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Quantum mechanics

I Hilbert space H. Finite-dimensional Hilbert space H = Cn+1 ! Systems of
quantum mechanical angular momentum/spin

I Notation: Denote elements of H by |ψ〉. Hermitian conjugate is denoted 〈ψ|.

I Quantum state space given by complex projective space CP
n = (Cn+1 − {0})/C

! Normalization: probabilistic nature of quantum mechanics.
Phase invariance: experiments invariant wrt complex phase.

I Schrödinger equation describes evolution of state |ψ〉,

∂t|ψt〉 = −iH|ψt〉,

where the Hamiltonian H is a Hermitian (self-adjoint) matrix assumed trace-free.
Therefore −iH ∈ su(n+ 1), skew-Hermitian & trace-free.

I Alternative formulation of Schrödinger equation: State evolution |ψt〉 = U(t)|ψ0〉
with U(t) a curve on the Lie group SU(n+1) of special unitary matrices, satisfying

U̇ = −iHU, U(0) = 1.

Motivation: Want to guide quantum trajectory through a series of given states at given
times. Ideally one would like to do this with a constant Hamiltonian, but this cannot be
done in general  one looks for Hamiltonian H(t) with least change.
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Problem statement
Let a set of quantum states |φ1〉, |φ2〉, · · · , |φm〉 and a set of times t1, t2, · · · , tm be
given. Starting from an initial state |ψ0〉 at time t0 = 0, find a time-dependent
Hamiltonian H(t) such that the evolution path |ψt〉 passes arbitrarily close to |φj〉 at
time t = tj for all j = 1, . . . ,m, and such that the change in the Hamiltonian (in a sense
defined later), is minimised.

I The mathematical formulation involves a cost
functional made up of two terms: One part
measures the change in the Hamiltonian along
the trajectory. The other one measures the
amount of ’mismatch’ between trajectory and
target states.

I For this purpose, introduce an inner product on
su(n+ 1),

〈A,B〉 = −2 tr(AB)

and the standard geodesic distance on CPn,

D(ψ, φ) = 2 arccos

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

Link
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Cost functional

Given the set of target states |φ1〉, · · · , |φm〉 and times t1, · · · , tm, as well as an initial
state |ψ0〉 and an initial Hamiltonian H(0) = H0, find the minimiser of the cost
functional

J [U,M,H] =

∫ tm

t0

( 1

2
〈iḢ, iḢ〉 + 〈M, U̇U−1 + iH〉

)
dt+

1

2σ2

m∑
j=1

D2(U(tj)ψ0︸ ︷︷ ︸
=|ψtj

〉

, φj) ,

Change of H(t) Schrödinger equation mismatch trajectory ↔ target

I The minimisation is over curves U(t) ∈ SU(n+ 1) and iH(t) ,M(t) ∈ su(n+ 1).

I Tolerance parameter σ used to trade off amount of change vs. quality of matching.

I Require smoothness of U, H, M on open intervals (tj , tj+1); and the continuity of
U(t) and H(t) is assumed everywhere  allow for discontinuities of Ḣ and M at
node times tj .
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〈iḢ, iḢ〉 + 〈M, U̇U−1 + iH〉

)
dt+

1

2σ2

m∑
j=1

D2(U(tj)ψ0︸ ︷︷ ︸
=|ψtj

〉

, φj) ,

Change of H(t) Schrödinger equation mismatch trajectory ↔ target

I The minimisation is over curves U(t) ∈ SU(n+ 1) and iH(t) ,M(t) ∈ su(n+ 1).

I Tolerance parameter σ used to trade off amount of change vs. quality of matching.

I Require smoothness of U, H, M on open intervals (tj , tj+1); and the continuity of
U(t) and H(t) is assumed everywhere  allow for discontinuities of Ḣ and M at
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node times tj .

(Fields July 2012) Quantum splines 11 July 10 / 19



Euler–Lagrange equations

I On open intervals (tj , tj+1):

iḦ −M = 0, Ṁ + [M, U̇U−1] = 0, U̇U−1 + iH = 0. (1)

At the nodes t = tj :

Ḣ(t+j )− Ḣ(t−j ) = 0, M(t+j )−M(t−j ) =
Dj
σ2
Fj . (2)

At the terminal point:

Ḣ(tm) = 0, M(tm) +
Dm
σ2

Fm = 0. (3)

I Here, Dj = D(ψtj , φj) and

Fj = J](∇1D(ψtj , φj)) =
〈ψtj |φj〉|ψtj 〉〈φj | − 〈φj |ψtj 〉|φj〉〈ψtj |

sin(Dj)〈φj |φj〉〈ψtj |ψtj 〉
,

where J : T ∗CPn → su(n+ 1)∗ is the cotangent lift momentum map of the
action of SU(n+ 1) on CPn.

I Equations (1) and (2) can be integrated for initial values Ḣ(0) and M(0). A local
extremum of the cost functional J satisfies, in addition, equation (3) at final time.
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Geometry of solution curves

1. U(t) is a Riemannian cubic spline

On open intervals (tj , tj+1),
...
H + i[H, Ḧ] = 0.

[[ Aside: Lie group G with Riemannian metric γ. A Riemannian cubic is a critical curve
of the action functional

J [g] =
∫ B

A

1

2
γ(Dtġ, Dtġ) dt

with respect to variations with fixed initial/final velocities. If γ is bi-invariant,
second-order Euler–Poincaré reduction gives

...
ξ − [ξ, ξ̈] = 0, ġ = TeRg(ξ)

Compare with ...
H + i[H, Ḧ] = 0, U̇ = −iHU.

(More details in the Minisymposium Wednesday 18th.) ]]

Indeed, bi-invariant metric associated with the inner product on su(n+ 1) (by left or
right translation)  U(t) is a Riemannian cubic on the open intervals.
Twice continuously differentiable on the whole interval  Riemannian cubic spline.
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Geometry of solution curves (cont’d)
2. Horizontality of the momentum M(t)

Let su(n+ 1)ψ be the Lie algebra of the stabilizer of |ψ〉 and su(n+ 1)⊥ψ its orthogonal
complement, the horizontal space at |ψ〉.

Lemma: M(t) ∈ su(n+ 1)⊥ψt
, where |ψt〉 = U(t)|ψ0〉.

Proof.
Strategy: Final time  initial time.

Terminal point: M(tm) = −Dm
σ2 J

](∇1D(ψtm , φm))⇒ true at final time, since〈
J](αψ), ξ

〉
= 〈J(αψ), ξ〉su∗×su = 〈αψ, ξCPn(ψ)〉T∗CPn×TCPn .

Open intervals: Ṁ + [M, U̇U−1] = 0⇒ M(t) evolves under the Ad-action (conjugation)
of U(t). So does the horizontal space su(n+ 1)⊥ψ ⇒ true on the open interval
(tm−1, tm).

Node times: M(t−j ) =M(t+j )−
Dj

σ2 J
](∇1D(ψtj , φj))⇒ preserved by jumps at the

nodes ⇒ true at all times. �

In particular, M(0) ∈ su(n+ 1)⊥ψ0
. Search for the optimal M(0) can be restricted to

this 2n-dimensional subspace of the n(n+ 2)-dimensional Lie algebra su(n+ 1).

NB: Still need to optimize Ḣ(0) over all of su(n+ 1).
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Quantum control of SU(2)-coherent states
So far: Systems of spin. Extend to coherent state submanifolds.

I Introduced by Glauber (1963) as special states of the quantum harmonic oscillator.
Associated with the Heisenberg group. Generalized to arbitrary Lie groups by
Perelomov and Gilmore (1972).

I Coherent states achieve the lower bound in the Heisenberg uncertainty principle
 most closely “resemble” classical states.

Construction:

I Symmetric n-particle Hilbert space Hn =
⊗n

SymC
2 ∼= Cn+1, projectively CPn.

I SU(2) acts diagonally (rotations of the system as a whole).

I Let e2 := (0, 1) ∈ C2 (“spin down state”) and take ⊗ne2 ∈ Hn. The submanifold

of coherent states is the SU(2)-orbit ,

{U(⊗ne2)|U ∈ SU(2)}

I Coincides with the image set of the Veronese embedding V ,

V : CP1 → CP
n, z 7→ ⊗nz.

⇒ The quantum spline problem on the coherent state submanifold is equivalent to the
problem on CP1. Reason: (1) the Veronese embedding commutes with SU(2)-action,
and (2) the natural metric on the coherent state submanifold is a scalar multiple of the
metric on CP1.
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Two-level system (n=1)

I Spin- 1
2

particle in a magnetic field.

I Hamiltonian can be written as H(t) = ω(t)n(t) · σ =
∑3
i=1 ω(t)ni(t)σi

−→ ω(t) strength of the magnetic field
−→ n(t) direction of the magnetic field

I CP1 diffeomorphic to the Bloch sphere S2.

 this system can be visualized.
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Two-level system (cont’d)

Optimal curve |ψt〉 on state space:

(a) |ψt〉 for σ = 0.04 (b) |ψt〉 for σ = 0.01
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Two-level system (cont’d)
Optimal Hamiltonian H(t) = ω(t)n(t) · σ :

(c) n(t) for σ = 0.04 (d) n(t) for σ = 0.01

0.0 0.2 0.4 0.6 0.8 1.0
t

8

9

10

ω
(t

)

(e) ω(t) for σ = 0.04

0.0 0.2 0.4 0.6 0.8 1.0
t

8

9

10

11

ω
(t

)

(f) ω(t) for σ = 0.01

Return
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Implementation

Optimization via variational integrator and shooting method. Idea: Pull back the
optimization problem to the space of initial conditions Ḣ(0) and M(0).

Advantages of using variational integrator:

I Conditions at final time: Ḣ(tm) = 0 and M(tm) +DmFm/σ
2 = 0.

Exact discrete version ⇒ precise test of convergence to local minimum.

I Integrator is momentum preserving ⇒ M(t) ∈ su(n+ 1)⊥ψt
satisfied exactly on

discrete time domain ⇒ can restrict search for optimal M(0).

I Adjoint equations can be computed ⇒ obtain exact gradient in an efficient way.
Becomes important for systems with n > 1.

I Stability with respect to step-size.
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Advantages of using variational integrator:

I Conditions at final time: Ḣ(tm) = 0 and M(tm) +DmFm/σ
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Thank you
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