Quantum splines

David Meier, joint work with Dorje Brody and Darryl Holm

11 July

Spin-off from work with Christopher Burnett, François Gay-Balmaz, Darryl Holm, Tudor Ratiu and François-Xavier Vialard

 \rightarrow Minisymposium Wednesday 18 July

Quantum mechanics

- ► Hilbert space *H*. Finite-dimensional Hilbert space *H* = Cⁿ⁺¹ ↔ Systems of quantum mechanical angular momentum/spin
- Notation: Denote elements of \mathcal{H} by $|\psi\rangle$. Hermitian conjugate is denoted $\langle\psi|$.
- ▶ Quantum state space given by complex projective space CPⁿ = (Cⁿ⁺¹ {0})/C
 ↔→ Normalization: probabilistic nature of quantum mechanics.
 Phase invariance: experiments invariant wrt complex phase.
- Schrödinger equation describes evolution of state $|\psi\rangle$,

$$\partial_t |\psi_t\rangle = -\mathrm{i}H|\psi_t\rangle,$$

where the **Hamiltonian** H is a Hermitian (self-adjoint) matrix assumed trace-free. Therefore $-iH \in \mathfrak{su}(n+1)$, skew-Hermitian & trace-free.

• Alternative formulation of Schrödinger equation: State evolution $||\psi_t\rangle = U(t)|\psi_0\rangle|$ with U(t) a curve on the Lie group SU(n+1) of special unitary matrices, satisfying

$$\dot{U} = -\mathrm{i}HU, \quad U(0) = \mathbb{1}.$$

Quantum mechanics

- ► Hilbert space *H*. Finite-dimensional Hilbert space *H* = Cⁿ⁺¹ ↔ Systems of quantum mechanical angular momentum/spin
- Notation: Denote elements of \mathcal{H} by $|\psi\rangle$. Hermitian conjugate is denoted $\langle\psi|$.
- ▶ Quantum state space given by complex projective space CPⁿ = (Cⁿ⁺¹ {0})/C
 ↔→ Normalization: probabilistic nature of quantum mechanics.
 Phase invariance: experiments invariant wrt complex phase.
- Schrödinger equation describes evolution of state $|\psi\rangle$,

$$\partial_t |\psi_t\rangle = -\mathrm{i}H|\psi_t\rangle,$$

where the **Hamiltonian** H is a Hermitian (self-adjoint) matrix assumed trace-free. Therefore $-iH \in \mathfrak{su}(n+1)$, skew-Hermitian & trace-free.

• Alternative formulation of Schrödinger equation: State evolution $||\psi_t\rangle = U(t)|\psi_0\rangle|$ with U(t) a curve on the Lie group SU(n+1) of special unitary matrices, satisfying

$$\dot{U} = -\mathrm{i}HU, \quad U(0) = \mathbb{1}.$$

Motivation: Want to guide quantum trajectory through a series of given states at given times. Ideally one would like to do this with a constant Hamiltonian, but this cannot be done in general \rightsquigarrow one looks for Hamiltonian H(t) with **least change**.

(Fields July 2012)

Quantum splines

Problem statement

Let a set of quantum states $|\phi_1\rangle$, $|\phi_2\rangle$, \cdots , $|\phi_m\rangle$ and a set of times t_1, t_2, \cdots, t_m be given. Starting from an initial state $|\psi_0\rangle$ at time $t_0 = 0$, find a time-dependent Hamiltonian H(t) such that the evolution path $|\psi_t\rangle$ passes arbitrarily close to $|\phi_j\rangle$ at time $t = t_j$ for all $j = 1, \ldots, m$, and such that the change in the Hamiltonian (in a sense defined later), is minimised.

- The mathematical formulation involves a cost functional made up of two terms: One part measures the change in the Hamiltonian along the trajectory. The other one measures the amount of 'mismatch' between trajectory and target states.
- For this purpose, introduce an inner product on $\mathfrak{su}(n+1)$,

$$\langle A, B \rangle = -2 \operatorname{tr}(AB)$$

and the standard geodesic distance on \mathbb{CP}^n ,

$$D(\psi,\phi) = 2\arccos\sqrt{\frac{\langle \psi | \phi \rangle \langle \phi | \psi \rangle}{\langle \psi | \psi \rangle \langle \phi | \phi \rangle}}$$

Given the set of target states $|\phi_1\rangle$, \cdots , $|\phi_m\rangle$ and times t_1, \cdots, t_m , as well as an initial state $|\psi_0\rangle$ and an initial Hamiltonian $H(0) = H_0$, find the minimiser of the **cost functional**

$$\mathcal{J}[U,M,H] = \int_{t_0}^{t_m} \left(\frac{1}{2} \langle i\dot{H}, i\dot{H} \rangle + \langle M, \dot{U}U^{-1} + iH \rangle \right) dt + \frac{1}{2\sigma^2} \sum_{j=1}^m D^2(\underbrace{U(t_j)\psi_0}_{=|\psi_{t_j}\rangle}, \phi_j)$$

Given the set of target states $|\phi_1\rangle$, \cdots , $|\phi_m\rangle$ and times t_1, \cdots, t_m , as well as an initial state $|\psi_0\rangle$ and an initial Hamiltonian $H(0) = H_0$, find the minimiser of the **cost functional**

$$\mathcal{J}[U, M, H] = \int_{t_0}^{t_m} \left(\frac{1}{2} \langle i\dot{H}, i\dot{H} \rangle + \langle M, \dot{U}U^{-1} + iH \rangle \right) dt + \frac{1}{2\sigma^2} \sum_{j=1}^m D^2(\underbrace{U(t_j)\psi_0}_{=|\psi_{t_j}\rangle}, \phi_j)$$

Change of $H(t)$

Given the set of target states $|\phi_1\rangle$, \cdots , $|\phi_m\rangle$ and times t_1, \cdots, t_m , as well as an initial state $|\psi_0\rangle$ and an initial Hamiltonian $H(0) = H_0$, find the minimiser of the **cost functional**

$$\mathcal{J}[U, M, H] = \int_{t_0}^{t_m} \left(\frac{1}{2} \langle i\dot{H}, i\dot{H} \rangle + \langle M, \dot{U}U^{-1} + iH \rangle \right) dt + \frac{1}{2\sigma^2} \sum_{j=1}^m D^2(\underbrace{U(t_j)\psi_0}_{=|\psi_{t_j}\rangle}, \phi_j)$$
Change of $H(t)$ Schrödinger equation

Given the set of target states $|\phi_1\rangle$, \cdots , $|\phi_m\rangle$ and times t_1, \cdots, t_m , as well as an initial state $|\psi_0\rangle$ and an initial Hamiltonian $H(0) = H_0$, find the minimiser of the **cost functional**

$$\mathcal{J}[U, M, H] = \int_{t_0}^{t_m} \left(\frac{1}{2} \langle i\dot{H}, i\dot{H} \rangle + \langle M, \dot{U}U^{-1} + iH \rangle \right) dt + \frac{1}{2\sigma^2} \sum_{j=1}^m D^2(\underbrace{U(t_j)\psi_0}_{=|\psi_{t_j}\rangle}, \phi_j)$$
Change of $H(t)$ Schrödinger equation mismatch trajectory \leftrightarrow target

Given the set of target states $|\phi_1\rangle$, \cdots , $|\phi_m\rangle$ and times t_1, \cdots, t_m , as well as an initial state $|\psi_0\rangle$ and an initial Hamiltonian $H(0) = H_0$, find the minimiser of the **cost functional**

$$\mathcal{J}[U, M, H] = \int_{t_0}^{t_m} \left(\frac{1}{2} \langle i\dot{H}, i\dot{H} \rangle + \langle M, \dot{U}U^{-1} + iH \rangle \right) dt + \frac{1}{2\sigma^2} \sum_{j=1}^m D^2(\underbrace{U(t_j)\psi_0}_{=|\psi_{t_j}\rangle}, \phi_j) ,$$

Change of $H(t)$ Schrödinger equation mismatch trajectory \leftrightarrow target

- ▶ The minimisation is over curves $U(t) \in SU(n+1)$ and $iH(t), M(t) \in \mathfrak{su}(n+1)$.
- Tolerance parameter σ used to trade off amount of change vs. quality of matching.

Given the set of target states $|\phi_1\rangle$, \cdots , $|\phi_m\rangle$ and times t_1, \cdots, t_m , as well as an initial state $|\psi_0\rangle$ and an initial Hamiltonian $H(0) = H_0$, find the minimiser of the **cost functional**

$$\mathcal{J}[U, M, H] = \int_{t_0}^{t_m} \left(\frac{1}{2} \langle i\dot{H}, i\dot{H} \rangle + \langle M, \dot{U}U^{-1} + iH \rangle \right) dt + \frac{1}{2\sigma^2} \sum_{j=1}^m D^2(\underbrace{U(t_j)\psi_0}_{=|\psi_{t_j}\rangle}, \phi_j) ,$$

Change of $H(t)$ Schrödinger equation mismatch trajectory \leftrightarrow target

- ▶ The minimisation is over curves $U(t) \in SU(n+1)$ and $iH(t), M(t) \in \mathfrak{su}(n+1)$.
- **•** Tolerance parameter σ used to trade off amount of change vs. quality of matching.
- ▶ Require smoothness of U, H, M on open intervals (t_j, t_{j+1}) ; and the continuity of U(t) and H(t) is assumed everywhere \rightsquigarrow allow for discontinuities of \dot{H} and M at node times t_j .

Euler–Lagrange equations

• On open intervals (t_j, t_{j+1}) :

$$i\ddot{H} - M = 0, \quad \dot{M} + [M, \dot{U}U^{-1}] = 0, \quad \dot{U}U^{-1} + iH = 0.$$
 (1)

At the **nodes** $t = t_j$:

$$\dot{H}(t_j^+) - \dot{H}(t_j^-) = 0, \qquad M(t_j^+) - M(t_j^-) = \frac{D_j}{\sigma^2} F_j.$$
(2)

At the terminal point:

$$\dot{H}(t_m) = 0,$$
 $M(t_m) + \frac{D_m}{\sigma^2} F_m = 0.$ (3)

• Here, $D_j = D(\psi_{t_j}, \phi_j)$ and

$$F_{j} = J^{\sharp}(\nabla_{1}D(\psi_{t_{j}},\phi_{j})) = \frac{\langle \psi_{t_{j}}|\phi_{j}\rangle|\psi_{t_{j}}\rangle\langle\phi_{j}| - \langle\phi_{j}|\psi_{t_{j}}\rangle|\phi_{j}\rangle\langle\psi_{t_{j}}|}{\sin(D_{j})\langle\phi_{j}|\phi_{j}\rangle\langle\psi_{t_{j}}|\psi_{t_{j}}\rangle},$$

where $J: T^* \mathbb{CP}^n \to \mathfrak{su}(n+1)^*$ is the **cotangent lift momentum map** of the action of SU(n+1) on \mathbb{CP}^n .

▶ Equations (1) and (2) can be integrated for initial values $\dot{H}(0)$ and M(0). A local extremum of the cost functional \mathcal{J} satisfies, in addition, equation (3) at final time.

(Fields July 2012)

Geometry of solution curves

1. U(t) is a Riemannian cubic spline

On open intervals (t_j, t_{j+1}) , $\ddot{H} + i[H, \ddot{H}] = 0$.

[[Aside: Lie group G with Riemannian metric γ . A Riemannian cubic is a critical curve of the action functional

$$\mathcal{J}[g] = \int_{A}^{B} \frac{1}{2} \gamma(D_t \dot{g}, D_t \dot{g}) \,\mathrm{d}t$$

with respect to variations with fixed initial/final velocities. If γ is bi-invariant, second-order Euler–Poincaré reduction gives

$$\ddot{\xi} - [\xi, \ddot{\xi}] = 0, \qquad \dot{g} = T_e R_g(\xi)$$

Compare with

$$\ddot{H} + \mathrm{i}[H, \ddot{H}] = 0, \qquad \dot{U} = -\mathrm{i}HU.$$

(More details in the Minisymposium Wednesday 18th.)]]

Geometry of solution curves

1. U(t) is a Riemannian cubic spline

On open intervals (t_j, t_{j+1}) , $\ddot{H} + i[H, \ddot{H}] = 0$.

[[Aside: Lie group G with Riemannian metric γ . A Riemannian cubic is a critical curve of the action functional

$$\mathcal{J}[g] = \int_{A}^{B} \frac{1}{2} \gamma(D_t \dot{g}, D_t \dot{g}) \,\mathrm{d}t$$

with respect to variations with fixed initial/final velocities. If γ is bi-invariant, second-order Euler–Poincaré reduction gives

$$\ddot{\xi} - [\xi, \ddot{\xi}] = 0, \qquad \dot{g} = T_e R_g(\xi)$$

Compare with

$$\ddot{H} + \mathrm{i}[H, \ddot{H}] = 0, \qquad \dot{U} = -\mathrm{i}HU.$$

(More details in the Minisymposium Wednesday 18th.)]]

Indeed, bi-invariant metric associated with the inner product on $\mathfrak{su}(n+1)$ (by left or right translation) $\rightsquigarrow U(t)$ is a **Riemannian cubic** on the open intervals. Twice continuously differentiable on the whole interval \rightsquigarrow **Riemannian cubic spline**.

Geometry of solution curves (cont'd)

2. Horizontality of the momentum M(t)

Let $\mathfrak{su}(n+1)_{\psi}$ be the Lie algebra of the stabilizer of $|\psi\rangle$ and $\mathfrak{su}(n+1)_{\psi}^{\perp}$ its orthogonal complement, the horizontal space at $|\psi\rangle$.

Lemma:
$$M(t) \in \mathfrak{su}(n+1)^{\perp}_{\psi_t}$$
, where $|\psi_t\rangle = U(t)|\psi_0\rangle$.

Strategy: Final time ~> initial time.

Terminal point: $M(t_m) = -\frac{D_m}{\sigma^2} J^{\sharp}(\nabla_1 D(\psi_{t_m}, \phi_m)) \Rightarrow$ true at final time, since $\left\langle J^{\sharp}(\alpha_{\psi}), \xi \right\rangle = \left\langle J(\alpha_{\psi}), \xi \right\rangle_{\mathfrak{su}^* \times \mathfrak{su}} = \left\langle \alpha_{\psi}, \xi_{\mathbb{CP}^n}(\psi) \right\rangle_{T^*\mathbb{CP}^n \times T\mathbb{CP}^n}.$

Open intervals: $\dot{M} + [M, \dot{U}U^{-1}] = 0 \Rightarrow M(t)$ evolves under the Ad-action (conjugation) of U(t). So does the horizontal space $\mathfrak{su}(n+1)^{\perp}_{\psi} \Rightarrow$ true on the open interval (t_{m-1}, t_m) .

Node times: $M(t_j^-) = M(t_j^+) - \frac{D_j}{\sigma^2} J^{\sharp}(\nabla_1 D(\psi_{t_j}, \phi_j)) \Rightarrow$ preserved by jumps at the nodes \Rightarrow true at all times.

Geometry of solution curves (cont'd)

2. Horizontality of the momentum M(t)

Let $\mathfrak{su}(n+1)_{\psi}$ be the Lie algebra of the stabilizer of $|\psi\rangle$ and $\mathfrak{su}(n+1)_{\psi}^{\perp}$ its orthogonal complement, the horizontal space at $|\psi\rangle$.

Lemma:
$$M(t) \in \mathfrak{su}(n+1)^{\perp}_{\psi_t}$$
, where $|\psi_t\rangle = U(t)|\psi_0\rangle$.

Strategy: Final time ~> initial time.

Terminal point: $M(t_m) = -\frac{D_m}{\sigma^2} J^{\sharp}(\nabla_1 D(\psi_{t_m}, \phi_m)) \Rightarrow$ true at final time, since $\left\langle J^{\sharp}(\alpha_{\psi}), \xi \right\rangle = \left\langle J(\alpha_{\psi}), \xi \right\rangle_{\mathfrak{su}^* \times \mathfrak{su}} = \left\langle \alpha_{\psi}, \xi_{\mathbb{CP}^n}(\psi) \right\rangle_{T^* \mathbb{CP}^n \times T \mathbb{CP}^n}.$

Open intervals: $\dot{M} + [M, \dot{U}U^{-1}] = 0 \Rightarrow M(t)$ evolves under the Ad-action (conjugation) of U(t). So does the horizontal space $\mathfrak{su}(n+1)^{\perp}_{\psi} \Rightarrow$ true on the open interval (t_{m-1}, t_m) .

Node times: $M(t_j^-) = M(t_j^+) - \frac{D_j}{\sigma^2} J^{\sharp}(\nabla_1 D(\psi_{t_j}, \phi_j)) \Rightarrow$ preserved by jumps at the nodes \Rightarrow true at all times.

In particular, $M(0) \in \mathfrak{su}(n+1)_{\psi_0}^{\perp}$. Search for the optimal M(0) can be restricted to this 2n-dimensional subspace of the n(n+2)-dimensional Lie algebra $\mathfrak{su}(n+1)$.

Geometry of solution curves (cont'd)

2. Horizontality of the momentum M(t)

Let $\mathfrak{su}(n+1)_{\psi}$ be the Lie algebra of the stabilizer of $|\psi\rangle$ and $\mathfrak{su}(n+1)_{\psi}^{\perp}$ its orthogonal complement, the horizontal space at $|\psi\rangle$.

Lemma:
$$M(t) \in \mathfrak{su}(n+1)_{\psi_t}^{\perp}$$
, where $|\psi_t\rangle = U(t)|\psi_0\rangle$.

Strategy: Final time \rightsquigarrow initial time.

Terminal point: $M(t_m) = -\frac{D_m}{\sigma^2} J^{\sharp}(\nabla_1 D(\psi_{t_m}, \phi_m)) \Rightarrow$ true at final time, since $\left\langle J^{\sharp}(\alpha_{\psi}), \xi \right\rangle = \left\langle J(\alpha_{\psi}), \xi \right\rangle_{\mathfrak{su}^* \times \mathfrak{su}} = \left\langle \alpha_{\psi}, \xi_{\mathbb{CP}^n}(\psi) \right\rangle_{T^* \mathbb{CP}^n \times T \mathbb{CP}^n}.$

Open intervals: $\dot{M} + [M, \dot{U}U^{-1}] = 0 \Rightarrow M(t)$ evolves under the Ad-action (conjugation) of U(t). So does the horizontal space $\mathfrak{su}(n+1)^{\perp}_{\psi} \Rightarrow$ true on the open interval (t_{m-1}, t_m) .

Node times: $M(t_j^-) = M(t_j^+) - \frac{D_j}{\sigma^2} J^{\sharp}(\nabla_1 D(\psi_{t_j}, \phi_j)) \Rightarrow$ preserved by jumps at the nodes \Rightarrow true at all times.

In particular, $M(0) \in \mathfrak{su}(n+1)_{\psi_0}^{\perp}$. Search for the optimal M(0) can be **restricted** to this 2n-dimensional subspace of the n(n+2)-dimensional Lie algebra $\mathfrak{su}(n+1)$.

NB: Still need to optimize $\dot{H}(0)$ over all of $\mathfrak{su}(n+1)$. (Fields July 2012)

Quantum control of SU(2)-coherent states

So far: Systems of spin. Extend to coherent state submanifolds.

- Introduced by Glauber (1963) as special states of the quantum harmonic oscillator. Associated with the Heisenberg group. Generalized to arbitrary Lie groups by Perelomov and Gilmore (1972).
- ► Coherent states achieve the lower bound in the **Heisenberg uncertainty principle** ~> most closely "resemble" classical states.

Quantum control of SU(2)-coherent states

So far: Systems of spin. Extend to coherent state submanifolds.

- ► Introduced by Glauber (1963) as special states of the quantum harmonic oscillator. Associated with the **Heisenberg group**. Generalized to arbitrary **Lie groups** by Perelomov and Gilmore (1972).
- ► Coherent states achieve the lower bound in the **Heisenberg uncertainty principle** ~> most closely "resemble" classical states.

Construction:

- Symmetric *n*-particle Hilbert space $\mathcal{H}_n = \bigotimes_{Sum}^n \mathbb{C}^2 \cong \mathbb{C}^{n+1}$, projectively \mathbb{CP}^n .
- SU(2) acts diagonally (rotations of the system as a whole).
- ▶ Let $e_2 := (0,1) \in \mathbb{C}^2$ ("spin down state") and take $\boxed{\otimes^n e_2} \in \mathcal{H}_n$. The submanifold of coherent states is the SU(2)-orbit ,

 $\{U(\otimes^n e_2)|U\in SU(2)\}$

• Coincides with the image set of the Veronese embedding V,

$$V: \mathbb{CP}^1 \to \mathbb{CP}^n, \quad z \mapsto \otimes^n z.$$

Quantum control of SU(2)-coherent states

So far: Systems of spin. Extend to coherent state submanifolds.

- ► Introduced by Glauber (1963) as special states of the quantum harmonic oscillator. Associated with the **Heisenberg group**. Generalized to arbitrary **Lie groups** by Perelomov and Gilmore (1972).
- ► Coherent states achieve the lower bound in the **Heisenberg uncertainty principle** ~> most closely "resemble" classical states.

Construction:

- Symmetric *n*-particle Hilbert space $\mathcal{H}_n = \bigotimes_{Sum}^n \mathbb{C}^2 \cong \mathbb{C}^{n+1}$, projectively \mathbb{CP}^n .
- SU(2) acts diagonally (rotations of the system as a whole).
- ▶ Let $e_2 := (0,1) \in \mathbb{C}^2$ ("spin down state") and take $\boxed{\otimes^n e_2} \in \mathcal{H}_n$. The submanifold of coherent states is the SU(2)-orbit ,

 $\{U(\otimes^n e_2)|U\in SU(2)\}$

• Coincides with the image set of the Veronese embedding V,

$$V: \mathbb{CP}^1 \to \mathbb{CP}^n, \quad z \mapsto \otimes^n z.$$

 \Rightarrow The quantum spline problem on the coherent state submanifold is **equivalent** to the problem on \mathbb{CP}^1 . **Reason: (1)** the Veronese embedding commutes with SU(2)-action, and (2) the natural metric on the coherent state submanifold is a scalar multiple of the metric on \mathbb{CP}^1 .

(Fields July 2012)

Two-level system (n=1)

- Spin- $\frac{1}{2}$ particle in a magnetic field.
- ▶ Hamiltonian can be written as $H(t) = \omega(t)\mathbf{n}(t) \cdot \boldsymbol{\sigma} = \sum_{i=1}^{3} \omega(t)n_i(t)\sigma_i$
 - $\longrightarrow \omega(t)$ strength of the magnetic field
 - $\longrightarrow \mathbf{n}(t)$ direction of the magnetic field
- \mathbb{CP}^1 diffeomorphic to the **Bloch sphere** S^2 .

Two-level system (n=1)

- Spin- $\frac{1}{2}$ particle in a magnetic field.
- ► Hamiltonian can be written as $H(t) = \omega(t)\mathbf{n}(t) \cdot \boldsymbol{\sigma} = \sum_{i=1}^{3} \omega(t)n_i(t)\sigma_i$
 - $\longrightarrow \omega(t)$ strength of the magnetic field
 - $\longrightarrow \mathbf{n}(t)$ direction of the magnetic field
- \mathbb{CP}^1 diffeomorphic to the **Bloch sphere** S^2 .

 \rightsquigarrow this system can be visualized.

Two-level system (cont'd)

Optimal curve $|\psi_t\rangle$ on state space:

Two-level system (cont'd) Optimal Hamiltonian $H(t) = \omega(t)\mathbf{n}(t) \cdot \boldsymbol{\sigma}$:

Optimization via variational integrator and shooting method. Idea: Pull back the optimization problem to the space of initial conditions $\dot{H}(0)$ and M(0).

Optimization via variational integrator and shooting method. Idea: Pull back the optimization problem to the space of initial conditions $\dot{H}(0)$ and M(0).

Advantages of using variational integrator:

► Conditions at final time: $\dot{H}(t_m) = 0$ and $M(t_m) + D_m F_m / \sigma^2 = 0$. Exact discrete version \Rightarrow precise test of convergence to local minimum.

Optimization via variational integrator and shooting method. Idea: Pull back the optimization problem to the space of initial conditions $\dot{H}(0)$ and M(0).

- Conditions at final time: $\dot{H}(t_m) = 0$ and $M(t_m) + D_m F_m / \sigma^2 = 0$. Exact discrete version \Rightarrow precise test of convergence to local minimum.
- Integrator is momentum preserving $\Rightarrow M(t) \in \mathfrak{su}(n+1)_{\psi_t}^{\perp}$ satisfied exactly on discrete time domain \Rightarrow can restrict search for optimal M(0).

Optimization via variational integrator and shooting method. Idea: Pull back the optimization problem to the space of initial conditions $\dot{H}(0)$ and M(0).

- ► Conditions at final time: $\dot{H}(t_m) = 0$ and $M(t_m) + D_m F_m / \sigma^2 = 0$. Exact discrete version \Rightarrow precise test of convergence to local minimum.
- ▶ Integrator is momentum preserving $\Rightarrow M(t) \in \mathfrak{su}(n+1)_{\psi_t}^{\perp}$ satisfied exactly on discrete time domain \Rightarrow can restrict search for optimal M(0).
- ► Adjoint equations can be computed ⇒ obtain exact gradient in an efficient way. Becomes important for systems with n > 1.

Optimization via variational integrator and shooting method. Idea: Pull back the optimization problem to the space of initial conditions $\dot{H}(0)$ and M(0).

- ► Conditions at final time: $\dot{H}(t_m) = 0$ and $M(t_m) + D_m F_m / \sigma^2 = 0$. Exact discrete version \Rightarrow precise test of convergence to local minimum.
- ▶ Integrator is momentum preserving $\Rightarrow M(t) \in \mathfrak{su}(n+1)_{\psi_t}^{\perp}$ satisfied exactly on discrete time domain \Rightarrow can restrict search for optimal M(0).
- ► Adjoint equations can be computed ⇒ obtain exact gradient in an efficient way. Becomes important for systems with n > 1.
- **Stability** with respect to step-size.

Thank you