Modeling the schistosomiasis on the islets in Nanjing

Longxing Qi

School of Mathematical Sciences, Anhui University

LAMPS and Department of Mathematics and Statistics, York University

2013.4.12 1 / 24

• = • •

Introduction

2. Model

- ③ 3. Dynamics of the model
- 4. Parameter estimation and simulation
- 5. Control and discussion

< ロ > < 同 > < 回 > < 回 > < 回

1. Introduction

Background: Patients, Schistosome, Snail

<ロト </p>

()

Schistosomiasis

◆□ → ◆□ → ◆ □ → ◆ □ → □ = ∽ Q () 2013.4.12 4 / 24

Schistosomiasis

• One of the most prevalent parasitic diseases

<ロ> (日) (日) (日) (日) (日)

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people

<ロ> (日) (日) (日) (日) (日)

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people
- Difficult to eradicate

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people
- Difficult to eradicate
- Four factors in transmission:

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people
- Difficult to eradicate
- Four factors in transmission:
 - Definitive hosts—human, mammals

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people
- Difficult to eradicate
- Four factors in transmission:
 - Definitive hosts—-human, mammals
 - Intermediate hosts—-snails

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people
- Difficult to eradicate
- Four factors in transmission:
 - Definitive hosts—-human, mammals
 - Intermediate hosts—-snails
 - Schistosome

Schistosomiasis

- One of the most prevalent parasitic diseases
- 207 million people
- Difficult to eradicate
- Four factors in transmission:
 - Definitive hosts—-human, mammals
 - Intermediate hosts—-snails
 - Schistosome
 - Water

・ロト ・聞ト ・ヨト ・ヨト

Life cycle of schistosome

2013.4.12 6 / 24

э

• Two islets:

◆□ → ◆□ → ◆ □ → ◆ □ → □ = ∽ Q ()
2013.4.12 7 / 24

- Two islets:
 - Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing

・ロト ・聞ト ・ヨト ・ヨト

- Two islets:
 - Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing
 - No human residents or other livestocks

- Two islets:
 - Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing
 - No human residents or other livestocks
 - Rattus norvegicus infected by schistosome

- Two islets:
 - Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing
 - No human residents or other livestocks
 - Rattus norvegicus infected by schistosome
 - Snails

- Two islets:
 - Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing
 - No human residents or other livestocks
 - Rattus norvegicus infected by schistosome
 - Snails
- What will happen ?

- 4 @ > 4 @ > 4 @ >

- Two islets:
 - Qianzhou, Zimuzhou, in the center of the Yangtze River near Nanjing
 - No human residents or other livestocks
 - Rattus norvegicus infected by schistosome
 - Snails
- What will happen ?
- How to control schistosomiasis on this two islets ?

(人間) トイヨト イヨ)

Model

Figure: The flow diagram of schistosomiasis activities.

(日) (同) (日) (日) (日)

Model

()

$$\begin{cases} \frac{dx_s}{dt} = A_x - \mu_x x_s - \beta_x x_s y_i, \\ \frac{dx_i}{dt} = \beta_x x_s y_i - (\mu_x + \alpha_x) x_i, \\ \frac{dy_s}{dt} = A_y - \mu_y y_s - \beta_y x_i y_s, \\ \frac{dy_e}{dt} = \beta_y x_i y_s - (\mu_y + \theta) y_e, \\ \frac{dy_i}{dt} = \theta y_e - (\mu_y + \alpha_y) y_i. \end{cases}$$
(1)

2013.4.12 9 / 24

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへの

Model

$$\begin{cases} \frac{dx_s}{dt} = A_x - \mu_x x_s - \beta_x x_s y_i, \\ \frac{dx_i}{dt} = \beta_x x_s y_i - (\mu_x + \alpha_x) x_i, \\ \frac{dy_s}{dt} = A_y - \mu_y y_s - \beta_y x_i y_s, \\ \frac{dy_e}{dt} = \beta_y x_i y_s - (\mu_y + \theta) y_e, \\ \frac{dy_i}{dt} = \theta y_e - (\mu_y + \alpha_y) y_i. \end{cases}$$
(1)

A_x/μ_x, A_y/μ_y: the density—closely related to the area of the two islets.
 Chunhua Shan and Professor Huaiping Zhu: The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River (To appear in *Bulletin of Mathematical Biology*)

Parameters

- A_x , per capita reproduction rate of rats;
- μ_x , per capita natural death rate of rats;
- α_x , per capita disease-induced death rate of rats;
- β_x, per capita contact transmission rate from infected snails to susceptible rats;
- A_y , per capita reproduction rate of snails;
- μ_y , per capita natural death rate of snails;
- α_v , per capita disease-induced death rate of snails;
- β_y, per capita contact transmission rate from infected rats to susceptible snails;
- θ , per capita transition rate from infected and preshedding snails to shedding snails.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Existence of equilibria

Existence of equilibria

The basic reproduction number:

$$R_0 = \rho(FV^{-1}) = \sqrt[3]{\frac{A_x A_y \theta \beta_x \beta_y}{\mu_x \mu_y (\mu_x + \alpha_x)(\mu_y + \alpha_y)(\mu_y + \theta)}}.$$

2013.4.12 11 / 24

* ロ > * 個 > * 注 > * 注 >

Existence of equilibria

The basic reproduction number:

$$R_0 = \rho(FV^{-1}) = \sqrt[3]{\frac{A_x A_y \theta \beta_x \beta_y}{\mu_x \mu_y (\mu_x + \alpha_x)(\mu_y + \alpha_y)(\mu_y + \theta)}}$$

- The disease free equilibrium $E_0 = (\frac{A_x}{\mu_x}, 0, \frac{A_y}{\mu_y}, 0, 0)$,
- The unique endemic equilibrium $E^* = (x_s^*, x_i^*, y_s^*, y_e^*, y_i^*) \leftarrow R_0 > 1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stability of equilibria

Using a Lyapunov function:

$$V = \beta_{y} y_{s}^{*} x_{i}^{*} \{ [x_{s} - x_{s}^{*} - x_{s}^{*} \ln(\frac{x_{s}}{x_{s}^{*}})] + [x_{i} - x_{i}^{*} - x_{i}^{*} \ln(\frac{x_{i}}{x_{i}^{*}})] \} \\ + \beta_{x} x_{s}^{*} y_{i}^{*} \{ [y_{s} - y_{s}^{*} - y_{s}^{*} \ln(\frac{y_{s}}{y_{s}^{*}})] + [y_{e} - y_{e}^{*} - y_{e}^{*} \ln(\frac{y_{e}}{y_{e}^{*}})] \\ + \frac{\mu_{y} + \theta}{\theta} [y_{i} - y_{i}^{*} - y_{i}^{*} \ln(\frac{y_{i}}{y_{i}^{*}})] \},$$

and by LaSalle's Invariance Principle, the stability is

Theorem

The disease free equilibrium E_0 of the system (1) is globally asymptotically stable if $R_0 \leq 1$.

Theorem

For system (1), if $R_0 > 1$, the endemic equilibrium E^* is globally asymptotically stable.

Data

The data are based on the investigation of Nanjing Institute of Parasitic Diseases in the period of 1996-1998.

Table: Dissection results of snails from Qianzhou and Zimuzhou islets in 1996-1998

Islet	Year	No.dissected	No.positive (%)
Qianzhou	1996	2677	53 (2.0)
	1997	8205	53 (0.6)
	1998	7538	234(3.1)
Zimuzhou	1997	6324	25 (0.4)
	1998	5440	27 (0.5)

Data

Table: Dissection results of rats from Qianzhou and Zimuzhou islets in 1996-1998

Islet	Year	No.dissected	No.positive (%)
Qianzhou	1996.12-1997.3	69	43 (62.3)
	1997.12-1998.3	53	34 (64.2)
Zimuzhou	1997.12-1998.3	67	36 (53.7)
Total		189	113 (59.8)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Parameter estimation

parameters	values(per capita per day)	references
A _x	0.00006	estimated;
$\mu_{\mathbf{x}}$	$9.13 imes10^{-4}$	Xugy,1999
α_x	$8.33 imes10^{-5}$	Ishikawa,2006
β_x	0.007	estimated;
A_y	0.108	estimated;
μ_y	$2.63 imes10^{-3}$	Anderson,1992, Feng,2005
α_y	$4.67 imes10^{-3}$	Feng,2005 and Zhou,1988
β_y	0.0009	estimated
θ	$2.5 imes10^{-2}$	Allen,2003

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Simulation

Figure: The trajectories of x_i and y_i

2013.4.12 16 / 24

-

・ロト ・ 日 ・ ・ 田 ト ・

Simulation

Figure: The trajectories of x_i and y_i

・ロト ・ 日 ・ ・ 田 ト ・

2013.4.12

16 / 24

• $R_0 = 1.29 > 1$,

Simulation

Figure: The trajectories of x_i and y_i

• $R_0 = 1.29 > 1$,

• Schistosomiasis will be prevalent on this two islets.

Image: A matrix

→ Ξ →

• Rats:

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ● ● 今 Q @
 2013.4.12 17 / 24

- Rats:
 - Mousetraps

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Rats:
 - Mousetraps
 - The rate of capture rats: 0.16 0.35/day

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive

Snails:

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive

Snails:

Molluscicides

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive

Snails:

- Molluscicides
- The death rate of snails: 0.8-1/day

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive

Snails:

- Molluscicides
- The death rate of snails: 0.8-1/day
- Cheap

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive
- Snails:
 - Molluscicides
 - The death rate of snails: 0.8-1/day
 - Cheap
- Which one should we choose if only one of them can be chosen?

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive
- k_x be the rate of control rats per day,
- Snails:
 - Molluscicides
 - The death rate of snails: 0.8-1/day
 - Cheap

• Which one should we choose if only one of them can be chosen?

< ロト < 同ト < ヨト < ヨト

Rats:

- Mousetraps
- The rate of capture rats: 0.16 0.35/day
- Expensive
- k_x be the rate of control rats per day,
- Snails:
 - Molluscicides
 - The death rate of snails: 0.8-1/day
 - Cheap
 - k_y be the rate of control snails per day.
- Which one should we choose if only one of them can be chosen?

- 4 同 6 4 日 6 4 日 6

Control model

<□><</td> <</td> ≥> <</td> ≥> <</td> > <</td> <</td> <

()

Control model

()

$$\begin{cases} \frac{dx_s}{dt} = A_x - (\mu_x + k_x)x_s - \beta_x x_s y_i, \\ \frac{dx_i}{dt} = \beta_x x_s y_i - (\mu_x + k_x + \alpha_x)x_i, \\ \frac{dy_s}{dt} = A_y - (\mu_y + k_y)y_s - \beta_y x_i y_s, \\ \frac{dy_e}{dt} = \beta_y x_i y_s - (\mu_y + k_y + \theta)y_e, \\ \frac{dy_i}{dt} = \theta_y e - (\mu_y + k_y + \alpha_y)y_i. \end{cases}$$
(2)

2013.4.12 18 / 24

▲□ > ▲圖 > ▲ 圖 > ▲ 圖 >

Control model

$$\begin{cases} \frac{dx_s}{dt} = A_x - (\mu_x + k_x)x_s - \beta_x x_s y_i, \\ \frac{dx_i}{dt} = \beta_x x_s y_i - (\mu_x + k_x + \alpha_x)x_i, \\ \frac{dy_s}{dt} = A_y - (\mu_y + k_y)y_s - \beta_y x_i y_s, \\ \frac{dy_e}{dt} = \beta_y x_i y_s - (\mu_y + k_y + \theta)y_e, \\ \frac{dy_i}{dt} = \theta_y e - (\mu_y + k_y + \alpha_y)y_i. \end{cases}$$

$$(2)$$

The basic reproduction number for model (2):

$$R_0^* = \sqrt[3]{\frac{A_x A_y \theta \beta_x \beta_y}{(\mu_x + k_x)(\mu_y + k_y)(\mu_x + k_x + \alpha_x)(\mu_y + k_y + \alpha_y)(\mu_y + k_y + \theta)}}.$$

The flexibility of R_0^* to k_x and k_y are given by:

$$\frac{ER_0^*}{Ek_x} = -\frac{1}{3}k_x(\frac{1}{\mu_x + k_x} + \frac{1}{\mu_x + k_x + \alpha_x}),$$
$$\frac{ER_0^*}{Ek_y} = -\frac{1}{3}k_y(\frac{1}{\mu_y + k_y} + \frac{1}{\mu_y + k_y + \alpha_y} + \frac{1}{\mu_y + k_y + \theta}).$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

2013.4.12 20 / 24

・ロト ・ 日 ト ・ 日 ト ・

• The blue curve: $\left|\frac{ER_0^*}{Ek_x}\right|$ over k_x ,

・ロト ・ 日 ト ・ 日 ト ・

The blue curve: | ^{ER}₀/_{Ekx} | over k_x,
The red curve: | ^{ER}₀/_{Eky} | over k_y,

→ ∃ >

- The blue curve: $\left|\frac{ER_0^*}{Ek_x}\right|$ over k_x ,
- The red curve: $\left|\frac{ER_0^*}{Ek_v}\right|$ over k_y ,
- The intersection point: $k_y = 0.019$.

• R_0^* is more sensitive to k_y than to k_x when $k_y > 0.019$,

- R_0^* is more sensitive to k_y than to k_x when $k_y > 0.019$,
- To control snails is easier to eliminate schistosomiasis than to control rats as long as $k_v > 0.019$.

2013.4.12 22 / 24

• The black curve: $k_x = 0.001$ and $k_y = 0$,

• The black curve: $k_x = 0.001$ and $k_y = 0$,

• The blue curve: $k_x = 0$ and $k_y = 0.01 < 0.019$,

- The black curve: $k_x = 0.001$ and $k_y = 0$,
- The blue curve: $k_x = 0$ and $k_y = 0.01 < 0.019$,
- The red curve: $k_x = 0$ and $k_y = 0.036 > 0.019$.

Conclusion

If only one of control measures can be chosen

・ロト ・聞 ト ・ ヨト ・ ヨト

Conclusion

If only one of control measures can be chosen

• To control snails is more efficient than to control rats,

<ロト </p>

Conclusion

If only one of control measures can be chosen

- To control snails is more efficient than to control rats,
- Make sure the rate of controlling snails be greater than 0.019.

< ロ > < 同 > < 回 > < 回 > < 回

Thank you!

イロト イ理ト イヨト イヨト 一座