
Fields MITACS Undergraduate Summer

Research Program

EEG Inverse Problem

by

Bilal Abbasi, Carrie Bragnalo, Feng Chi, Jiho Han and Iryna Sivak

Supervisors:

Nicholas Hoell and Adrian Nachman



Abstract

This project aims to understand the EEG source localization medical imaging problem.
One main approach taken was to understand a solution to the inverse problem called
eLORETA and see if any improvements can be made to this algorithm. An alternate
approach to the problem using variational methods was also explored.
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Introduction

1. Overview of the Project

Electroencephalograpy (EEG) is a non-invasive means by which electrical brain activ-
ity can be measured. By placing electrodes on the scalp of a patient, the EEG measures
the electric scalp potential differences which are produced by neurons firing in different
regions of the brain. The EEG neuroimaging problem consists of a forward problem and
an inverse problem. For a given a source current in the brain the forward problem, which
is considered well posed, simulates the field distribution on the head surface by calculating
the lead field. The inverse problem involves reconstruction of the primary source currents
by localizing the electrical activity in the cortex from the EEG measurements. The biggest
challenge that the inverse problem poses to mathematicians is that it is ill-posed since
the solution is not unique and is not stable. There are infinitely many possible source
configurations that could result from a given EEG since the relationship between current
sources and the electromagnetic field is not one-to-one. The system to be solved is also
severly ill-conditioned meaning that there are many more unknowns than equations to be
solved. [1] It is up to mathematicians to decide which source configuration is the most
accurate given the EEG data.

In order to study the inverse problem of the EEG it is almost always necessary to
use the lead field, which relates brain sources to the retrieved measurements, as an input.
As a group we took two different approaches to the problem. A solution to the inverse
problem which uses the algorithm called eLORETA uses a Bayesian statistical approach.
Half of the group looked at this algorithm with the goals of understanding how it works
and determining if it is a viable solution. We believe that there may be some downfalls
to eLORETA as a viable solution to the inverse problem due to assumptions which this
method makes. The other half of the group approached the problem from the variational
side by studying the adjoint method of solving the problem, which begins with Maxwell’s
equations.

2. Biological Background

In order to better understand the EEG inverse problem it helps to understand what is
happening on the biological level. The fundamental building block of the nervous system
in humans is the neuron. The structure of the neuron is shown in Figure 1. As in all
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Figure 1. Structure of the neuron. [4]

other cells in the body, the cell body in neurons contains the genetic information as well
as infrastructure to carry out basic metabolism of the cell. What separates the neuron
from other types of cells is the presence of dendrites and an axon. The dendrite is a place
where the neuron integrates input from other neurons, which can be either excitatory or
inhibitory. When a certain threshold of inputs is met, the axon is the region where the
action potential is propagated. Then, a specific neurotransmitter is released at the end
of the axon through a process called a synapse.

The released neurotransmitters from the synapse bind to receptors present in dendrites
of another neuron which leads to a postsynaptic potential (PSP). It is known that electri-
cal potential differences in the scalp are caused by these PSPs [3]. There are two types of
PSPs: IPSP (inhibitory) and EPSP (excitatory). IPSPs causes the postsynaptic neuron
to depolarize (voltage is less negative) whereas EPSPs causes hyperpolarization (voltage
is more negative). If a certain number of EPSP signals are received, the voltage reaches
a threshold, which causes the postsynaptic neuron to release its own neurotransmitters.
The scalp electrical potential is determined by the spatial summation of the current den-
sity from PSPs that occur synchronously in a cluster of neurons [3]. Although all neurons
contribute to the EEG signals, EEG signals are primarily generated by neurons in the
cortical surface (cortical pyramidal neurons) that are oriented perpendicular to the sur-
face [3]. Moreover, one active neuron is not enough to generate a measurable EEG signal.
Only when cortical pyramidal neurons are arranged in parallel and synchronized can the
EEG detect the signal [3].
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The neural activity can be physically modeled by current dipoles. When neurotrans-
mitters are released in a synapse, they bind to receptors of the postsynaptic neuron. In
the case of EPSP, this usually causes an influx of Na+ (positive) ions. This causes a sink
to be created, resulting in a more negative charge on the basal side. The source of the
current is located at the apical region, where there is an influx of negative ions and an
outflow of positive ions. In summary, this generates a current dipole and this model is
shown in Figure 2.

3. eLORETA

The currently accepted solution to the inverse EEG problem is exact low resolution
brain electromagnetic tomography (eLORETA). eLORETA is claimed to be a genuine
solution which has zero error and no localization bias. At first glance it seems to be a
perfect solution to the problem and that nothing can be done to enhance it. According to
Dr. Mark Doidge, who is the impetus for the project, ”this is the algorithm to beat”. As
we dig into the details of the algorithm, however, eLORETA is only perfect under ideal
conditions and assumptions. Roberto D. Pascual-Marqui, who developed the eLORETA
algorithm, states in [3] that eLORETA is proved to have no localization error when there
is only one source or a few uncorrelated sources. Both of these conditions do not seem
to be very practical. Based on the discussions we had with Dr. Doidge it seems that
multiple sources are often correlated. These problems have not gone unnoticed and at the
end of Chapter 5 of [3] Pascual-Marqui mentions new approaches to the problem using
Bayesian formulation which opens the door to the consideration of more complicated and
realistic conditions. Throughout the summer we read a variety of papers outlining various

Figure 2. Current dipole in a neuron, which is the building block of EEG
signals. [3]



4

approaches, including Bayesian approaches and hierarchical Bayesian approaches, which
aimed to resolve some of the current downfalls of eLORETA.



CHAPTER 1

eLORETA algorithm

Consider the forward EEG equation:

φ = KJ + c1̄,

where φ ∈ RNE – scalp electric potential differences, measured at NE electrodes with
respect to a single reference electrode where K = (K1, K2, .., KNV

) ∈ RNE×(3NV ) is the
lead field matrix corresponding to NV voxels, J ∈ R(3NV ) is the current density and c is
a scalar accounting for the physics nature of electric potentials which are determined up
to constant, 1̄ = (1, .., 1) ∈ RNE .

Estimating c from minimization problem

ĉ = min
c
‖Φ−KJ − c1̄‖2,

we obtain the solution:

ĉ =
1̄T

1̄T 1̄
(Φ−KJ).

Plugging ĉ into EEG equation gives

Hφ = HKJ

where H = I − 1̄1̄T

1̄T 1̄
is the average reference operator and I ∈ RNE×NE is identity matrix.

Hereafter φ := HΦ, K := HK. Therefore φ = KJ .

The family of solutions that attains exact, zero error localization of point-test sources
anywhere in the brain can be parameterized by a symmetric matrix C ∈ RNE×NE such
that

ĵi = [(KT
i CKi)K

T
i C]φ.

Here J = (j1, j2, .., jNE
)T , ji ∈ R3, denotes the current density at the i-th voxel.

eLORETA is based on the regularized, weighted minimum norm problem:

min
J
‖φ−KJ‖2

2 + αJTWJ.

Here W ∈ R(3NV )×(3NV ) is a given symmetric weight matrix and α ≥ 0 is regularization
parameter. The solution is linear

Ĵ = Tφ

with

T = W−1K(KW−1KT + αH)+.

Hereafter the superscript “ + ” denotes the Moore-Penrose pseudoinverse.

5



Chapter 1. eLORETA algorithm 6

One can obtain the same minimization problem from the Bayesian point of view. We
have measurements of electric potentials on the scalp:

φ = KJ + ε,

with normally distributed noise in measurements ε ∼ N (0, αH), J ∼ N (0,ΣJ) with the
“a priori” covariance matrix ΣJ = W−1.

Maximization of loglikelihood function leads to the same weighted minimum norm
problem:

− log ppost(J |Φ) ∝ ‖Φ−KJ‖2
2 + αJTΣ−1J = ‖Φ−KJ‖2

2 + αJTWJ → minJ .

Based on the linear relation of the solution Ĵ = TΦ we can obtain the explicit form
of the a posteriori covariance matrix for the estimated current density:

ΣĴ = W−1KT (KW−1KT + αH)+KW−1.

If W = diag(W1, ..,WNv) with blocks Wj ∈ R3×3, j = 1, ..Nv, then the solution to the
problem

Ŵ = argmin
W
‖I − ΣĴ‖ = argmin

W
‖I −W−1KT (KW−1KT + αH)+KW−1‖

produces an inverse solution with zero error localization of point-source electrical signal.

This solution satisfies following set of matrix equations:

Ŵ 2
j = KT

j (KŴ−1KT + αH)+Kj

for all j = 1, ..Nv.

Thus the following iterative algorithm converges to the block-diagonal weights W :

Input : lead field K, regularization parameter α ≥ 0.

Initialize weight matrix W = I.

Repeat until convergence:

• M := (KW−1KT + αH)+

• For j = 1, ..Nv:
Wj = [KT

j MKj]
SymmSqrt,

SymmSqrt denotes the symmetric square root

Output : Ŵ .

Finally, estimation of weight matrix Ŵ obtained from the algorithm provides the
eLORETA inverse solution

Ĵ = Ŵ−1K(KŴ−1KT + αH)+φ.

[2]



CHAPTER 2

Adjoint Method

1. Motivation

Rather than simple look at the problem from an approach that has widely been studied,
we decided to also take a road less travelled and study the inverse problem from the
variational side beginning with Maxwell’s equations. The adjoint method provides a
simpler way of calculating the lead field for a given measurement than method previously
proposed.

2. Approach

The Adjoint State approach is a variational approach which mainly consists of exam-
ining functionals which are defined over Hilbert Spaces. Consider a real Hilbert space W
on an open bounded region Ω with inner product < u, v > and p a set of parameters in
some functional space W3. The for some ∀p ∈ W3 and v ∈ W , the state equation is:

(2.1) A(p)v(p) = f(p)

where A(p) : W → W1 ⊂ W is a linear operator and f = f(p) is a function on W1.

We can rewrite 2.1 using an arbitrary test function w ∈ W2:

(2.2) < A(p)v(p)− f(p), w >= 0

If v = v(p) satisfies 2.2 we call v a state function. We assume measurements taken can
be modeled as the application of a linear operator, M(p) : W → R, to our state functions
v. We then define the error functional J (p), with m as our observed measurements

(2.3) J (p) =
1

2
||M(p)v(p)−m||2

where || · || is the standard Euclidean norm.

Our inverse problem is then to find a p which minimizes 2.3 which we subject to
condition 2.2 holding. Therefore our minimization problem can be formally stated as:

(2.4) min
p∈W3

L(v, w;p) = min
p∈W3

(J (p)+ < w,A(p)v(p)− f(p) >)

where w can be thought of as a Lagrange multiplier. Recall that the Lagrangian L is
a functional from the cartestian product W × W2 × W3 into R and is assumed to be
differentiable. The differentiability of L allows us to define the Gateaux derivative of L.
For a definition of a Gateaux differentiable function, refer to Definition 1 of [1].
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Chapter 2. Adjoint Method 8

If v satisfies 2.2, then L becomes:

(2.5) J (p) = L(v(p), w;p).

With this v, we now take the Gateaux derivative of both sides of 2.4 with respect to p:

(2.6) δJ =
d

dt
|t=0J (p + tφ) =

d

dt
|t=0L(v(p + tφ), w;p + tφ)

(2.7) =
∂L
∂v
δv +

∂L
∂p

δp

We now require that the first term in 2.7 be equal to zero:

(2.8)
∂L
∂v

(v, w;p)δv = 0 ∀δv

Expanding this we get

(2.9) <M(p)v(p)−m,M(p)δv > + < w,A(p)δv >= 0 ∀δv.

Since our inner product is defined on a Hilbert space we have that for any linear operator
H: < x,Hy >=< H?x, y >, where H?denotes the adjoint of H. This notion comes from
defining a continuous linear functional g(y) : H → R, where g(y) =< x,By >, x ∈ H
and B is a linear operator. Using the Riesz Representation Theorem, we know ∃!z ∈
H s.t. g(y) =< x,By >=< z, y > ∀y ∈ H. [1] z is defined to be B?x. Since both M and
A are linear operators, 2.8 is equivalent to

(2.10) <M?(p)(M(p)v(p)−m), δv > + < A?(p)w, δv >= 0 ∀δv

(2.11) ⇔<M?(p)(M(p)v(p)−m) + A?(p)w, δv >= 0 ∀δv

(2.12) ⇔M?(p)(M(p)v(p)−m) + A?(p)w = 0

and clearly 2.8⇔2.12. We call this last expression the adjoint state equation and w
the adjoint state function. Therefore given that v satisfies 2.1 and w satisfies 2.12, the
Gateaux-derivative of L with respect to p becomes:

(2.13) δJ (p) =
∂L
∂p

(v, w;p)δp

Using this last expression, we can define an algorithm to find a p that satisfies 2.4.

(1) Start with an initial guess p0. Set i = 0.
(2) Solve 2.1 for vi.
(3) Solve 2.12 for wi.
(4) Use vi, wi,pi and calculate δJ (pi).
(5) Calculate pi+1 using δJ (pi).
(6) If ‖pi−pi+1‖ <tol then STOP. Otherwise set i = i+ 1 and start back at Step 1.
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3. Solving the Forward EEG Problem via the Boundary Element Method

In attempting to solve an inverse problem, which is typically ill-posed, it can be
helpful to know how to solve the forward problem first. In particular, the application of
the adjoint method employs the solution of the forward problem. In the EEG problem,
one way to solve the forward problem is to use the Boundary Element Method (BEM).
In the BEM, we split the brain into three homogenous, isotropic conducting regions (four
regions if including the outside of the head) and then use the potential on the interfaces
of these regions to calculate the potential anywhere in the brain. Furthermore, each of
these interfaces are tesselated into triangles and an approximation of V on an interface Sj

is given as V (r)|Sj
≈ Ṽ j(r) =

∑Nj

i=1 V
j
i h

j
i (r). This is expressed by the following equation:

(3.1) V (r) =
2σ0

σ−k + σ+
k

V0(r) +
1

2π

3∑
j=1

σ−j − σ+
j

σ−k + σ+
k

Nj∑
k=1

Nj∑
i=1

V j
i

∫
r′∈4Sj,k

hji (r)
r′ − r

q r′ − r q3
dSj

where

Sj- Interface between region Ωj and Ωj+1.

V0(r) - Potential at r for an infinite medium with conductivity σ0.

σk- Conductivity of medium for which r is in.

σ−j , σ
+
j - Conductivities of the inner and outer compartments divided by the interface

Sj, respectively.

4Sj,k - kth triangle in the tessellation of Sj.

V j
i - Coefficients are unknown on Sj and are determined by constraining to Ṽ j(r)

satisfy (19) at certain points, known as collocation points.

Numerically, this can be represented by a linear system

(3.2) V = BV + V0

where

V- Column vectors denoting at every node the unknown potential due to a source.

V0- Column vectors denoting potential value in an infinite homogeneous medium.

B- Matrix generated from the integrals, that depend on the geometry of the interfaces
and the conductivites of each region.

Thus the BEM is reduced to a linear system.

4. Application of Adjoint Method to EEG Inverse Problem

In the EEG problem, we select our W = L2(Ω) , where Ω is largely the brain or
homogeneous region of it.

The data given is supposed to be modeled by the difference of potentials at some
locations r1, . . . , rnV

on the scalp and a reference r0. Let v1,...,vnV
be the measured data,

where nV represents the number of distinct electrodes.
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We would like to obtain a Jp that best replicates the given data. Let V = V (Jp(r)) =
V (r) denote the electric potential at position r. From the quasi-static Maxwell’s Equations
we have that V (r) must satisfy the first condition in 4.1, and we impose the additional
boundary condition:

(4.1)

{
∇ · (σ∇V (r)) = ∇ · Jp in Ω
∂V
∂n

= ∇V · n = g on S = ∂Ω

We also assume that the primary current source is located within the brain, and so
Jp|S = 0. We would like to obtain a Jp which minimizes:

JV =
1

2

nV∑
i=1

(V (ri)− V (r0)− vi)2

Labelling V to be our state function and 4.1 to be it’s corresponding state equation
we get our functional, which we would like to minimize, as

(4.2) LV = LV (V,w;σ,Jp︸︷︷︸
p

) =
1

2

nV∑
i=1

(V (ri)− V (r0)− vi)2+ < ∇ · (σ∇V (r))−∇ · Jp, w >

And it’s subsequent adjoint state function is

(4.3)

{∑
i ((V (ri)− V (r0)− vi)(δ(r− ri)− δ(r− r0))) = 0 in Ω

∇w · n = 0 on ∂Ω

We will assume that σ is known. And so when w and V satisfy their respective
equations, the Gateaux-derivative of our functional with respect to Jp becomes (with test
function φ(r) ∈ L(Ω))

(4.4) δLV =
∂L
∂p

=
∂L
∂Jp =

∫
Ω

∇w · φ(r)dr

Using Riesz Representation theorem, 4.4 tells us that the gradient of L with respect
to Jp is then

(4.5) gradLV(Jp) = ∇w

We can use this definition of the gradient in the aforementioned algorithm to obtain
a suitable Jp.



CHAPTER 3

Dynamic Electrical Cortical Imaging

Dynamic Electrical Cortical Imaging (DECI) is a software developed by Cerebral Di-
agnostics Canada that allows to generate 3D brain movies in near real time based on EEG
signals. DECI implements the algorithm used in eLORETA.The figures shown below are
EEG signals (right) and the corresponding the 3D brain images (left). In the 3D images,
the blue arrows represent the head whereas the red arrows represent the tail of the dipole
vector. The images of the brain are from ”bird’s eye” view where the z-axis is the top of
the head, y-axis is the front (nose), and the x-axis is the right side (ear).

Figure 1. EEG signal and corresponding 3D brain image of a subject
before stimulus.

In this section, a subject was exposed to a bright light towards his eye. His brain
activity was recorded using EEG and an amplifier. As a response to a visual stimulus,
it is expected to observe activity in the occipital lobe which contains the primary visual
cortex. The vertical bar shows the time when the 3D image was taken.

11



Chapter 3. Dynamic Electrical Cortical Imaging 12

Figure 2. EEG of the brain response of a subject upon exposure to bright
light.

In the EEG data, the electrodes labeled as ”FP1” and ”FP2” (refer to Figure 4 for
the locations of the electrodes) show a distinct peak at the moment when the 3D image
was generated.

Figure 3. A screenshot of the EEG showing when the occipital lobe is
activated.
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The electrodes are placed on the skull according to the International 10-20 System,
which is widely used and accepted for electroencephalography. The names of the electrode
locations are based on the region of the skull in which they are found. For example the
electrode FP1 is found in the frontal parietal region on the left side of the head, from the
subject’s point of view. The electrode O2 is found at the occipital lobe on the right side of
the head and CZ is found in the central part along the midline of the skull, which connects
the nasion to the inion. The five regions in which electrodes are located are frontal lobe
F, central C, parietal lobe P, temporal lobe T, and occipital lobe O. All electrodes ending
in an odd number are located on the left side of the skull, electrodes with even numbers
are located on skull’s right hemisphere and electrodes with the letter Z lie on the midline.

The specific placement of electrodes for each patient is determined with respect to the
nasion and the inion. The nasion is the point at which the nost and the forehead intersect
and the inion is found at the back of the head at the bottom of the skull. Often there is
a prominent bump indicating the location of the inion. Various lines and curves are then
drawn on the skull connecting these two points. Several otehr important points are then
identified and used in drawing subsequent curves. Two curves must intersect to confirm
the correct location for the placement of an electrode before this location is considered
finalized. A diagram of the common electrode placements can be seen in the Figure 4
below.

Figure 4. The location of electrodes on a human head based on the In-
ternational 10-20 System.
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