Ilijas Farah

York University

COSy, June 2014

(all uncredited results are due to some subset of {I.F., B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Toms, W. Winter}.)

My aim is to demonstrate that a little bit of logic (model theory, to be precise) can give a fresh perspective on some aspects of operator algebras.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

My aim is to demonstrate that a little bit of logic (model theory, to be precise) can give a fresh perspective on some aspects of operator algebras.

All algebras are unital, and most of them are C*-algebras. (Most of what I will say applies to II_1 factors as well.)

My aim is to demonstrate that a little bit of logic (model theory, to be precise) can give a fresh perspective on some aspects of operator algebras.

All algebras are unital, and most of them are C*-algebras. (Most of what I will say applies to II_1 factors as well.)

Notation

A: a separable C*-algebra or (in most of the results) a II_1 factor with a separable predual.

 $\mathcal{U}:$ a nonprincipal ultrafilter on $\mathbb{N}.$

 $A^{\mathcal{U}}$ is the ultrapower of A,

 $\ell_\infty(A)/c_U(A)$

where

$$c_{\mathcal{U}}(A) = \{ a \in \ell_{\infty}(A) : \lim_{n \to \mathcal{U}} ||a_n|| = 0 \}.$$
$$\bigoplus_{\mathbb{N}} (A) = \{ a \in \ell_{\infty}(A) : \lim_{n \to \infty} ||a_n|| = 0 \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $A^{\mathcal{U}}$ is the ultrapower of A,

 $\ell_\infty(A)/q_\mathcal{U}(A)$

where

$$c_{\mathcal{U}}(A) = \{ a \in \ell_{\infty}(A) : \lim_{n \to \mathcal{U}} ||a_n|| = 0 \}.$$
$$\bigoplus_{\mathbb{N}} (A) = \{ a \in \ell_{\infty}(A) : \lim_{n \to \infty} ||a_n|| = 0 \}.$$

Via the diagonal embedding, we identify A with a subalgebra of $A^{\mathcal{U}}$ or a subalgebra of $\ell_{\infty}(A)/\bigoplus_{\mathbb{N}}(A)$.

 $A^{\mathcal{U}}$ is the ultrapower of A,

 $\ell_\infty(A)/c_\mathcal{U}(A)$

where

$$c_{\mathcal{U}}(A) = \{ a \in \ell_{\infty}(A) : \lim_{n \to \mathcal{U}} ||a_n|| = 0 \}.$$
$$\bigoplus_{\mathbb{N}} (A) = \{ a \in \ell_{\infty}(A) : \lim_{n \to \infty} ||a_n|| = 0 \}.$$

Via the diagonal embedding, we identify A with a subalgebra of $A^{\mathcal{U}}$ or a subalgebra of $\ell_{\infty}(A)/\bigoplus_{\mathbb{N}}(A)$.

Ultrapowers are well-studied in logic and all of their important properties follow from two basic principles. Only one of them (countable saturation) is shared by $\ell_{\infty}(A)/\bigoplus_{\mathbb{N}}(A)$.

The relative commutant is

$$\mathcal{A}' \cap \mathcal{A}^{\mathcal{U}} = \{b : ab = ba \text{ for all } a \in \mathcal{A}\}.$$

This is isomorphic to

$$F(A) = A' \cap A^{\mathcal{U}} / Ann(A, A^{\mathcal{U}})$$

when A is unital.

The relative commutant is

$$A' \cap A^{\mathcal{U}} = \{b : ab = ba \text{ for all } a \in A\}.$$

This is isomorphic to

$$F(A) = A' \cap A^{\mathcal{U}} / Ann(A, A^{\mathcal{U}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

when A is unital.

There is no known abstract analogue of relative commutant in model theory in general.

An algebra *C* is *countably quantifier-free saturated* if for every sequence of *-polynomials $p_n(x_1, \ldots, x_n)$ with coefficients in *C* and $r_n \in [0, 1]$ the system

$$\|p_n(a_1,\ldots,a_n)\|=r_n$$

has a solution in C whenever every finite subset has an approximate solution in C.

An algebra *C* is *countably quantifier-free saturated* if for every sequence of *-polynomials $p_n(x_1, \ldots, x_n)$ with coefficients in *C* and $r_n \in [0, 1]$ the system

$$\|p_n(a_1,\ldots,a_n)\|=r_n$$

has a solution in C whenever every finite subset has an approximate solution in C.

Proposition

Ultraproducts, asymptotic sequence algebras, as well as relative commutants of their separable subalgebras, are countably quantifier-free saturated.

An algebra *C* is *countably quantifier-free saturated* if for every sequence of *-polynomials $p_n(x_1, \ldots, x_n)$ with coefficients in *C* and $r_n \in [0, 1]$ the system

 $\|p_n(a_1,\ldots,a_n)\|=r_n$

has a solution in C whenever every finite subset has an approximate solution in C.

Proposition

Ultraproducts, asymptotic sequence algebras, as well as relative commutants of their separable subalgebras, are countably quantifier-free saturated.

Coronas of σ -unital algebras are countably degree-1 saturated.

An algebra *C* is *countably quantifier-free saturated* if for every sequence of *-polynomials $p_n(x_1, \ldots, x_n)$ with coefficients in *C* and $r_n \in [0, 1]$ the system

 $\|p_n(a_1,\ldots,a_n)\|=r_n$

has a solution in C whenever every finite subset has an approximate solution in C.

Proposition

Ultraproducts, asymptotic sequence algebras, as well as relative commutants of their separable subalgebras, are countably quantifier-free saturated.

Coronas of σ -unital algebras are countably degree-1 saturated.

Applications of saturation

Proposition (Choi–F.–Ozawa, 2013)

Assume A is countably degree-1 saturated and Γ is a countable amenable group. Then every uniformly bounded representation $\Phi \colon \Gamma \to GL(A)$ is unitarizable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Discontinuous functional calculus

Proposition

Assume C is countably degree-1 saturated,

- 1. $a \in C$ is normal,
- 2. $B \subseteq \{a\}' \cap C$ is separable,
- 3. $U \subseteq sp(a)$ is open, and
- 4. g: $U \to \mathbb{C}$ is bounded and continuous.

Then there exists $c \in C^*(B, a)' \cap C$ such that for every $f \in C_0(U \cap sp(a))$ one has

$$cf(a) = (gf)(a).$$

Discontinuous functional calculus

Proposition

Assume C is countably degree-1 saturated,

1.
$$a \in C$$
 is normal,

2. $B \subseteq \{a\}' \cap C$ is separable,

3. $U \subseteq sp(a)$ is open, and

4. g: $U \to \mathbb{C}$ is bounded and continuous.

Then there exists $c \in C^*(B, a)' \cap C$ such that for every $f \in C_0(U \cap \operatorname{sp}(a))$ one has

$$cf(a) = (gf)(a).$$

Brown–Douglas–Fillmore' Second Splitting Lemma is the special case when C = B(H)/K(H), sp(a) = [0, 1], and g(x) = 0 if x < 1/2 and g(x) = 1 if x > 1/2.

Strongly self-absorbing (s.s.a.) C*-algebras

Definition (Toms-Winter)

A separable algebra A is s.s.a. if

1. $A \cong A \otimes A$,

2. The isomorphism between A and $A \otimes A$ is approximately unitarily equivalent with the map $a \mapsto a \otimes 1_A$.

Strongly self-absorbing (s.s.a.) C*-algebras

Definition (Toms-Winter)

A separable algebra A is s.s.a. if

1. $A \cong A \otimes A$,

2. The isomorphism between A and $A \otimes A$ is approximately unitarily equivalent with the map $a \mapsto a \otimes 1_A$.

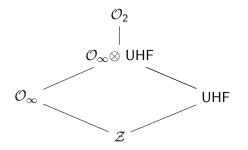
Lemma

Assume A is s.s.a.

- 1. (Connes) If A is a II_1 factor, then $A \cong R$.
- 2. $A \cong \bigotimes_{\aleph_0} A$.
- 3. (Effros–Rosenberg, 1978) If A is a C*-algebra, then A is simple and nuclear.

All known s.s.a. C*-algebras

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



Proposition (McDuff, Toms-Winter)

Assume D is s.s.a.. Then for a separable A the following are equivalent.

(i) $A \otimes D \cong A$.

(ii) There is a unital *-homomorphism from D into $A' \cap A^{\mathcal{U}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition (McDuff, Toms-Winter)

Assume D is s.s.a.. Then for a separable A the following are equivalent.

(i) $A \otimes D \cong A$.

(ii) There is a unital *-homomorphism from D into $A' \cap A^{\mathcal{U}}$.

Morally, (i) and (ii) are equivalent to (iii) $A^{\mathcal{U}} \otimes D \cong A^{\mathcal{U}}$ Proposition (McDuff, Toms-Winter)

Assume D is s.s.a.. Then for a separable A the following are equivalent.

(i)
$$A \otimes D \cong A$$
.

(ii) There is a unital *-homomorphism from D into $A' \cap A^{\mathcal{U}}$.

Morally, (i) and (ii) are equivalent to (iii) $A^{\mathcal{U}} \otimes D \cong A^{\mathcal{U}}$

Theorem (Ghasemi, 2013)

Every countably degree-1 saturated algebra is tensorially prime. In particular, Calkin algebra is tensorially prime and $A^{U} \otimes D \ncong A^{U}$ for any infinite-dimensional A and U.

Question (McDuff 1970, Kirchberg, 2004) Assume A is separable. Does $A' \cap A^{\mathcal{U}}$ depend on \mathcal{U} ? Question (McDuff 1970, Kirchberg, 2004) Assume A is separable. Does $A' \cap A^{\mathcal{U}}$ depend on \mathcal{U} ?

Proposition

If A is a commutative tracial von Neumann algebra, then $A^{\mathcal{U}} \cong A^{\mathcal{V}}$ for all nonprincipal ultrafilters \mathcal{U}, \mathcal{V} on \mathbb{N} .

Proof.

By Maharam's theorem, $A^{\mathcal{U}} \cong L_{\infty}(2^{2^{\aleph_0}}, \text{ Haar measure}).$

Theorem (Ge-Hadwin, F., F.-Hart-Sherman, F.-Shelah)

Assume A is a separable C^* -algebra or a II₁-factor with a separable predual.

If Continuum Hypothesis (CH) holds then $A^{\mathcal{U}} \cong A^{\mathcal{V}}$ and $A' \cap A^{\mathcal{U}} \cong A' \cap A^{\mathcal{V}}$ for all nonprincipal ultrafilters \mathcal{U}, \mathcal{V} on \mathbb{N} .

Theorem (Ge-Hadwin, F., F.-Hart-Sherman, F.-Shelah)

Assume A is a separable C^* -algebra or a II₁-factor with a separable predual.

If Continuum Hypothesis (CH) holds then $A^{\mathcal{U}} \cong A^{\mathcal{V}}$ and $A' \cap A^{\mathcal{U}} \cong A' \cap A^{\mathcal{V}}$ for all nonprincipal ultrafilters \mathcal{U}, \mathcal{V} on \mathbb{N} . If CH fails and A is infinite-dimensional, then

- 1. there are $2^{2^{\aleph_0}}$ nonisomorphic ultrapowers of A and
- 2. there are $2^{2^{\aleph_0}}$ nonisomorphic relative commutants of A.

CH is a red herring

Two C*-algebras C_1 and C_2 have the *countable back-and-forth* property if there exists a family \mathcal{F} with the following properties.

- 1. Each $f \in \mathcal{F}$ is a *-isomorphism from a separable subalgebra of C_1 into C_2 .
- 2. If $\{f_n : n \in \mathbb{N}\}$ is a \subseteq -increasing chain in \mathcal{F} then $\bigcup_n f_n \in \mathcal{F}$.
- 3. If $f \in \mathcal{F}$, $a \in C_1$ and $b \in C_2$ then there is $g \in \mathcal{F}$ such that $g \supseteq f$, $a \in dom(g)$ and $b \in range(g)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CH is a red herring

Two C*-algebras C_1 and C_2 have the *countable back-and-forth* property if there exists a family \mathcal{F} with the following properties.

- 1. Each $f \in \mathcal{F}$ is a *-isomorphism from a separable subalgebra of C_1 into C_2 .
- 2. If $\{f_n : n \in \mathbb{N}\}$ is a \subseteq -increasing chain in \mathcal{F} then $\bigcup_n f_n \in \mathcal{F}$.
- 3. If $f \in \mathcal{F}$, $a \in C_1$ and $b \in C_2$ then there is $g \in \mathcal{F}$ such that $g \supseteq f$, $a \in dom(g)$ and $b \in range(g)$.

Lemma

Assume C_1 and C_2 have the countable back-and-forth property and each one has a dense subset of cardinality \aleph_1 . Then they are isomorphic.

CH is a red herring

Two C*-algebras C_1 and C_2 have the *countable back-and-forth* property if there exists a family \mathcal{F} with the following properties.

- 1. Each $f \in \mathcal{F}$ is a *-isomorphism from a separable subalgebra of C_1 into C_2 .
- 2. If $\{f_n : n \in \mathbb{N}\}$ is a \subseteq -increasing chain in \mathcal{F} then $\bigcup_n f_n \in \mathcal{F}$.
- 3. If $f \in \mathcal{F}$, $a \in C_1$ and $b \in C_2$ then there is $g \in \mathcal{F}$ such that $g \supseteq f$, $a \in dom(g)$ and $b \in range(g)$.

Lemma

Assume C_1 and C_2 have the countable back-and-forth property and each one has a dense subset of cardinality \aleph_1 .

Then they are isomorphic.

 $CH \Leftrightarrow A^{\mathcal{U}}, A' \cap A^{\mathcal{U}}$ has a dense subset of cardinality \aleph_1 for all separable A.

One of my favourite open problems

Let s denote the image of the unilateral shift in the Calkin algebra B(H)/K(H).

One of my favourite open problems

Let s denote the image of the unilateral shift in the Calkin algebra B(H)/K(H).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Question (Brown–Douglas–Fillmore)
- Is there an automorphism of B(H)/K(H) that sends s to s^{*}?

Theorem (F., 2007)

There is a model of ZFC in which all automorphisms of B(H)/K(H) are inner, in particular no automorphism sends s to s^{*}.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (F., 2007)

There is a model of ZFC in which all automorphisms of B(H)/K(H) are inner, in particular no automorphism sends s to s^{*}.

Question

Is there a countable back-and-forth property \mathcal{F} for B(H)/K(H), B(H)/K(H) such that $f(s) = s^*$ for all $f \in \mathcal{F}$?

Theorem (F., 2007)

There is a model of ZFC in which all automorphisms of B(H)/K(H) are inner, in particular no automorphism sends s to s^{*}.

Question

Is there a countable back-and-forth property \mathcal{F} for B(H)/K(H), B(H)/K(H) such that $f(s) = s^*$ for all $f \in \mathcal{F}$?

The answer to this question is unlikely to be independent from ZFC.

Under CH, a positive answer is equivalent to the positive answer to the BDF question.

Theorem Assume Continuum Hypothesis. Let D be s.s.a.. Then $D' \cap D^{\mathcal{U}} \cong D^{\mathcal{U}}$

and

$$D'\cap \ell_\infty(D)/igoplus_{\mathbb N}(D)\cong \ell_\infty(D)/igoplus_{\mathbb N}(D).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Assume C is countably saturated, D is s.s.a., and that there is a unital *-homomorphism from D into $X' \cap C$ for every separable X. Then

- 1. Any two unital *-homomorphisms of D into C are unitarily conjugate.
- 2. Algebras C and $D' \cap C$ have the countable back-and-forth property.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Assume D is \mathcal{O}_2 or UHF and that CH holds. Then there is a unital *-homomorphism

$$\Phi\colon \bigotimes_{\aleph_1} D \to D^{\mathcal{U}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

such that the relative commutant of its range is trivial.

Concluding remarks

Theorem (F.-Shelah, 2014)

The corona of C([0,1)) is countably saturated, but the corona of C(Y) for some one-dimensional, locally compact subset of \mathbb{R}^2 is not.

Concluding remarks

Theorem (F.-Shelah, 2014)

The corona of C([0,1)) is countably saturated, but the corona of C(Y) for some one-dimensional, locally compact subset of \mathbb{R}^2 is not.

Question

Is the corona of $C(\mathbb{R}^n)$ countably saturated for $n \ge 2$?

For more information see CJ Eagle, A Vignati, arXiv:1406.4875, 2014.