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1 Di¤erential geometry of singular spaces

A colloquium type lecture for general audience reviewing the theory of di¤erential
spaces and its applications.
1.1. Di¤erential structures
1.2. The category of di¤erential spaces
1.3. Manifolds and subcartesian spaces
1.4. Derivations and vector �elds
1.5. Integration of vector �elds and their families
1.6. Strati�ed spaces
1.7. Proper action of a Lie group on a manifold
1.8 Applications to reduction

2 Techniques of di¤erential geometry

A technical lecture for students who want to use di¤erential geometry to study sin-
gular spaces. It will consist of proofs or outlines of proofs of selected theorems
Di¤erential geometry can be thought of as algebraic geometry in the smooth

category. One can use all applicable techniques of algebraic geometry as well as
integration.
1.1. Integration of derivations.
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1.2. Generalized Stefan-Sussmann Theorem.
1.3. Outline of the proof that the space P=G of orbits of a proper action of a

Lie group G on a manifold P is subcartesian and that the orbit type strati�cation of
P=G is given by orbits of the family X(P=G) of all vector �elds on P=G:

3 Singular symplectic reduction

A non-technical lecture discussing applications of di¤erential geometry to symplectic
reduction.
Singular reduction in Hamiltonian mechanics describes the structure of the orbit

space P=G of a proper action of a Lie group G of symmetries of a symplectic manifold
(P; !). Since we know that P=G is strati�ed, we need to describe the interplay
between the strati�cation structure of P=G and the structure on P=G induced by the
symplectic form !.
1.1. Poisson structure of C1(P=G):
1.2. Orbit type strati�cation of P=G as the partition of P=G by the family X(P=G)

of all vector �elds.
1.3. Symplectic singular foliation of strata of P=G by orbits of the family P(P=G)

of Poisson vector �elds.
1.4. Level sets of the momentum map.
1.5. Reduction by stages.

4 Further examples of reduction

A non-technical lecture describing application of di¤erential geometry to reduction
of other systems.
1.1. Non-holonomic reduction.
1.2. Reduction of Poisson structures.
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