

Comparison of different cavity-QED systems with type-I gate in non-ideal case U($\Delta \phi$)

System	Atoms	N-V centres	Dots	Low-Q
$g/(2\pi)$ (MHz)	5	100	5000	3300
$\kappa/(2\pi)$ (MHz)	3	13	3000	440000
$\kappa_s/(2\pi)$ (MHz)	0.5	39	7000	220000
$\gamma/(2\pi)$ (MHz)	3	0.6	1000	6
$\bar{\alpha}$ (Rad)	$\sim 0.4\pi$	$\sim 0.1\pi$	$\sim 0.1\pi$	$\sim 0.4\pi$
$ au$ (μ s)	10000	1000	1	1000
$\Delta t \ (ns)$	500	300	1.5	1000
$\operatorname{Min} D(\mathbf{m})$	150	100	< 1	300
$\operatorname{Min} t (\mu s)$	~ 1	~ 0.3	~ 0.1	~ 2

QD spin-cavity system is better than atom or NV for loophole-free Bell test

N. Brunner et al, arXiv: 1303.6522(quan-ph)

Acknowledgements

In collaborations with

William J. Munro (NTT, Japan)

Jeremy L. O'Brien (CQP, Bristol)

Nicolas Brunner (Bristol / Geneva)

Thanks for your attention!

