Boundaries of reduced C*-algebras of discrete groups

Matthew Kennedy (joint work with Mehrdad Kalantar)

Carleton University, Ottawa, Canada

June 23, 2014

Definition

A discrete group G is amenable if there is a left-invariant mean

$$\lambda: \ell^{\infty}(G) \to \mathbb{C},$$

i.e. a unital positive G-invariant linear map.

Definition

A discrete group G is amenable if there is a left-invariant mean

$$\lambda: \ell^{\infty}(G) \to \mathbb{C},$$

i.e. a unital positive *G*-invariant linear map.

In this case, λ is a unital positive *G*-equivariant projection.

Reframed Definition

A discrete group G is amenable if there is a unital positive G-equivariant projection

$$\lambda: \ell^{\infty}(G) \to \mathbb{C}.$$

Reframed Definition

A discrete group G is amenable if there is a unital positive G-equivariant projection

$$\lambda: \ell^{\infty}(G) \to \mathbb{C}.$$

Therefore, G is non-amenable if $\mathbb C$ is "too small" to be the range of a unital positive G-equivariant projection on $\ell^\infty(G)$.

Idea

Consider the minimal C*-subalgebra \mathcal{A}_G of $\ell^\infty(G)$ such that there is a unital positive G-equivariant projection

$$P:\ell^{\infty}(G)\to\mathcal{A}_{G}.$$

Idea

Consider the minimal C*-subalgebra \mathcal{A}_G of $\ell^\infty(G)$ such that there is a unital positive G-equivariant projection

$$P:\ell^{\infty}(G)\to\mathcal{A}_{G}.$$

The size of $\mathcal{A}_{\mathcal{G}}$ should somehow "measure" the non-amenability of \mathcal{G} .

Theorem (Kalantar-K 2014)

There is a unique minimal C^* -algebra \mathcal{A}_G arising as the range of a unital positive G-equivariant projection

$$P:\ell^{\infty}(G)\to\mathcal{A}_{G}$$
.

The algebra A_G is isomorphic to the algebra $C(\partial_F G)$ of continuous functions on the Furstenberg boundary $\partial_F G$ of G.

Kirchberg proved that every exact C*-algebra can be embedded into a

nuclear C*-algebra.

Kirchberg proved that every exact C*-algebra can be embedded into	a

In the separable case, Kirchberg and Phillips proved the nuclear C*-algebra can be taken to be the Cuntz algebra on two generators.

nuclear C*-algebra.

Ozawa conjectured the existence of what he calls a "tight" nuclear embedding.

Conjecture (Ozawa 2007)

Let $\mathcal A$ be an exact C*-algebra. There is a canonical nuclear C*-algebra $\mathcal N(\mathcal A)$ such that

$$\mathcal{A} \subset \mathcal{N}(\mathcal{A}) \subset \mathcal{I}(\mathcal{A}),$$

where I(A) denotes the injective envelope of A.

Ozawa conjectured the existence of what he calls a "tight" nuclear embedding.

Conjecture (Ozawa 2007)

Let \mathcal{A} be an exact C*-algebra. There is a canonical nuclear C*-algebra $\mathcal{N}(\mathcal{A})$ such that

$$A \subset N(A) \subset I(A)$$
,

where I(A) denotes the injective envelope of A.

The algebra $\mathcal{N}(\mathcal{A})$ will inherit many properties from \mathcal{A} , for example simplicity and primality.

Ozawa proved this conjecture for the reduced C*-algebra of the free group \mathbb{F}_n on $n \geq 2$ generators.

Ozawa proved this conjecture for the reduced C*-algebra of the free group \mathbb{F}_n on $n\geq 2$ generators.

Theorem (Ozawa 2007)

Let $\mathrm{C}^*_r(\mathbb{F}_n)$ denote the reduced C*-algebra of \mathbb{F}_n for $n\geq 2$. There is a canonical nuclear C*-algebra $N(\mathrm{C}^*_r(\mathbb{F}_n))$ such that

$$\mathrm{C}^*_r(\mathbb{F}_n)\subset \mathit{N}(\mathrm{C}^*_r(\mathbb{F}_n))\subset \mathit{I}(\mathrm{C}^*_r(\mathbb{F}_n)),$$

where $I(\mathrm{C}^*_r(\mathbb{F}_n))$ denotes the injective envelope of $\mathrm{C}^*_r(\mathbb{F}_n)$.

Ozawa proved this conjecture for the reduced C*-algebra of the free group \mathbb{F}_n on $n\geq 2$ generators.

Theorem (Ozawa 2007)

Let $\mathrm{C}^*_r(\mathbb{F}_n)$ denote the reduced C*-algebra of \mathbb{F}_n for $n\geq 2$. There is a canonical nuclear C*-algebra $N(\mathrm{C}^*_r(\mathbb{F}_n))$ such that

$$\mathrm{C}^*_r(\mathbb{F}_n)\subset \textit{N}(\mathrm{C}^*_r(\mathbb{F}_n))\subset \textit{I}(\mathrm{C}^*_r(\mathbb{F}_n)),$$

where $I(\mathrm{C}^*_r(\mathbb{F}_n))$ denotes the injective envelope of $\mathrm{C}^*_r(\mathbb{F}_n).$

Note that $C_r^*(\mathbb{F}_n)$ is exact since \mathbb{F}_n is an exact group.

Ozawa takes $N(C_r^*(\mathbb{F}_n)) = C(\partial \mathbb{F}_n) \rtimes_r \mathbb{F}_n$, where $\partial \mathbb{F}_n$ denotes the hyperbolic boundary of \mathbb{F}_n .

Ozawa takes $N(C_r^*(\mathbb{F}_n)) = C(\partial \mathbb{F}_n) \rtimes_r \mathbb{F}_n$, where $\partial \mathbb{F}_n$ denotes the hyperbolic boundary of \mathbb{F}_n .

Key Proposition (Ozawa 2007)

Let μ be a quasi-invariant doubly ergodic measure on ∂G . If

$$\varphi: \mathcal{C}(\partial \mathbb{F}_n) \to L^{\infty}(\partial \mathcal{G}, \mu)$$

is a unital positive \mathbb{F}_n -equivariant map, then $\varphi=\operatorname{id}$.

Equivariant Injective Envelopes

An operator system is a unital self-adjoint subspace of a C*-algebra.

An <i>operator system</i> is a unital self-adjoint subspace of a C*-algebra.	

A *G-operator system* is an operator system equipped with the action of a group G, i.e. a unital homomorphism from G into the group of

order isomorphisms on \mathcal{S} .

Let $\mathcal C$ be a category consisting of objects and morphisms. An object I is *injective* in $\mathcal C$ if, for every pair of objects $E \subset F$ and and every morphism $\varphi : E \to I$, there is an extension $\tilde \varphi : F \to I$.

Let $\mathcal C$ be a category consisting of objects and morphisms. An object I is *injective* in $\mathcal C$ if, for every pair of objects $E \subset F$ and and every morphism $\varphi: E \to I$, there is an extension $\tilde \varphi: F \to I$.

When the objects are operator systems and the morphisms are unital completely positive maps, we get *injectivity*.

Let $\mathcal C$ be a category consisting of objects and morphisms. An object I is *injective* in $\mathcal C$ if, for every pair of objects $\mathit{E} \subset \mathit{F}$ and and every morphism $\varphi: \mathit{E} \to \mathit{I}$, there is an extension $\tilde \varphi: \mathit{F} \to \mathit{I}$.

When the objects are operator systems and the morphisms are unital completely positive maps, we get *injectivity*.

When the objects are G-operator systems and the morphisms are G-equivariant unital completely positive maps, we get G-injectivity.

The *injective envelope* of an operator system ${\mathcal S}$ is the minimal

injective operator system containing S.

The *injective envelope* of an operator system ${\cal S}$ is the minimal

G-injective operator system containing S.

injective operator system containing \mathcal{S} .

The G-injective envelope of a G-operator system ${\mathcal S}$ is the minimal

Theorem (Hamana 1985)

If S is a G-operator system, then S has a unique G-injective envelope $I_G(S)$. Every unital completely isometric G-equivariant embedding

$$\varphi: \mathcal{S} \to \mathcal{T},$$

extends to a unital completely isometric G-equivariant embedding

$$\tilde{\varphi}: I_{G}(\mathcal{S}) \to \mathcal{T}.$$

Theorem (Hamana 1985)

If S is a G-operator system, then S has a unique G-injective envelope $I_G(S)$. Every unital completely isometric G-equivariant embedding

$$\varphi: \mathcal{S} \to \mathcal{T}$$
,

extends to a unital completely isometric G-equivariant embedding

$$\tilde{\varphi}: I_{G}(\mathcal{S}) \to \mathcal{T}.$$

Since there is a unital completely isometric G-equivariant embedding of $\mathcal S$ into $\ell^\infty(\mathcal G,\mathcal S)$ there are unital completely isometric G-equivariant embeddings

$$\mathcal{S} \subset I_{\mathcal{G}}(\mathcal{S}) \subset \ell^{\infty}(\mathcal{G},\mathcal{S}).$$

Upshot

If ${\cal S}$ is an operator system equipped with a ${\it G}$ -action, then there are unital completely isometric ${\it G}$ -equivariant embeddings

$$\mathcal{S} \subset I_{\mathcal{G}}(\mathcal{S}) \subset \ell^{\infty}(\mathcal{G},\mathcal{S}),$$

and a unital positive G-equivariant projection $P:\ell^\infty(G,\mathcal{S}) o I_G(\mathcal{S}).$

Upshot

If ${\cal S}$ is an operator system equipped with a ${\it G}$ -action, then there are unital completely isometric ${\it G}$ -equivariant embeddings

$$\mathcal{S} \subset I_{\mathcal{G}}(\mathcal{S}) \subset \ell^{\infty}(\mathcal{G}, \mathcal{S}),$$

and a unital positive G-equivariant projection $P:\ell^\infty(G,\mathcal{S}) o I_G(\mathcal{S}).$

The *G*-injective envelope $I_G(S)$ has a natural C*-algebra structure (induced by the Choi-Effros product).

Corollary

Let G be a discrete group acting trivially on $\mathbb C$ and let $I_G(\mathbb C)$ denote the G-injective envelope of $\mathbb C$. Then

$$\mathbb{C}\subset I_{\textit{G}}(\mathbb{C})\subset \ell^{\infty}(\textit{G}),$$

and there is a unital positive G-equivariant projection

$$P:\ell^{\infty}(G)\to I_G(\mathbb{C}).$$

Corollary

Let G be a discrete group acting trivially on $\mathbb C$ and let $I_G(\mathbb C)$ denote the G-injective envelope of $\mathbb C$. Then

$$\mathbb{C} \subset I_{G}(\mathbb{C}) \subset \ell^{\infty}(G),$$

and there is a unital positive G-equivariant projection

$$P: \ell^{\infty}(G) \to I_G(\mathbb{C}).$$

The *G*-injective envelope $I_G(\mathbb{C})$ is a commutative C*-algebra equipped with a *G*-action, so there is a compact *G*-space space $\partial_H G$ such that $I_G(\mathbb{C}) \simeq C(\partial_H G)$.

We call $\partial_H G$ the Hamana boundary of G.

The Furstenberg Boundary

Definition

Let X be a compact G-space.

1. The G-action on X is minimal if the G-orbit

$$Gx = \{sx \mid s \in G\}$$

is dense in X for every $x \in X$.

Definition

Let X be a compact G-space.

1. The G-action on X is minimal if the G-orbit

$$Gx = \{sx \mid s \in G\}$$

is dense in X for every $x \in X$.

2. The *G*-action on *X* is *strongly proximal* if, for every probability measure ν on *X*, the weak*-closure of the *G*-orbit

$$\mathit{G}\nu = \{\mathit{s}\nu \mid \mathit{s} \in \mathit{G}\}$$

contains a point mass δ_x for some $x \in X$.

Definition (Furstenberg 1972)

A compact G-space X is a boundary if it is minimal and strongly proximal.

Definition (Furstenberg 1972)

A compact G-space X is a *boundary* if it is minimal and strongly proximal.

Key Property

If X is a boundary, then for every probability measure ν on X, the weak*-closure of the G-orbit $G\nu$ contains all of X.

Here $x \in X$ is identified with the point mass δ_x on X.

The Hamana boundary $\partial_H G$ is a boundary in the sense of Furstenberg.

Theorem (Furstenberg 1972)

Every group G has a unique boundary $\partial_F G$ that is universal, in the sense that every boundary of G is a continuous G-equivariant image of $\partial_F G$.

Theorem (Furstenberg 1972)

Every group G has a unique boundary $\partial_F G$ that is universal, in the sense that every boundary of G is a continuous G-equivariant image of $\partial_F G$.

We refer to $\partial_F G$ as the Furstenberg boundary of G.

Theorem (Furstenberg 1972)

Every group G has a unique boundary $\partial_F G$ that is universal, in the sense that every boundary of G is a continuous G-equivariant image of $\partial_F G$.

We refer to $\partial_F G$ as the Furstenberg boundary of G.

Theorem (Kalantar-K 2014)

For a discrete group G, the Hamana boundary $\partial_H G$ can be identified with the Furstenberg boundary $\partial_F G$.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C^* -algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C^* -algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

1. Every unital positive G-equivariant map from $C(\partial_F G)$ is completely isometric.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C^* -algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

- 1. Every unital positive G-equivariant map from $C(\partial_F G)$ is completely isometric.
- 2. The only positive G-equivariant map from $C(\partial_F G)$ to itself is the identity map.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let $\partial_F G$ denote the Furstenberg boundary of G. Then the C^* -algebra $C(\partial_F G)$ is G-injective. Moreover, we have the following rigidity results:

- 1. Every unital positive G-equivariant map from $C(\partial_F G)$ is completely isometric.
- 2. The only positive G-equivariant map from $C(\partial_F G)$ to itself is the identity map.
- 3. If M is a minimal G-space, then there is at most one unital G-equivariant map from $C(\partial_F G)$ to C(M), and if such a map exists, then it is a unital injective *-homomorphism.

Exactness and Nuclear Embeddings

Definition (Kirchberg-Wasserman 1999)

A discrete group G is exact if the reduced C*-algebra $C_r^*(G)$ is exact.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action on on the Furstenberg boundary $\partial_F G$ is amenable.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action on on the Furstenberg boundary $\partial_F G$ is amenable.

Applying a result of Anantharaman-Delaroche gives the following corollary.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action on on the Furstenberg boundary $\partial_F G$ is amenable.

Applying a result of Anantharaman-Delaroche gives the following corollary.

Corollary

If G is a discrete exact group, then the reduced crossed product $C(\partial_F G) \rtimes_r G$ is nuclear.

Let G be a discrete exact group. Then there is a canonical nuclear C^* -algebra $N(C^*_r(G))$ such that

$$\mathrm{C}_r^*(\mathit{G}) \subset \mathit{N}(\mathrm{C}_r^*(\mathit{G})) \subset \mathit{I}(\mathrm{C}_r^*(\mathit{G})),$$

where $I(\mathrm{C}^*_r(\mathit{G}))$ denotes the injective envelope of $\mathrm{C}^*_r(\mathit{G}).$

Let G be a discrete exact group. Then there is a canonical nuclear C^* -algebra $N(\mathbb{C}^*_r(G))$ such that

$$\mathrm{C}^*_r(\mathit{G}) \subset \mathit{N}(\mathrm{C}^*_r(\mathit{G})) \subset \mathit{I}(\mathrm{C}^*_r(\mathit{G})),$$

where $I(\mathrm{C}^*_r(\mathit{G}))$ denotes the injective envelope of $\mathrm{C}^*_r(\mathit{G}).$

We take

$$N(C_r^*(G)) = C(\partial_F G) \rtimes_r G.$$

Let G be a discrete exact group. Then there is a canonical nuclear C^* -algebra $N(C^*_*(G))$ such that

$$\mathrm{C}^*_r(\mathit{G}) \subset \mathit{N}(\mathrm{C}^*_r(\mathit{G})) \subset \mathit{I}(\mathrm{C}^*_r(\mathit{G})),$$

where $I(C_r^*(G))$ denotes the injective envelope of $C_r^*(G)$.

We take

$$N(C_r^*(G)) = C(\partial_F G) \rtimes_r G.$$

Note: This is non-separable in general, but can be replaced by a separable nuclear C*-algebra at the expense of no longer being canonical.

C*-Simplicity

Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the reduced group C*-algebra $C_r^*(G)$ simple?

Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the reduced group C*-algebra $C_r^*(G)$ simple?

Day showed in 1957 that every discrete group G has a largest amenable normal subgroup $R_a(G)$ called the *amenable radical of G*. If G is C*-simple, then $R_a(G)$ is necessarily trivial.

Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the reduced group C*-algebra $C_r^*(G)$ simple?

Day showed in 1957 that every discrete group G has a largest amenable normal subgroup $R_a(G)$ called the *amenable radical of G*. If G is C*-simple, then $R_a(G)$ is necessarily trivial.

Conjecture (de la Harpe, ?)

The reduced group C*-algebra $C_r^*(G)$ is simple if and only if the amenable radical $R_a(G)$ is trivial.

Definition

Let G be a discrete group with identity element e. The G-action on a compact G-space X is topologically free if, for every $s \in G$, the set

$$X \backslash X^s = \{x \in X \mid sx \neq x\}$$

is dense in X.

The property of the G-action on the Furstenberg boundary $\partial_F G$ being

topologically free is an intermediate property between C*-simplicity

and triviality of the amenable radical $R_a(G)$.

The property of the G-action on the Furstenberg boundary $\partial_F G$ being topologically free is an intermediate property between C*-simplicity and triviality of the amenable radical $R_a(G)$.

Theorem (Kalantar-K 2014)

Let G be a discrete group.

- 1. If the G-action on $\partial_F G$ is topologically free, then $R_a(G)$ is trivial.
 - 2. If G is exact, and the reduced C*-algebra $\mathrm{C}^*_r(G)$ is simple, then the G-action on $\partial_F G$ is topologically simple.

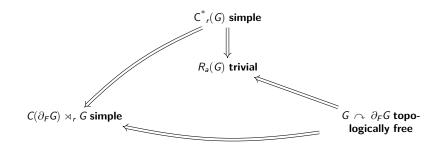


Figure: Implications for an arbitrary discrete group *G*.

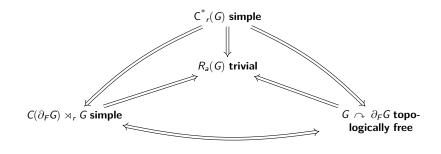


Figure: Implications for a discrete exact group G.

A Tarski monster group is a finitely generated group with the property that every nontrivial subgroup is cyclic of order p, for some fixed

A Tarski monster group is a finitely generated group with the property that every nontrivial subgroup is cyclic of order p, for some fixed prime p.

Theorem (Olshanskii 1982)

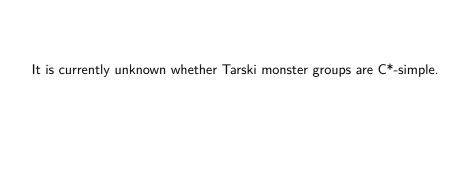
Tarski monster groups exist for every prime $p > 10^{75}$.

A Tarski monster group is a finitely generated group with the property that every nontrivial subgroup is cyclic of order p, for some fixed prime p.

Theorem (Olshanskii 1982)

Tarski monster groups exist for every prime $p > 10^{75}$.

This answered a question of von Neumann about the existence of non-amenable groups which do not contain non-abelian free groups.



It is currently unknown whether Tarski monster groups are C^* -simple.

Theorem (Kalantar-K 2014)

If G is a Tarski monster group, then the G-action on the Furstenberg boundary $\partial_F G$ is topologically free.

Rigidity of Maps

Let G be a non-amenable hyperbolic group, and let μ be an irreducible probability measure on G with finite first moment. Let ν be a μ -stationary probability measure on the hyperbolic boundary ∂G . If

$$\varphi: \mathcal{C}(\partial \mathcal{G}) \to \mathcal{L}^{\infty}(\partial \mathcal{G}, \nu)$$

is a unital positive G-equivariant map, then $\varphi=\operatorname{id}$.

Let G be a non-amenable hyperbolic group, and let μ be an irreducible probability measure on G with finite first moment. Let ν be a μ -stationary probability measure on the hyperbolic boundary ∂G . If

$$\varphi: C(\partial G) \to L^{\infty}(\partial G, \nu)$$

is a unital positive G-equivariant map, then $\varphi = id$.

We apply Jaworski's theory of strongly approximately transitive measures, combined with a uniqueness result of Kaimanovich for stationary measures.

Corollary

Let G be as above, and let $\partial_F G$ denote the Furstenberg boundary of G. Then

$$I_G(C(\partial G)) = C(\partial_F G),$$

where $I_G(\mathit{C}(\partial \mathit{G}))$ denotes the G-injective envelope of $\mathit{C}(\partial \mathit{G}).$

Corollary

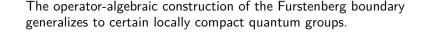
Let G be as above, and let $\partial_F G$ denote the Furstenberg boundary of G. Then

$$I_G(C(\partial G)) = C(\partial_F G),$$

where $I_G(\mathit{C}(\partial \mathit{G}))$ denotes the G-injective envelope of $\mathit{C}(\partial \mathit{G})$.

The Furstenberg boundary $\partial_F G$ can be thought of as a "projective cover" of the hyperbolic boundary ∂G .

The operator-algebraic construction of the Furstenberg boundary generalizes to certain locally compact quantum groups.



Suggests this provides an appropriate quantum-group-theoretic

analogue of the Furstenberg boundary.

The operator-algebraic construction of the Furstenberg boundary generalizes to certain locally compact quantum groups.

Suggests this provides an appropriate quantum-group-theoretic analogue of the Furstenberg boundary.

Many of our results hold in this setting. We intend to pursue this further...

