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Hasse principle for number fields

Let k be a number field.

Ωk = the set of places of k .

For v ∈ Ωk , kv denotes the completion of k at v .

Theorem (Hasse–Minkowski)
A quadratic form q over k is isotropic if it is isotropic over kv for
all v ∈ Ωk .

One has more general local-global principles for homogeneous
spaces under connected linear algebraic groups.



Hasse principle for number fields

Theorem (Harder)
Let X be a projective homogeneous space under a connected
linear algebraic group defined over a number field. If
X (kv ) 6= ∅ ∀v ∈ Ωk , X (k) 6= ∅.

Theorem (Kneser, Harder, Chernousov)
Let G be a semisimple simply-connected linear algebraic group
defined over a number field k. Let X be a principal
homogeneous space under G. If X (kv ) 6= ∅ for all real places v
of k, X (k) 6= ∅.

Theorem (Kneser)
If v is a finite place of k, X (kv ) 6= ∅.



Function fields over number fields

One could look for a local-global principle for the existence of
rational points for homogeneous spaces under connected linear
algebraic groups defined over function fields.

An obstruction to the Hasse principle for the existence of zeros
of quadratic forms crops up already over k(t) where k is a
number field.



Function fields over number fields

Example (Riechardt and Lind (1942))
There exists a pair of quadratic forms q1,q2 over Q of
dimension 4 such that the intersection X of the quadrics
associated to q1 and q2 in P3 is smooth and has a local point
over Qv for every v ∈ ΩQ, but X (Q) is empty.

Theorem (Amer-Brumer)
Let q1 and q2 be two quadratic forms of dimension n over a field
M. Then q1 + tq2 has a non-trivial zero over M(t) if and only if
q1 and q2 have a common non-trivial zero over M.

In particular, q1 + tq2 has a non-trivial zero over Qv (t) for every
v ∈ ΩQ but has no non-trivial zero over Q(t).



Function fields over number fields

Let f (t) = disc(q1 + tq2).

E : y2 = f (t).

E is an elliptic curve over Q and (q1 + tq2)Q(E) is similar to a
quaternion norm associated to an element ζ ∈ Br(Q(E)).

Further q1 + tq2 is hyperbolic over Qv (E) for all v ∈ ΩQ, but
anisotropic over Q(E).

Even more:

q1 + tq2 over Q(E) is hyperbolic over Q(E)w for every discrete
valuation w of Q(E).



Function fields over number fields

The element ζ belongs to X(Br(E)) which in turn is associated
to an element in 2X(E).

For any smooth projective curve X over a number field k , let J
denote the Jacobian of X .

Let X(J) = ker(H1(k , J)→
∏

v H1(kv , J)).



Hasse kernel for the Witt group

Theorem (Parimala-Sujatha)
Let k be a number field and X a smooth projective curve over k
with a rational point. Then the kernel of the natural map

W (k(X ))→
∏

v∈Ωk

W (kv (X ))

is isomorphic to 2X(J), where J denotes the Jacobian of the
curve X.

In fact elements in 2X(J) give rise to quadratic forms over
k(X ) which are hyperbolic over k(X )w for every discrete
valuation w of k(X ).



An example

Let E be the elliptic curve over Q defined by the affine equation

y2 = x3 + 17x

Let F = Q(E)

Let q = 〈1,2,−x ,−2x〉

Then q is anisotropic over F but hyperbolic over every
completion Fv of F at its discrete valuations.



Unramified Brauer group

Key observation

Let k be a number field and O the ring of integers in k

Let X be a smooth projective curve over k .

Let X → O be a regular proper model for X .

Then Br(X ) 6= 0 in general.



Unramified Brauer group

This phenomenon of nontrivial unramified Brauer group does
not occur for the following classes of fields over which one
could look for Hasse principle results.



Type I fields

Type I
Let K be a complete discrete valued field with residue field κ
algebraically closed or a finite field. Let X be a smooth
projective curve over K and F = K (X ).

Let O be the valuation ring of K

Let X → O be a regular proper model of X .

Then Br(X ) = 0 (Grothendieck).



Type II fields

Type II
Let A be a 2-dimensional henselian local domain with residue
field κ algebraically closed or a finite field. Let F be the field of
fractions of A.

Let X → A be a regular proper desingularisation of A.

nBr(X ) = 0 for (n, charκ) = 1.

For fields of type I and II, there are a host of conjectures and
theorems concerning Hasse principle for homogeneous spaces
under connected linear algebraic groups.



Type II fields

We look at type II fields with residue fields algebraically closed
of characteristic 0.

Let A be a 2-dimensional henselian local domain with residue
field κ algebraically closed of characteristic 0. Let F be the field
of fractions of A.

Theorem (Artin)
cd(F ) ≤ 2.



Type II fields

Theorem (Colliot-Thélène–Ojanguren–Parimala)
The field F has the following properties:

1 Hasse principle holds for quadratic forms of dimension at
least 3 over F with respect to ΩF .

2 Every 5-dimensional quadratic form over F is isotropic.
3 Index is equal to exponent for finite-dimensional central

simple algebras over F ; further, division algebras over F
are cyclic.

4 cd(F ab) ≤ 1.



Type II fields

These theorems lead to the following Hasse-Principle results.

Theorem (Colliot-Thélène–Gille–Parimala)
Hasse principle holds for projective homogeneous spaces
under connected linear algebraic groups over F , with respect to
ΩF .

(analogue of Harder’s theorem for number fields)

Theorem (Colliot-Thélène–Ojanguren–Parimala)
Every principal homogeneous space under a semisimple
simply-connected linear algebraic group over F has a rational
point.

(i.e. Serre’s Conjecture II holds for F .)



Type II fields
Let F be the field of fractions of a 2-dimensional henselian local
domain with residue field κ finite. We have the following

Theorem (Hu)

1 Every rank nine quadratic form over F is isotropic
(char(κ) 6= 2).

2 Every 5-dimensional quadratic form over F satisfies Hasse
principle with respect to ΩF

3 Locally cyclic algebras of prime exponent ` are cyclic
(char(κ) 6= `).

Theorem (Hu, Preeti)
The Hasse principle holds for principal homogeneous spaces
under certain classes of classical simple simply connected
groups defined over F .



Function fields of p-adic curves
We discuss some conjectures proposed by
Colliot-Thélène–Parimala–Suresh concerning homogeneous
spaces over fields of type I, more specifically function fields of
p-adic curves.

Conjecture (A)
Let F be a function field in one variable over a p-adic field. Let
Y be a projective homogeneous space under a connected
linear algebraic group defined over F . If Y (Fv ) 6= ∅ for all
v ∈ ΩF , then Y (F ) 6= ∅.

Conjecture (B)
Let F be a function field in one variable over a p-adic field. Let
Y be a principal homogeneous space under a semisimple
simply-connected linear algebraic group defined over F . If
Y (Fv ) 6= ∅ for all v ∈ ΩF , then Y (F ) 6= ∅.



Function fields of p-adic curves

The connectedness assumption cannot be dispensed with.

E : y2 = x(1− x)(x − p) defined over Qp, p odd.

F = Qp(E).

1− x ∈ F× is a square in F×v at every completion Fv of F .

1− x /∈ F×2.

(1− x) ∈ H1(F , µ2) is not zero, but locally everywhere zero.



Projective homogeneous spaces

There are two cases where Conjecture A is settled, namely
projective homogeneous spaces under special orthogonal
groups or the projective linear groups.

Theorem (Colliot-Thélène–Parimala–Suresh .)
Let F be a function field in one variable over a complete
discrete-valued field with residue field characteristic not 2. let X
be a quadric of dimension at least 1 over F . Then
X (Fv ) 6= ∅ ∀v ∈ ΩF =⇒ X (F ) 6= ∅.

In particular, Conjecture A holds for quadrics.



Projective homogeneous spaces

Theorem (Surendranath Reddy, V. Suresh.)
Let F be a function field in one variable over a complete
discrete-valued field K . Let A be a central simple algebra of
exponent coprime to the characteristic of the residue field of K .
Let X be a generalized Brauer–Severi variety associated to A.
Then X (Fv ) 6= ∅ ∀v ∈ ΩF =⇒ X (F ) 6= ∅.

More specifically,

index(A) = lcm
v∈ΩF

index(A⊗
F

Fv ).

In particular, if A is a p-primary index division algebra over F ,
A⊗F Fv is division over some completion v of F .



Projective homogeneous spaces

Remark
To discuss the Hasse principle, one can confine oneself to
discrete valuations centered on a suitable regular proper model
for the curve, chosen with reference to the given projective
homogeneous space.

Conjecture A remains open for a general projective
homogeneous space under a connected linear algebraic group.

The proofs of the above theorems use certain patching
theorems of Harbater-Hartmann-Krashen.



HHK patching

Let K be a complete discrete-valued field with residue field κ.

Let O the valuation ring of K .

Let X be a smooth projective geometrically integral curve over
K .

Let X → O be a regular proper model for X .

Let X0 → κ be the special fiber.

We assume that X0 has regular components with normal
crossings.



HHK patching

For x ∈X0, let ÔX ,x be the completion of the local ring OX ,x .

Let Fx be the field of fractions of ÔX ,x .

For x ∈X0 corresponding to a component of X0, Fx is the
completion at the discrete valuation of F associated to x .

For closed point x ∈X0, Fx is the field of fractions of a
2-dimensional complete regular local ring.



HHK patching

Theorem (Harbater-Hartmann-Krashen)
Let K be a complete discrete-valued field and F the function
field of a smooth projective geometrically integral curve X over
K . Let G be a connected linear algebraic group over F .
Suppose G is F -rational. Let Y be a principal homogeneous
space or a projective homogeneous space under G. Then there
is a regular model X of X over O such that if
Y (Fx ) 6= ∅ ∀x ∈X0 then Y (F ) 6= ∅.



HHK patching

The Conjectures A and B would be true for F -rational groups G
if the following is true :

(?) Given a homogeneous space Y under G, there exists a
model X such that Y (Fv ) 6= ∅ for all v ∈ ΩF ⇒ Y (Fx ) 6= ∅ for
every x ∈X0

The proof of Conjecture A in the two known cases is via proving
that (?) is true.



Conjecture B

Conjecture B could be thought of as a 2-dimensional analogue
of Kneser’s conjecture for number fields.

One has Galois cohomological invariants in degree 3 for
principal homogeneous spaces under simply connected
groups, the vanishing of which is a necessary condition for the
triviality of torsors.



The Rost Invariant

Let G be a simple simply connected linear algebraic group
defined over a field k with char(k) = 0

There is an invariant

RG : H1(k ,G)→ H3(k ,Q/Z(2))

defined by Rost.



The Rost Invariant

Let G = SL1(A), where A is a central simple algebra over F ;

index(A) = n. The invariant RG is the Suslin invariant:

RG : H1(F ,SL1(A))→ H3(F , µ⊗2
n )

RG([λ]) = (λ) · [A].

Theorem (Merkurjev–Suslin)
RG has trivial kernel if index(A) is square-free.



The Rost invariant

Let F be a field of cohomological dimension 3.

A natural (naive) question is whether the Rost invariant has
trivial kernel over F .

There is some evidence to the triviality of the Rost kernel.

Since cd(F ) is 3, H4(F ,Z/2Z) = 0 and quadratic forms over F
are classified up to isomorphism by the dimension,
discriminant, Clifford and Arason invariants.

Thus if G is Spin(q) with q isotropic, RG has trivial kernel.



The Rost Invariant

One has the following theorem for quasi-split groups.

Theorem (Colliot-Thélène–Parimala–Suresh)
Let F be a field of cohomological dimension 3 and G a
quasi-split simple simply-connected group defined F. Then RG
has trivial kernel.



The Rost Invariant

Case-by-case discussion and classification of hermitian forms
by Galois cohomology invariants lead to the theorem for
classical groups and groups of type G2.

If G is a quasi-split of type 3,4D4,E6, or E7, ker(RG) is trivial in
view of a theorem of Rost-Garibaldi.

For split groups of type F4, the theorem follows from Springer’s
classification results for Albert algebras.

The proof for split groups of type E8 is more delicate. It is a
consequence of certain Hasse principle results.



Conjecture B for classical groups

The first word of caution to greater expectations on the triviality
of the Rost kernel for fields of cohomological dimension three
came from Merkurjev.

Merkurjev’s example: Let k be a field of cohomological
dimension 2 which admits a biquaternion division algebra A.

Let F = k(t). Then cd F = 3.

[t2] ∈ H1(F ,SL1(A))

RSL1(A)([t2]) = (t2).[A] = 0.

However, t2 is not a reduced norm from A and [t2] 6= 1 in
H1(F ,SL1(A)).



Conjecture B for classical groups

Thus RG could have non-trivial kernel for fields of
cohomological dimension 3 in general.

However fields K of cohomological dimension 2 admitting a
biquaternion division algebra are “non-existent" for number
theorists.

Over all "good fields" of cohomological dimension 2,
biquaternion division algebras do not exist.

Conjecture B on Hasse principle only concerns function fields
of p-adic curves.



Kato’s theorem

Let K be a p-adic field and F a function field in one variable
over K . Let ΩF denote the set of all discrete valuations of F .

We have the following injectivity result of Kato for degree three
Galois cohomology of F

Theorem (Kato.)
The map

H3(F , µ⊗2
` )→

∏
v∈ΩF

H3(Fv , µ
⊗2
` )

has trivial kernel.



Kato’s theorem

We also have a commutative diagram

H1(F ,G)
RG //

res
��

H3(F ,Q/Z(2))

res
��∏

v∈Ω(F )

H1(Fv ,G) //
∏

v∈Ω(F )

H3(Fv ,Q/Z(2))

Thus ker(H1(F ,G)→
∏

H1(Fv ,G)) is contained in the Rost
kernel.

In particular, for all groups G for which RG has trivial kernel,
Conjecture B is true.



The Rost Kernel

There are certain non-split classical groups for which the
triviality of the Rost kernel has been proved.

Theorem (Hu, Preeti)
Let F be a function field in one variable over a p-adic field. Let
G be simple simply-connected linear algebraic group of
classical type Bn, Cn or Dn, or of type 2An with G = SU(A, σ),
index(A) = 2m, m odd. Then RG has trivial kernel.

The method of proof of Hu and Preeti involves classifying
hermitian forms over division algebras with involution by
classical invariants together with the Rost invariant.



SL1(A) revisited

Let F be a function field in one variable over a p-adic field.

Let G = SL1(A), with A a biquaternion division algebra over F .

Theorem
RG has trivial kernel.



SL1(A) revisited

The theorem follows from the following facts:

• (Merkurjev) ker(RG) = F×2.Nrd(A×)/Nrd(A×)

• sn(φ) = F ∗ for an Albert form φ, since the 12 dimensional
form φ ⊥ −λφ is isotropic.

• F ∗2 ⊂ Nrd(A∗), since squares of spinor norms are precisely
reduced norms.

Corollary
Let A be a central simple algebra over F of index dividing 4m,
m odd, squarefree. Then Conjecture B holds for SL1(A).



Group schemes over O

We have a Hasse principle for a principal homogeneous spaces
under a class of connected reductive groups which leads to the
Conjecture B for split groups of type E8.

Theorem (Colliot-Thélène–Parimala–Suresh.)
Let F be the function field of a p-adic curve. Let G be a
connected reductive group scheme over the discrete valuation
ring O. Then the Hasse principle is true for principal
homogeneous spaces under G over F with respect to its
discrete valuations.

The group G in the theorem is stably F-rational. One uses HHK
patching results to prove the theorem.



The group E8

Corollary
Let G be a split simple simply-connected group of type E8 over
F . Then the Hasse principle holds for G.



The Rost kernel for E8

Curiously the Hasse principle leads to triviality of the Rost
kernel for groups of type E8.

Corollary (Corollary)
For G be a split simple simply-connected group of type E8 over
F . Then RG has trivial kernel.



The Rost kernel for E8

We have a commutative diagram

H1(F ,G)
RG //

res
��

H3(F ,Q/Z(2))

res
��∏

v∈Ω(F )

H1(Fv ,G) //
∏

v∈Ω(F )

H3(Fv ,Q/Z(2))

The two restriction maps have trivial kernel. Further,
RG : H1(Fv ,G)→ H3(Fv ,Q/Z(2)) has trivial kernel
(Bruhat–Tits). Thus RG has trivial kernel.



Conjecture B

Here is the list of groups for which Conjecture B holds :

• Type 1An, G = SL1(A), index(A) = 4m, m odd, squarefree.
• Type 2An, G = SU(A, σ), index(A) = 2m, m odd.
• Type Bn, Cn, Dn ( nontrialitarian D4), G2.
• All quasi-split groups.



Non-rational groups

The Hasse principle for more general connected linear
algebraic groups fails to be true!

Theorem (Colliot-Thélène–Parimala–Suresh)
There are examples of non-rational tori G over F and principal
homogeneous spaces Y under G such that Y (Fv ) 6= ∅ ∀v, but
Y (F ) = ∅.

These also give examples of non-rational groups for which HHK
patching fails.



Une dernière question

The following question still remains open:

Question
Let G be a connected linear algebraic group over F with G
F -rational. If Y is a principal homogeneous space under G
which has a rational point over Fv for all completions at discrete
valuations of F , does Y admit rational points locally for the HHK
patch?


