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Global Rigidity

Given a bar framework (G , p) in Ed , how do you tell when the bar
(distance) constraints determine the configuration up to rigid
congruences? When this happens (G , p) is called globally rigid in
Ed .

B
A

Figure: Framework A is globally rigid in E 2, as is Framework B, but
Framework B has to solve a subset-sum problem for the angles at the
central vertex to certify it. Framework A is globally rigid in all Euclidean
spaces ED ⊃ E 2 and can be certified by checking the positive definite
property and rank of a symmetric n × n matrix.
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Generic Global Rigidity

Theorem (Connelly (2005) and Gortler-Healy-Thurston (2010))

A bar framework (G , p) in Ed , for n ≥ d, is globally rigid at a
generic configuration p = (p1, . . . , pn) if and only if there is some
configuration q, where the rigidity matrix R(q) has maximal rank
nd −d(d + 1)/2 and a stress matrix Ω of maximal rank n− (d + 1).

Irony: (G , q) may not be globally rigid. Although “almost all”
configurations are generic, it seems to be computationally infeasible
to be able to detect the appropriately non-generic configurations.

But what about a non-generic configuration? This could be just
about any configuration, since you don’t know what generic means.
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Universal Rigidity

There is a class of frameworks where the certificate for global
rigidity is quite feasible.

Definition

A framework (G , p) in Ed is universally rigid if it is globally
rigid (or equivalently locally rigid) in any ED ⊃ Ed .

A stress ω = (. . . , ωij , . . . ) for the graph G is an assignment
of a scalar ωij = ωji for each pair of vertices {i , j} in G , such
that ωij = 0, when there is no edge (member) between vertex
i and vertex j .

The stress-energy Eω is a quadratic form associated to any
stress ω defined on the space of all configurations p by

Eω(p) =
∑
i<j

ωij(pi − pj)
2.
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Rigidity Modulo Affine Motions

The stress-energy has a matrix representation such that
Eω = Ω⊗ ID , where Ω is an n × n symmetric matrix, where the
{i , j} coordinate is −ωij , for i 6= j , and the row and column sums
are 0.

Theorem (Connelly (1980))

If the framework (G , p) in Ed has a stress ω such that Ω is
positive semi-definite (PSD) of rank n − d − 1, while p is one of
the minimum (critical equilibrium) configurations for Eω, then any
other framework (G , q) with the same corresponding member
lengths is such that q is an affine image of p.
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Conic at infinity

Definition

For a framework (G , p) in Ed the vectors {pi − pj}, {i , j} members
in G , determine points in the projective space RPd−1 of lines
through the origin in Ed . If those projective points lie on a conic,
we say the member directions for (G , p) lie on a conic at infinity.

For example, in the plane a conic at infinity is just two
points/directions.

Theorem

A framework (G , p) in Ed has a flex (continuous motion preserving
the bar lengths) that consists of affine motions if and only if its
member directions lie on a conic at infinity.
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Super Stability

Theorem (Connelly (1980))

If the framework (G , p) in Ed has a stress ω such that Ω is
positive semi-definite (PSD) of rank n − d − 1, while p is one of
the minimum (critical equilibrium) configurations for Eω, and the
member directions do NOT lie on a conic at infinity, then it is
universally rigid.

Definition

A framework that satisfies the conditions of the Theorem above is
called super stable.

Desargues
SnelsonCauchy Polygon
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More Universally Rigid Frameworks

Are all universally rigid frameworks super stable?
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More Universally Rigid Frameworks

Are all universally rigid frameworks super stable? No!

The members adjacent to the blue vertex all have zero stress, and
the critical stress matrix has rank 7− 3− 1 = 3, one less than
needed for superstability. Nevertheless, after removing that vertex,
the rest of the framework is a Desargues’ configuration and is
super stable by itself. Then attaching that extra vertex preserves
universal rigidity. This is an example of a spider web, and all rigid
spider webs are universally rigid by this method.
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Definition (Alfakih (2007))

A framework (G , p) is called dimensionally rigid if the dimension of
affine span of the vertices of p = (p1, . . . , pn) is maximal among all
configurations of (G , q) with corresponding bar lengths the same
as (G , p).

Note that a dimensionally rigid framework may not even be rigid.
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Universal Rigidity Revisited

Corollary

If the framework (G , p) in Ed has a stress ω such that Ω is
positive semi-definite (PSD) of rank n − d − 1, while p is one of
the minimum (critical equilibrium) configurations for Eω, then any
other framework (G , q) with the same corresponding member
lengths is such that q is an affine image of p and thus is
dimensionally rigid.

Theorem (Alfakih (2007))

If the framework (G , p) in Ed is dimensionally rigid in Ed , and
(G , q) has corresponding member lengths the same, then q is an
affine image of p. So if, additionally, the member directions of
(G , p) do not lie on a conic at infinity, then (G , p) is universally
rigid.
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Affine sets

The space of all configurations in ED , C, is naturally identified
with the (RD)n = RDn.

Definition

A subset A ⊂ C is called an affine set, if it is the finite intersection

{p ∈ C |
∑
ij

λij(pi − pj) = 0},

for some set {. . . , λij = λji , . . . }.

For example, any set of three collinear points p1, p2, p3, where p2 is
the midpoint of p1 and p3, is an affine set. Or a configuration of
four points of a parallelogram, possibly degenerate, is another
example. In general, an affine set is a subset of the configuration
space ED that is determined by linear constraints on configuration
vectors such that it is closed under arbitrary affine transformations.
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Universal Configurations for Affine Sets

Definition

A configuration p is universal for an affine set A if its affine span is
of maximal dimension among all configurations q in A.

Lemma (Universality Property)

If the configuration p is universal for the affine set A, and q is
another configuration in A, then q is an affine image of p.

Proof.

Define p̃ to be another configuration where p̃i = (pi , qi ) in
RD × RD for i = 1, . . . , n. The configuration p̃ is also in A since
all its coordinates satisfy the same equations. Since projection is
an affine linear map and the affine span of p is maximal, the
dimension of the affine span of p̃ must also be maximal, and the
projection between their spans must be an isomorphism. So the
map p → p̃ → q provides the required affine map. 13 / 27
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The Rigidity Map and the Measurement Cone

Definition

The rigidity map f : C → Rm is the function defined by

f (p) = (. . . , (pi − pj)
2, . . . ),

where {i , j} is the edge in G corresponding to the coordinate ofM.

For a graph G , the measurement cone M = f (C) ⊂ Rm. So the
configurations p and q have the same member lengths for G if and
only if f (p) = f (q).

Theorem

For D ≥ n, and any affine set A, the image f (A) ⊂M is convex.
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The Convexity Argument

For an affine set A, a supporting hyperplane H for f (A)
corresponds to the zero-set/kernel of an appropriate PSD
stress-energy form Eω, since Eω(p) = ωf (p), where ω is a stress
for (G , p).

ω ω2
1

f(A )2 1f(A )

So we can find a flag of affine sets C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak in
configuration space that corresponds to a flag of faces
M = f (A0) ⊃ f (A1) ⊃ f (A2) ⊃ . . . f (Ak) in the measurement
cone that converges to the face that contains f (p). This is called
facial reduction in Borwein-Wolkowicz.
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The Main Theorem

Definition

We say that a sequence of affine sets C = A0 ⊃ A1 ⊃ A2 ⊃ . . .Ak

are stress supported if it has a corresponding sequence of stress
energy functions, for the graph G , E1, . . . ,Ek , such that each Ei is
restricted to Ai−1, is PSD and Ai = E−1

i (0) . We call this
sequence, an iterated affine sequence.

Theorem

A framework (G , p) is dimensionally rigid if and only if there is a
stress supported iterated affine sequence
C = A0 ⊃ A1 ⊃ A2 · · · ⊃ Ak , where the p is a universal
configuration for Ak .

Corollary

A framework (G , p) is universally rigid if and only if, in addition,
the member directions do not lie on a conic at infinity. 16 / 27
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Examples
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Another Example

This is a uniformly rigid two-step example with no subgraph that is
super stable.
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Semi-Definite Programming

Another approach to determining universal rigidity is to take the
given member lengths and apply an algorithm that uses
semi-definite programming (SDP) to find a configuration with a
maximal dimensional affine span for the given edge lengths,
starting with (G , p). If it returns the configuration p again, you
can conclude that (G , p) is universally rigid. The problem is that
this process only converges to a dimensionally rigid example, and
the measure of success is how close the calculated lengths are to
the given lengths, which can be problematic as the following
example shows. The question of whether there is an “algorithm”
to “compute” universal rigidity is partly tied up with the question
of how the configuration itself is defined. Is the problem itself
well-defined?
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A Disturbing Examplem EF = 6.67 cm

G H

The black vertices are pinned, while the members on the right have
been increased by less than 0.5%.
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SDP Applied to Stresses

However, one can use SDP to find PSD stresses for a given
configuration. If the space of critical PSD stresses for a given
framework is open in the space of all stresses, then a random
search for such a stress will be successful with positive probability,
at least. The 4-pole examples above have only a one-dimensional
space of equilibrium stresses, which assures success.

Another approach is to create configurations with PSD stresses.
This method, part of the general process known as “form finding”,
can be used to find super stable highly symmetric configurations
for tensegrities.
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Tensegrities

Definition

A tensegrity is a framework (G , p), where each edge (member) of
G is defined to be a strut, cable, or bar. Struts are not allowed to
decrease in length, cables are not allowed to increase in length, and
bars are not allowed to change in length.

In the figures here, cables are indicated by dashed line segments,
while struts and bars are indicated by solid line segments. If the
stress energy forms have a stress where ωij > 0, then that member
can be assumed to be a cable, and when ωij < 0, it can be
assumed to be a strut. The main result can be extended to the
case of tensegrities.

22 / 27



First Section

A Tensegrity Example

The following is an example of a tensegrity where some of the
cables an struts designations can be reversed, while in each case
the tensegrity is universally rigid in two steps. The degenerate
triangles are indicated such that the strut is bent slightly.

The second step energy form is PSD even though it is identically
zero and the stress for one example is the negative of the other.
But there are enough directions to apply the last step to eliminate
the affine motions. 23 / 27
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A Projective Transformations

From the proof of the main theorem, it is easy to see that a
projective transformation preserves the definiteness of the energy
forms. This gives the following.

Theorem

If a framework (G , p) dimensionally rigid and the configuration q is
a non-singular projective image of p, then (G , q) is dimensionally
rigid as well.

The following example shows that this is not true for universal
rigidity.
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The Orchard Ladder

BA

Framework/tensegrity A is dimensionally rigid in the plane, and
framework/tensegrity B is a non-singular projective image which is
not dimensionally rigid, since it has only two member directions,
and thus has an affine flex in the plane.
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The End
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