tight simplices for all the allowed values of N (i.e.

between 1 and 15) except for N = 14. We conjecture that there does
not exist a tight simplex of 14 points.

For OP
2, we find tight simplices for all the allowed values of N (i.e.

between 1 and 27) except for N = 26. We conjecture that there does
not exist a tight simplex of 26 points.

In particular, we settle the existence of a tight 27-point simplex
(equivalently, a tight 2-design) in OP

2 (conjectured not to exist by
Hoggar).

We also rigorously show the existence of many tight simplices in
Grassmannians G (m, n,R), which were reported by Conway, Hardin
and Sloane, based on numerical evidence.
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Tight simplices discovered for HP
2

N r(3,N,H) N r(3,N,H)

5 0 10 10
6 4 11 9
7 7 12 2
8 9 13 2
9 10 15 14

Here r(3,N,H) gives the local dimension of the space of solutions.
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Tight simplices discovered for HP
2

N r(3,N,H) N r(3,N,H)

5 0 10 10
6 4 11 9
7 7 12 2
8 9 13 2
9 10 15 14

Here r(3,N,H) gives the local dimension of the space of solutions.

Of these, 5 through 11 were found and proved through the same schema
of equations. For tight simplices of 12, 13 and 15 points, we have to do
some extra work (e.g. impose symmetry for 12 and 13) so their local
dimensions do not fit the general pattern.
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Finding these simplices

As mentioned above, we can use two methods to find very close
approximations to tight simplices (all coordinates within 10−9 of a tight
simplex).
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Finding these simplices

As mentioned above, we can use two methods to find very close
approximations to tight simplices (all coordinates within 10−9 of a tight
simplex).

Start from a random code of N points and do gradient descent for
potential energy for the potential function 1/r , where r is the chordal
distance. Stop when the simulation stabilizes to a high accuracy.
Likely to get a tight simplex.

Try to directly solve the system of equations below, using gradient
descent and then Newton’s method. Software package written by G.
Minton called QNewton is very useful for this purpose.

20 / 29



System of equations

Naively, we may try to define a tight simplex of N points in KP
d−1 by the

following set of equations:

|〈xi , xj〉|
2 =

N − d

d(N − 1)
for 1 ≤ i < j ≤ N.
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Naively, we may try to define a tight simplex of N points in KP
d−1 by the

following set of equations:

|〈xi , xj〉|
2 =

N − d

d(N − 1)
for 1 ≤ i < j ≤ N.

The problem is that this set of nonlinear constraints does not have
surjective Jacobian at a tight simplex. So cannot apply implicit function
theorem.

(Analogous to trying to define (0, 0) ∈ R
2 by x2 + y2 = 0.)

It’s not at all obvious if a subset of constraints will give us a surjective
Jacobian while still giving a tight simplex.
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System of equations

We use the equations corresponding to the following conditions.

Proposition

Suppose x1, . . . , xN ∈ H
d (d > 1) and w1, . . . ,wN ∈ R satisfy the

following conditions:

|xi |
2 = 1 for all i = 1, . . . ,N;

|〈xi , xj〉|
2 = |〈xi ′ , xj ′〉|

2 for all 1 ≤ i < j ≤ N and 1 ≤ i ′ < j ′ ≤ N; and
∑N

i=1 wixix
†
i = I .

Then w1 = · · · = wN = d
N

and {x1, . . . , xN} is a tight simplex.
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We use the equations corresponding to the following conditions.

Proposition

Suppose x1, . . . , xN ∈ H
d (d > 1) and w1, . . . ,wN ∈ R satisfy the

following conditions:

|xi |
2 = 1 for all i = 1, . . . ,N;

|〈xi , xj〉|
2 = |〈xi ′ , xj ′〉|

2 for all 1 ≤ i < j ≤ N and 1 ≤ i ′ < j ′ ≤ N; and
∑N

i=1 wixix
†
i = I .

Then w1 = · · · = wN = d
N

and {x1, . . . , xN} is a tight simplex.

Proof idea.

The first condition is just to normalize the scaling, since we’re in projective
space. The second condition cuts out a regular simplex. The final
condition, which is the key, says that being tight is equivalent to being a
1-design. From it we can recover the value of the inner product.
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Effective implicit function theorem

Definition

For a polynomial p : Rm → R given by p(x) =
∑

I cI x
I , define

|p| =
∑

I |cI |. Given a polynomial map p = (p1, . . . , pn) : R
m → R

n, define
|p| = max |pi |.
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Effective implicit function theorem

Definition

For a polynomial p : Rm → R given by p(x) =
∑

I cI x
I , define

|p| =
∑

I |cI |. Given a polynomial map p = (p1, . . . , pn) : R
m → R

n, define
|p| = max |pi |.

Theorem

Let m ≥ n, ε > 0, and x0 ∈ R
m. Suppose f : Rm → R

n is a polynomial

function of total degree s, and let Rm and R
n carry the ℓ∞ norm. Set

η = max(1, |x0|+ ε). If there exists a linear operator T : Rn → R
m such

that

||Df (x0) ◦ T − idRn ||+ ε |f |s(s − 1)ηs−2||T || < 1−
||T || · |f (x0)|

ε
,

then there exists x∗ ∈ B(x0, ε) such that f (x∗) = 0, and the zero locus

f −1(0) is locally a manifold of dimension m − n.
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Demonstrating existence

To use the theorem, we find an x0 (as described earlier) and let T be a
right inverse for Df (x0). These are computed using floating point
numbers. But then we can round them to rational numbers with
denominator 109 say, and everything is completely rigorously verified using
integer arithmetic.
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Demonstrating existence

To use the theorem, we find an x0 (as described earlier) and let T be a
right inverse for Df (x0). These are computed using floating point
numbers. But then we can round them to rational numbers with
denominator 109 say, and everything is completely rigorously verified using
integer arithmetic.

The theorem guarantees existence of a tight simplex x∗ and also outputs
the dimension of the space of tight simplices locally around x∗.

Using the theorem, we get (for instance) existence for N-point tight
simplices in HP

2, for 3 ≤ N ≤ 11.
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For 12 points in HP
2, the system has non-surjective Jacobian!
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Additional tweaks for special cases

For 12 points in HP
2, the system has non-surjective Jacobian!

We instead look for simplices with symmetry, i.e. 4 orbits of type
(a, b, c), (b, c , a), (c , a, b), and a modification of the proposition.

For 13 points, we take 4 orbits under the cyclic symmetry and one extra
point invariant under it.

For 15 points, need something quite a bit more sophisticated.
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Tight simplices in OP
2

A similar story holds: we get everything from the “generic” proposition,
except for 24, 25 or 26 points.
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Tight simplices in OP
2

A similar story holds: we get everything from the “generic” proposition,
except for 24, 25 or 26 points.

For 24 = 3 · 8 and 25 = 3 · 8 + 1, we use cyclic symmetry.

No 26-point tight simplex seems to exist.

We also produce, by explicit algebraic construction, 39 points in OP
2

forming thirteen triples of mutually orthogonal vectors such that the inner
product between points in distinct triples is 1/3. These form a maximal
system of mutually unbiased bases in OP

2, which was previously only
conjectured to exist.
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Tight simplices in real Grassmannians

The real Grassmannian G(m, n) of m-dimensional subspaces in R
n is not a

2-point homogeneous space (there are m principal angles).
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The real Grassmannian G(m, n) of m-dimensional subspaces in R
n is not a

2-point homogeneous space (there are m principal angles).

Nevertheless, there is an embedding of the Grassmannian into a high
dimensional sphere (considering the projectors inside the space of
symmetric matrices with the Frobenius norm).

This leads to a simplex and an orthoplex bound induced from the sphere.
Conway, Hardin and Sloane found some explicit examples which were
sharp for these, and many more numerical ones which seemed to be
approximately sharp.

Using our techniques and suitable adaptations of the proposition giving a
good set of constraints, we are able to prove most of their conjectured
examples of simplices. (Again, we get positive dimensional families.)
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Conclusion and open questions

We use the implicit function theorem in a geometric setting, allowing us to
show the existence of many tight codes which were not previously known
to exist, and which may not have simple algebraic constructions.
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Conclusion and open questions

We use the implicit function theorem in a geometric setting, allowing us to
show the existence of many tight codes which were not previously known
to exist, and which may not have simple algebraic constructions.

It would be nice to rigorously show the non-existence of 14-point
tight codes in HP

2 and 26-point tight codes in OP
2. Perhaps part of

a larger pattern.

Existence of d2-point tight simplex in CP
d−1?

We don’t know if a tight code which is a regular simplex must
necessarily be a tight simplex (i.e. have the appropriate angle).

Likely lots of examples of tight simplices in complex Grassmannians
too. We haven’t explored these.

Tight codes in groups? We found a tight simplex of 17 points and a
tight cross-polytope of 32 points in SO(4).
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Reference: H. Cohn, A. Kumar, and G. Minton, Simplices and optimal

codes in projective spaces, arXiv.org:1308.3188.

Thank you!
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