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Definition
A discrete group G is amenable if there is a left-invariant mean

λ : ℓ∞(G) → C,

i.e. a unital positive G-invariant linear map.

In this case, λ is a unital positive G-equivariant projection.



Definition
A discrete group G is amenable if there is a left-invariant mean

λ : ℓ∞(G) → C,

i.e. a unital positive G-invariant linear map.

In this case, λ is a unital positive G-equivariant projection.



Reframed Definition
A discrete group G is amenable if there is a unital positive
G-equivariant projection

λ : ℓ∞(G) → C.

Therefore, G is non-amenable if C is “too small” to be the range of a
unital positive G-equivariant projection on ℓ∞(G).
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Idea
Consider the minimal C*-subalgebra AG of ℓ∞(G) such that there is a
unital positive G-equivariant projection

P : ℓ∞(G) → AG.

The size of AG should somehow “measure” the non-amenability of G.
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unital positive G-equivariant projection
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Theorem (Kalantar-K 2014)
There is a unique minimal C*-algebra AG arising as the range of a
unital positive G-equivariant projection

P : ℓ∞(G) → AG.

The algebra AG is isomorphic to the algebra C(∂FG) of continuous
functions on the Furstenberg boundary ∂FG of G.



Motivation



Kirchberg proved that every exact C*-algebra can be embedded into a
nuclear C*-algebra.

In the separable case, Kirchberg and Phillips proved the nuclear
C*-algebra can be taken to be the Cuntz algebra on two generators.
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Ozawa conjectured the existence of what he calls a “tight” nuclear
embedding.

Conjecture (Ozawa 2007)
Let A be an exact C*-algebra. There is a canonical nuclear
C*-algebra N(A) such that

A ⊂ N(A) ⊂ I(A),

where I(A) denotes the injective envelope of A.

The algebra N (A) will inherit many properties from A, for example
simplicity and primality.
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Ozawa proved this conjecture for the reduced C*-algebra of the free
group Fn on n ≥ 2 generators.

Theorem (Ozawa 2007)
Let C∗
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r (Fn).

Note that C∗
r (Fn) is exact since Fn is an exact group.
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hyperbolic boundary of Fn.

Key Proposition (Ozawa 2007)
Let µ be a quasi-invariant doubly ergodic measure on ∂G. If

φ : C(∂Fn) → L∞(∂G, µ)

is a unital positive Fn-equivariant map, then φ = id.
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Equivariant Injective Envelopes



An operator system is a unital self-adjoint subspace of a C*-algebra.

A G-operator system is an operator system equipped with the action
of a group G, i.e. a unital homomorphism from G into the group of
order isomorphisms on S.
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Let C be a category consisting of objects and morphisms. An object I
is injective in C if, for every pair of objects E ⊂ F and and every
morphism φ : E → I, there is an extension φ̃ : F → I.

When the objects are operator systems and the morphisms are unital
completely positive maps, we get injectivity.

When the objects are G-operator systems and the morphisms are
G-equivariant unital completely positive maps, we get G-injectivity.
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Theorem (Hamana 1985)
If S is a G-operator system, then S has a unique G-injective envelope
IG(S). Every unital completely isometric G-equivariant embedding

φ : S → T ,

extends to a unital completely isometric G-equivariant embedding

φ̃ : IG(S) → T .

Since there is a unital completely isometric G-equivariant embedding
of S into ℓ∞(G,S) there are unital completely isometric G-equivariant
embeddings

S ⊂ IG(S) ⊂ ℓ∞(G,S).
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Upshot
If S is an operator system equipped with a G-action, then there are
unital completely isometric G-equivariant embeddings

S ⊂ IG(S) ⊂ ℓ∞(G,S),

and a unital positive G-equivariant projection P : ℓ∞(G,S) → IG(S).

The G-injective envelope IG(S) has a natural C*-algebra structure
(induced by the Choi-Effros product).
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Corollary
Let G be a discrete group acting trivially on C and let IG(C) denote
the G-injective envelope of C. Then

C ⊂ IG(C) ⊂ ℓ∞(G),

and there is a unital positive G-equivariant projection

P : ℓ∞(G) → IG(C).

The G-injective envelope IG(C) is a commutative C*-algebra equipped
with a G-action, so there is a compact G-space space ∂HG such that
IG(C) ≃ C(∂HG).

We call ∂HG the Hamana boundary of G.
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Definition
Let X be a compact G-space.
1. The G-action on X is minimal if the G-orbit

Gx = {sx | s ∈ G}

is dense in X for every x ∈ X.

2. The G-action on X is strongly proximal if, for every probability
measure ν on X, the weak*-closure of the G-orbit

Gν = {sν | s ∈ G}

contains a point mass δx for some x ∈ X.
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A compact G-space X is a boundary if it is minimal and strongly
proximal.

Key Property
If X is a boundary, then for every probability measure ν on X, the
weak*-closure of the G-orbit Gν contains all of X.
Here x ∈ X is identified with the point mass δx on X.
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For a discrete group G, the Hamana boundary ∂HG can be identified
with the Furstenberg boundary ∂FG.



Theorem (Furstenberg 1972)
Every group G has a unique boundary ∂FG that is universal, in the
sense that every boundary of G is a continuous G-equivariant image of
∂FG.

We refer to ∂FG as the Furstenberg boundary of G.

Theorem (Kalantar-K 2014)
For a discrete group G, the Hamana boundary ∂HG can be identified
with the Furstenberg boundary ∂FG.



Theorem (Furstenberg 1972)
Every group G has a unique boundary ∂FG that is universal, in the
sense that every boundary of G is a continuous G-equivariant image of
∂FG.

We refer to ∂FG as the Furstenberg boundary of G.

Theorem (Kalantar-K 2014)
For a discrete group G, the Hamana boundary ∂HG can be identified
with the Furstenberg boundary ∂FG.



Properties of injective envelopes (injectivity, rigidity and essentiality)
imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)
Let G be a discrete group and let ∂FG denote the Furstenberg
boundary of G. Then the C*-algebra C(∂FG) is G-injective. Moreover,
we have the following rigidity results:
1. Every unital positive G-equivariant map from C(∂FG) is

completely isometric.

2. The only positive G-equivariant map from C(∂FG) to itself is the
identity map.

3. If M is a minimal G-space, then there is at most one unital
G-equivariant map from C(∂FG) to C(M), and if such a map
exists, then it is a unital injective *-homomorphism.
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Exactness and Nuclear Embeddings



Definition (Kirchberg-Wasserman 1999)
A discrete group G is exact if the reduced C*-algebra C∗

r (G) is exact.



Ozawa proved that a discrete group G is exact if and only the
G-action on its Stone-Cech compactification βG is amenable.

Theorem (Kalantar-K 2014)
Let G be a discrete group. Then G is exact if and only if the G-action
on on the Furstenberg boundary ∂FG is amenable.

Applying a result of Anantharaman-Delaroche gives the following
corollary.

Corollary
If G is a discrete exact group, then the reduced crossed product
C(∂FG)⋊r G is nuclear.
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Note: This is non-separable in general, but can be replaced by a
separable nuclear C*-algebra at the expense of no longer being
canonical.
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C*-Simplicity



Open Problem
Let G be a discrete group. When is G C*-simple, i.e. when is the
reduced group C*-algebra C∗

r (G) simple?

Day showed in 1957 that every discrete group G has a largest
amenable normal subgroup Ra(G) called the amenable radical of G. If
G is C*-simple, then Ra(G) is necessarily trivial.

Conjecture (de la Harpe, ?)
The reduced group C*-algebra C∗

r (G) is simple if and only if the
amenable radical Ra(G) is trivial.



Open Problem
Let G be a discrete group. When is G C*-simple, i.e. when is the
reduced group C*-algebra C∗

r (G) simple?

Day showed in 1957 that every discrete group G has a largest
amenable normal subgroup Ra(G) called the amenable radical of G. If
G is C*-simple, then Ra(G) is necessarily trivial.

Conjecture (de la Harpe, ?)
The reduced group C*-algebra C∗

r (G) is simple if and only if the
amenable radical Ra(G) is trivial.



Open Problem
Let G be a discrete group. When is G C*-simple, i.e. when is the
reduced group C*-algebra C∗

r (G) simple?

Day showed in 1957 that every discrete group G has a largest
amenable normal subgroup Ra(G) called the amenable radical of G. If
G is C*-simple, then Ra(G) is necessarily trivial.

Conjecture (de la Harpe, ?)
The reduced group C*-algebra C∗

r (G) is simple if and only if the
amenable radical Ra(G) is trivial.



Definition
Let G be a discrete group with identity element e. The G-action on a
compact G-space X is topologically free if, for every s ∈ G, the set

X\Xs = {x ∈ X | sx ̸= x}

is dense in X.



The property of the G-action on the Furstenberg boundary ∂FG being
topologically free is an intermediate property between C*-simplicity
and triviality of the amenable radical Ra(G).

Theorem (Kalantar-K 2014)
Let G be a discrete group.
1. If the G-action on ∂FG is topologically free, then Ra(G) is trivial.
2. If G is exact, and the reduced C*-algebra C∗

r (G) is simple, then
the G-action on ∂FG is topologically simple.



The property of the G-action on the Furstenberg boundary ∂FG being
topologically free is an intermediate property between C*-simplicity
and triviality of the amenable radical Ra(G).

Theorem (Kalantar-K 2014)
Let G be a discrete group.
1. If the G-action on ∂FG is topologically free, then Ra(G) is trivial.
2. If G is exact, and the reduced C*-algebra C∗

r (G) is simple, then
the G-action on ∂FG is topologically simple.



..C*
r(G) simple.

Ra(G) trivial

.

C(∂FG) ⋊r G simple

.

G ↷ ∂FG topo-
logically free

Figure: Implications for an arbitrary discrete group G.
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A Tarski monster group is a finitely generated group with the property
that every nontrivial subgroup is cyclic of order p, for some fixed
prime p.

Theorem (Olshanskii 1982)
Tarski monster groups exist for every prime p > 1075.

This answered a question of von Neumann about the existence of
non-amenable groups which do not contain non-abelian free groups.
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It is currently unknown whether Tarski monster groups are C*-simple.

Theorem (Kalantar-K 2014)
If G is a Tarski monster group, then the G-action on the Furstenberg
boundary ∂FG is topologically free.
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Let G be a non-amenable hyperbolic group, and let µ be an irreducible
probability measure on G with finite first moment. Let ν be a
µ-stationary probability measure on the hyperbolic boundary ∂G. If

φ : C(∂G) → L∞(∂G, ν)

is a unital positive G-equivariant map, then φ = id.

We apply Jaworski’s theory of strongly approximately transitive
measures, combined with a uniqueness result of Kaimanovich for
stationary measures.
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Corollary
Let G be as above, and let ∂FG denote the Furstenberg boundary of
G. Then

IG(C(∂G)) = C(∂FG),
where IG(C(∂G)) denotes the G-injective envelope of C(∂G).

The Furstenberg boundary ∂FG can be thought of as a “projective
cover” of the hyperbolic boundary ∂G.
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The operator-algebraic construction of the Furstenberg boundary
generalizes to certain locally compact quantum groups.

Suggests this provides an appropriate quantum-group-theoretic
analogue of the Furstenberg boundary.

Many of our results hold in this setting. We intend to pursue this
further...
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