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• to describe certain hyperbolic dynamical

systems called Smale spaces

• to describe C∗-algebras constructed from

them

• to find algebraic invariants for them, and

show how the C∗-algebras provided key ideas

in their construction
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Smale spaces (D. Ruelle)

(X, d) compact metric space,

ϕ : X → X homeomorphism 0 < λ < 1,

For x in X and ε > 0 and small, there is a

local stable set Xs(x, ε) and a local unstable

set Xu(x, ε) which satisfy:

1. Xs(x, ε) × Xu(x, ε) is homeomorphic to a

neighbourhood of x,

2. ϕ-invariance,

3.

d(ϕ(y), ϕ(z)) ≤ λd(y, z), y, z ∈ Xs(x, ε),

d(ϕ−1(y), ϕ−1(z)) ≤ λd(y, z), y, z ∈ Xu(x, ε),
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That is, we have a local picture:
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Global stable and unstable sets:

Xs(x) = {y | lim
n→+∞

d(ϕn(x), ϕn(y)) = 0}

Xu(x) = {y | lim
n→+∞

d(ϕ−n(x), ϕ−n(y)) = 0}

These are equivalence relations and

Xs(x, ε) ⊂ Xs(x),
Xu(x, ε) ⊂ Xu(x).
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Example 1(from linear algebra)

The linear map

A =

(
1 1
1 0

)
: R2 → R2

is hyperbolic. Let γ > 1 be the golden mean,

(γ,1)A = γ(γ,1)

(−1, γ)A = −γ−1(−1, γ)

Of course, R2 is not compact, but letting X =

R2/Z2, as det(A) = −1, A induces a map with

the same local structure, but is a Smale space.

Xs and Xu are Kronecker foliations with lines

of slope −γ−1 and γ.
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Example 2 (from topology)

Let X0 = D× S1, be the solid torus and define

ϕ0 : X0 → X0 with image as shown:

It is not onto, but if we let

X = ∩n≥1ϕ
n
0(X0) ϕ = ϕ0|X ,

then (X,ϕ) is a Smale space. The unstable set

is the S1 coordinate, while the stable set is a

totally disconnected subset of D.
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Example 3 (from number theory)

For a prime p, Qp is the p-adic numbers. It is

a field and a metric space which is the com-

pletion of Q. It is totally disconnected. Multi-

plication by p contracts by a factor p−1, while

multiplication by any integer relatively prime

to p is an isometry.

Let p < q be primes. On Qp × R× Qq, define

ϕ(x, y, z) = (p−1qx, p−1qy, p−1qz).

It expands the first factor and the second (p <

q), but contracts the third.

But the space is not compact. However,

X = Qp × R× Qq/Z[1/pq]

is, ϕ induces a homeomorphism which has the

same local structure.
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Example 4: Shifts of finite type (SFTs)

Let G = (G0, G1, i, t) be a finite directed graph.
Then we have the shift space of bi-infinite
paths and shift map:

ΣG = {(ek)∞k=−∞ | e
k ∈ G1,

i(ek+1) = t(ek), for all n}
σ(e)k = ek+1, ”left shift”

The metric d(e, f) = 2−k, where k ≥ 0 is the
least integer where (e−k, ek) 6= (f−k, fk).

The local stable and unstable sets at some
point e are:

Σs(e,1) = {(. . . , ∗, ∗, ∗, e0, e1, e2, . . .)}
Σu(e,1) = {(. . . , e−2, e−1, e0, ∗, ∗, ∗, . . .)}

Note that ΣG is totally disconnected; if fact,
these are precisely the totally disconnected Smale
spaces.

8



C∗-algebra: C∗(Xs)

For C∗-algebras of equivalence relations, it is
nice if we can find an abstract transversal, as
in Muhly, Renault, Williams.

Space:

Xu(O(x)) = ∪n∈ZXu(ϕn(x)),

(Caution: in a new topology, not the relative
topology!)

Equivalence relation:

Xu(O(x))s = Xs ∩ (Xu(O(x))×Xu(O(x)))

This is an étale equivalence relation and we
consider S(X,ϕ, x) = C∗(Xu(O(x))s).

Alternately, we could study
U(X,ϕ, x) = C∗(Xs(O(x))u).

Up to Morita equivalence these are indepen-
dent of the choice of x.
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Our original map ϕ induces a homeomorphism

of the space Xu(O(x)) and an automorphism

of Xu(O(x))s and hence automorphisms of S(X,ϕ, x),

as well as U(X,ϕ, x). We can also look at

S(X,ϕ, x)×ϕ Z, U(X,ϕ, x)×ϕ Z.

Case 1: Shifts of finite type (Krieger)

S(X,ϕ, x) is an AF-algebra.

K0(S(ΣG, σ, x)) ∼= limZN
ATG−→ ZN

ATG−→ · · ·

where AG is the adjacency matrix of the graph

G.

The same for U(X,ϕ, x) (change ATG to AG).

Moreover, we have

S(ΣG, σ, x)×ϕ Z ∼= OATG
⊗K.
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Case 2: One-dimensional solenoids

Klaus Thomsen : C∗-algebras fall under El-

liott’s classification program. (Torsion can oc-

cur in K-theory!)

Case 3: General properties

P-Spielberg : amenability, simplicity, purely in-

finite, etc.
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Back to dynamics...

Smale spaces have a large supply of periodic

points and it is interesting to count them.

Theorem 1. Let AG be the adjacency matrix

of the graph G. For any p ≥ 1, we have

#{e ∈ ΣG | σp(e) = e} = Tr(ApG).

This is reminiscent of the Lefschetz fixed-point

formula for smooth maps of compact mani-

folds.

Question 2 (Bowen). Is the right hand side

actually the result of σ acting on some homol-

ogy theory of (ΣG, σ)? Is there a more general

version of the theory for Smale spaces?

Krieger: K0(S(Σ, σ, x)) or K0(U(Σ, σ, x)), which

we will now denote by Du(Σ, σ) and Ds(Σ, σ),

respectively.
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Bowen’s Theorem

Theorem 3 (Bowen). For a non-wandering Smale

space, (X,ϕ), there exists a SFT (Σ, σ) and

π : (Σ, σ)→ (X,ϕ),

with π ◦ σ = ϕ ◦ π, continuous, surjective and

finite-to-one.

Problem Does a map π : (Y, ψ) → (X,ϕ) in-

duce a ∗-homomorphism between the C∗-algebras?
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A map π : (Y, ψ)→ (X,ϕ) map between Smale

spaces is π is s-bijective if, for all y in Y

π : Y s(y, ε)→ Xs(π(y), ε′)

is a local homeomorphism.

Theorem 4. Let π : (Y, ψ) → (X,ϕ) be a fac-

tor map between Smale spaces and y in Y be

periodic and such that π|O(y) is injective.

If π is u-bijective, then there is a ∗-homomorphism

πs : S(Y, ψ, y)→ S(X,ϕ, π(y)).

If π is s-bijective, then there is a ∗-homomorphism

πu∗ : U(X,ϕ, π(y))→ U(Y, ψ, y).
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If π is u-bijective

π : Y u(O(y))→ Xu(O(π(y)))

is a homeomorphism and

π × π(Y u(O(y)))s ⊆ Xu(O(π(y)))s

is an open subgroupoid.

If π is s-bijective

π × π : Y u(O(y))s → Xu(O(π(y)))s

is a proper morphism of groupoids.
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A better Bowen’s Theorem

Let (X,ϕ) be a Smale space. We look for a

Smale space (Y, ψ) and a factor map

πs : (Y, ψ)→ (X,ϕ)

satisfying:

1. πs is s-bijective,

2. dim(Y u(y, ε)) = 0.

That is, Y u(y, ε) is totally disconnected, while

Y s(y, ε) is homeomorphic to Xs(πs(y), ε).

This is a “one-coordinate” version of Bowen’s

Theorem.
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Similarly, we look for a Smale space (Z, ζ) and

a factor map πu : (Z, ζ) → (X,ϕ) satisfying

dim(Zs(z, ε)) = 0, and πu is u-bijective.

We call π = (Y, ψ, πs, Z, ζ, πu) a s/u-bijective

pair for (X,ϕ).

Theorem 5 (Better Bowen). If (X,ϕ) is a non-

wandering Smale space, then there exists an

s/u-bijective pair.

Fibred product recovers Bowen’s (Σ, σ):

(Y, ψ)
πs

&&

(Σ, σ)

ρu
88

ρs &&

(X,ϕ)

(Z, ζ)
πu

88

with

π = ρs ◦ πu = ρu ◦ πs.
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A homology theory

For L,M ≥ 0, we define

ΣL,M(π) = {(y0, . . . , yL, z0, . . . , zM) |
yl ∈ Y, zm ∈ Z,
πs(yl) = πu(zm)}.

Each of these is a SFT.

Moreover, the maps

δl, : ΣL,M → ΣL−1,M ,

δ,m : ΣL,M → ΣL,M−1

which delete yl and zm are s-bijective and u-

bijective, respectively.
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We get a double complex:

Ds(Σ0,2)alt

OO

Ds(Σ1,2)altoo

OO

Ds(Σ2,2)altoo

OO

oo

Ds(Σ0,1)alt

OO

Ds(Σ1,1)altoo

OO

Ds(Σ2,1)altoo

OO

oo

Ds(Σ0,0)alt

OO

Ds(Σ1,0)altoo

OO

Ds(Σ2,0)altoo

OO

oo

∂sN : ⊕L−M=ND
s(ΣL,M)alt

→ ⊕L−M=N−1D
s(ΣL,M)alt

∂sN =
∑L
l=0(−1)lδsl, +

∑M+1
m=0 (−1)m+Mδs∗,m

Hs
N(π) = ker(∂sN)/Im(∂sN+1).
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Topology Dynamics

open cover Bowen’s Theorem
U1, . . . , UI πs, πu : Y, Z → X

multiplicities multiplicities
Ui0 ∩ · · · ∩ UiN 6= ∅ ΣL,M(π)

groups groups
CN Ds(ΣN(π))alt
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Theorem 6. The groups Hs
N(π) depend on

(X,ϕ), but not the choice of s/u-bijective pair

π = (Y, ψ, πs, Z, ζ, πu).

From now on, we write Hs
N(X,ϕ).

Theorem 7. The functor Hs
∗(X,ϕ) is covariant

for s-bijective factor maps, contravariant for u-

bijective factor maps.

Theorem 8. The groups Hs
N(X,ϕ) are all finite

rank and non-zero for only finitely many N ∈ Z.
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Theorem 9 (Lefschetz Formula). Let (X,ϕ)

be any non-wandering Smale space and let p ≥
1.∑
N∈Z

(−1)N Tr[(ϕs)−p : Hs
N(X,ϕ)⊗ Q

→ Hs
N(X,ϕ)⊗ Q]

= #{x ∈ X | ϕp(x) = x}
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Example 4: Shifts of finite type

If (X,ϕ) = (Σ, σ), then Y = Σ = Z is an s/u-
bijective pair.

The only non-zero group in the double complex
occurs at (0,0).

Hs
0(Σ, σ) = Ds(Σ),

Hs
N(Σ, σ) = 0, N 6= 0.

Example 3: q
p-solenoid[N. Burke-P.]

Let p < q be primes and (X,ϕ) the q
p-solenoid.

Z = X, Y is the full q-shift and it maps down
so that it is two-to-one on a full p-shift.

Hs
0(X,ϕ) ∼= Z[1/q]

Hs
1(X,ϕ) ∼= Z[1/p]

Hs
N(X,ϕ) = 0, N 6= 0,1.
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Example 2: 2∞-solenoid [Bazett-P.]

Hs
0(X,ϕ) ∼= Z[1/2],

Hs
1(X,ϕ) ∼= Z,

Hs
N(X,ϕ) = 0, N 6= 0,1

Generalized 1-solenoids (Williams, Yi, Thom-
sen): done by Amini, P, Saeidi Gholikandi and
you can hear more at 4:00 PM.

Example 1: 2-torus[Bazett-P.]:(
1 1
1 0

)
: R2/Z2 → R2/Z2

N Hs
N(X,ϕ) ϕs

−1 Z 1

0 Z2

(
1 1
1 0

)
1 Z −1.
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