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Maths 782 Discrete Geometry Course notes

1 Polytopes historical background

“A tendency in mathematics to greater and greater abstractness
should not lead us to abandon our roots. In studying abstract poly-
topes, we shall always bear in mind the geometric origins of the
subject” P. McMullen and E. Schulte.

4500 years ago. Egypt pyramids: are they half of an octahe-
dron?

4000 years ago. Stones carved in polyhedra shapes showing all
the symmetry groups and even some duality relations! This stones
had been found in Scotland.

2500 years ago. Etruscans used dices in forms of the cube and
the dodecahedron, probably for gambling.

Early Greeks. The Pithagoreans started studying the regular
convex polygons and the pentagram. The discovery of the five
regular solids has been attributed to Pythagoras ( 582-500BCE) by
Eudemus, however, they were named after Plato by Heron.

Figure 1: The five Platonic Solids.
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Euclid demonstrates in his Elements that there are only five reg-
ular solids.

In this context, a convex polygon is regular if it has all sides of the
same length and all its angles measure the same. A solid (or convex
polyhedron) is regular if all its faces are congruent regular polygons
and with the same number of them arranged around each vertex.

Exercise 1 Show that there exist at most five regular solids.

Archimedes (287-212 BCE) used the regular 96-gon to find that
310

71
< π < 31

7
and study the so-called Archimedean solids (or convex

uniform polyhedra).

An Archimedean solid is a convex polyhedron with two or more
types of regular polygons as faces, meeting in identical vertices.
There are 13 of them.

Figure 2: Three of the Archimedean solids.

Exercise 2 What is the difference between the two polyhedra in
Figure 3? Would you say that they are Archimedean solids? Why?

Figure 3: Find the differences.
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Star-polytopes Thomas Bradwardine (1290-1349) systemati-
cally investigated the star-polygons {n

d
}. The first appearance of

the star-polyhedra are attributed to Paolo Uccello (1397-1475) and
Wenzel Jamnitzel (1508-85). Each of them draw one of the star-
polyhedra, but they did not seem to have studied them.

Johannes Kepler (1571-1630) re-discover Uccello’s {5
2
, 3} and dis-

cover the {5
2
, 5}. In 1809, Louis Poinsot (1777-1859) re-discover

these two star-polyhedra, and found their duals. In 1811 Augustin
Louis Cauchy (1789-1857) showed that these four are the only ‘reg-
ular’ star-polyhedra.

Figure 4: Two of the four Kepler-Poinsot polyhedra

Schläfli (1814-95) was one of the first mathematicians working on
the concept of higher dimensions. Around 1850 he discover regular
polytopes and honeycombs in four dimensions.

Figure 5: The hypercube.

Coxeter (1907-2003) set the direction towards the later devel-
opments of the theory of polytopes. In 1948 he publish the first

Maths 782 Discrete Geometry Page 3 of 23



edition of his Regular Polytopes in which he consolidates the study
of regular polytopes in higher dimensions. He also consider ‘regular
maps’ as polyhedra and studies their groups of symmetries.

Modern days. In the early 1920’s Petrie discovered two infinite
regular polyhedra in the Euclidean three space, allowing the ‘vertex-
figures’ to be skew polygons. Coxeter then find a third one and
showed that the enumeration was complete.

Figure 6: Petrie’s infinite {4, 6|4}.

In the theory of polytopes, facets and vertex-figures were consider to
be spherical until around 1975, Grünbaum took Coxeter’s approach
to polytopes even further and suggested the study of a larger class
of objects (that he called polystroma), in which facets and vertex-
figures might not be spherical. In the earlies 1980’s, Danzer and
Schulte extended this further and set out the basic theory of com-
binatorial objects that now we know as abstract polytopes.

Though out history, the main focus in the study of polytopes, has
been on those with a ‘large’ group of symmetries.
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Figure 7: Examples of polyhedra that do not live in the Euclidean
three Space.

2 Groups and actions

A set G, together with a binary operation ∗ is said to be a group if
given g1, g2, g3 ∈ G,

• g1 ∗ g2 ∈ G.

• (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

• There exists an element ε ∈ G such that for every element
g ∈ G, ε ∗ g = g = g ∗ ε.

• For every g ∈ G there exists g−1 ∈ G such that g ∗ g−1 = ε =
g−1 ∗ g.

Exercise 3 Which of the following are groups?

1. (Zn,+)

2. (Zn,×)

3. (R,+)

4. (R,×)
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5. (R∗,×)

Exercise 4 Given the set n := {1, 2, . . . , n}, a permutation of n is
a one-to-one function from n onto itself. Let Sn denote the set of
all permutations of n. Then Sn is a group, under the composition
of permutations.

The action of a group G on a set Z is an operation · : Z ×G→ Z,
such that z · ε = z and (z · g) · h = z · (gh), for every g, h ∈ G and
z ∈ Z.

3 Isometry groups

“God is always doing geometry”
Plato

An isometry of En is a point to point transformation of the space
onto itself that preserves distances. The product of two isometries
is also an isometry and every isometry has an inverse. Hence, the
set of all isometries of En forms a group, where the identity is the
isometry that fixes every point.

Consider an n-gon in the Euclidean plane, that is a polygon with
n sides. A symmetry of the n-gon is an isometry of the plane that
sends the n-gon to itself. A convex n-gon is said to be regular if the
n sides are of equal length and the angle between any two adjacent
sides is always the same.

Exercise 5 How many symmetries are there for a regular n-gon?
How can we describe them?

Given a polyhedron P in the Euclidean three space, a symmetry T
of P is an isometry of E3 that sends P to itself. In particular, T
sends vertices to vertices, edges to edges and faces to faces. Hence
we can think that the group of symmetries of P acts on the vertices,
edges and faces of P .

Exercise 6 What is the main difference of the action of the sym-
metry groups of the polyhedra in Figure 3?
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3.1 Isometries of the plane

In this section by an isometry we shall mean an isometry of the
Euclidean plane.

We shall denote a reflection on a line a as ρa. A glide refection is
the product of three reflections ρaρbρc, where the lines a and b are
parallel lines, and c is a line perpendicular to both a and b.

Lemma 7 If an isometry fixes two point on a line, then it fixes
that line point-wise. If an isometry fixes three non-colinear points,
then it is the identity.

Corollary 8 Let P,Q,R be three non-collinear points, and let α, β
be two isometries such that Pα = Pβ, Qα = Qβ and Rα = Rβ.
Then α = β.

Lemma 9 An isometry that fixes two points is a reflection or the
identity.

Lemma 10 An isometry that fixes exactly one point is a product
of two reflections.

Corollary 11 An isometry that fixes a point is a product of at
most two reflections.

Theorem 12 Every isometry is a product of at most three reflec-
tions.

Proposition 13 A product of two reflections in parallel lines is a
translation; and every translation is the product of two reflections
in parallel lines.

Proposition 14 A product of two reflections in intersecting lines
is a translation; and every translation is the product of two reflec-
tions in intersecting lines.

Exercise 15 Describe the possible isometries that are a product of
exactly three reflections.
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Exercise 16 Let P,Q, P ′, Q′ be point on the plane, and let |PQ|
denote the distance between P and Q.

a) If |PQ| = |P ′Q′|, then there exists an isometry α, which is
either a translation or a rotation, such that Pα = P ′ and
Qα = Q′.

b) If |PQ| = |P ′Q′|, then there exists an isometry β, which is
either a reflection or a glide reflection, such that Pβ = P ′

and Qβ = Q′.

c) Suppose that P,Q, P ′, Q′ are point satisfying |PQ| = |P ′Q′| 6=
0. Then there are exactly two isometries sending P to P’ and
Q to Q’; one of each of the above kinds.

d) Theorem 17 (M. Chasles 1793-1880) Every isometry of the
plane is a reflection, a translation, a rotation or a glide rel-
fection.

3.2 Isometries of the space and symmetry
groups of polyhedra

For now, let us think that a polyhedron is a solid figure bounded
by plane polygons in E3 (i.e., we are considering only convex poly-
hedra). As we pointed out before, there are five regular such poly-
hedra, the platonic Solids, that the Greeks identified with the four
elements, earth, air, fire and water, and the whole universe.

If Π is a plane, then the reflection ρΠ is the isometry of the space
that fixes all the point on Π, and for every P /∈ Π, the plane Π
is the perpendicular bisector of the segment line PΠ(P ). If ∆ is
a perpendicular plane to Π, then ρΠρ∆ is a translation along the
common perpendicular lines to the planes. If ∆ and Π are two
planes that intersect at a line l, then ρΠρ∆ is a rotation about the
axis l. Given a plane Γ that is perpendicular to intersecting planes
Π and ∆, ρΠρ∆ρΓ is a rotatory reflection.

Exercise 18 List all the rotations of a tetrahedron as permutations
of the four vertices. List the other 12 symmetries of the tetrahedron.
Which of these are given by reflection in a plane? Show that those
that are not reflections can be described as rotatory reflections.

Exercise 19 a) Mark the vertices of an octahedron 1, 2, . . . , 6.
List all the rotations of the octahedron by the permutations
they induce on the vertices. How many elements of each kind
are there? What are their orders? How many in all?

Maths 782 Discrete Geometry Page 8 of 23



b) The octahedron has four axes, a, b, c, d running through the
centres of opposite faces. Any rotation induces a permutation
of a, b, c, d. Thus we get a map ψ : R → S4 from the set of
rotations to the symmetric group on the four letters a, b, c, d.
Show that R has at least 24 elemets, show that the map ψ is
injective, and conclude that R is a group isomorphic to S4.

c) Find subgroups of the group of rotations of the octahedron iso-
morphic to C2, C3, C4,D2,D3 = S3,D4, and describe them in
terms of the geometry of the octahedron. (Where Dn denotes
the dihedral group of order 2n, that is, the group of sym-
metries of a regular n-gon, and Cn denotes the cyclic group
of order n, that is also the rotational subgroup of a regular
n-gon.)

d) Show that the group of all symmetries of the octahedron is a
group of order 48.

Proposition 20 In the Euclidean three space we have that:

a) If an isometry fixes two point on a line, then it fixes that
line point-wise. If an isometry fixes three non-colinear points,
then it fixes the plane through those points, point-wise. If an
isometry fixes four non-coplanar points, then it is the identity.

b) An isometry is completely determined by the image of four
non-coplanar points.

c) An isometry that fixes three non-collinear points is either the
identity or a reflection.

d) An isometry that fixes exactly one line point-wise is a rotation.

e) An isometry that fixes exactly one point is a rotatory reflec-
tion.

f) An isometry that fixes at least one point is the product of at
most three reflections.

g) Every isometry is the product of at most four reflections.

Exercise 21 Find all the symmetries of the icosahedron. How
many symmetries of each kind are there? How many in total?

Given a line l, a glide rotation or a screw is a translation along l,
followed by a rotation about l. Given a plane Γ perpendicular to
parallel planes Π and ∆, ρΠρ∆ρΓ is a glide reflection with axis Γ.

Theorem 22 Every isometry of the Euclidean three space is a re-
flection, a translation, a rotation, a rotatory reflection, a glide ro-
tation or a glide reflection.
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3.2.1 Finite groups of isometries

Lemma 23 Every finite group of isometries leaves at least one
point invariant.

Proposition 24 The only finite groups of rotations in three di-
mensions are the cyclic groups Cn, n = 1, 2, . . ., the dihedral groups
Dn, n = 2, 3, . . ., the tetrahedral group T (isomorphic to A4), the
octahedral group O (isomorphic to S4) and the icosahedral group I
(isomorphic to A5).

Exercise 25 Find all the finite groups of symmetries in three di-
mensions.

4 Convex polytopes

An affine subspace A of the Euclidean n-space is a subset which
contains each line {(1− λ)a+ λb | λ ∈ R} between any two points
a, b ∈ A. A hyperplane of En is an affine subspace of dimension
n − 1. The affine hull of a set S ⊂ En, denoted by Aff(S) is the
intersection of all the affine subspaces of En which contains S.

In terms of linear algebra, a hyperplane is a set

H := {(x1, x2, . . . xn) ∈ En | a1x1 + a2x2 + . . .+ anxn = α},

where a1, . . . , an, α ∈ R are fixed real numbers. In other words, each
hyperplane of En is determined by a direction a = (a1, . . . , an) ∈
Nn, and a real number α; hence sometime we shall write H as Ha

α.
Each hyperspace defines two halfspaces, namely,

H+ := {(x1, x2, . . . xn) ∈ En | a1x1 + a2x2 + . . .+ anxn ≥ α},

H− := {(x1, x2, . . . xn) ∈ En | a1x1 + a2x2 + . . .+ anxn ≤ α}.

A subset K of the Euclidean n-space is said to be convex if for any
two points a, b ∈ K, the segment line [a, b] := {(1− λ)a+ λb | 0 ≤
λ ≤ 1} is contained in K.

Exercise 26 Show that the intersection of finitely many halfspaces
in En is a convex set.

Note that the intersection of two convex sets is again convex. The
convex hull of a set S ⊂ En, denoted by Conv(K) is the intersection
of all the convex sets that contain S.
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Exercise 27 Show that the convex hull of a set S is the set{
t∑

i=1

λipi | pi ∈ S, λi ∈ R, λi ≥ 0,
t∑

i=1

λi = 1

}
.

The convex hull of a finite number of points in En is called a convex
polytope. A convex polytope P is said to be a k-polytope if its affine
hull is a subspace of dimension k.

Exercise 28 Show that the set

Cn := {(x1, x2, . . . , xn) ∈ En | 0 ≤ xi ≤ 1 for every i = 1, . . . , n}

is a convex set. Furthermore, show that it is a n-polytope. Can you
express Cn as the intersection of halfspaces?

The empty set ∅ can be thought as the affine subspace of dimension
−1, and it is also a polytope. A 0-polytope is a vertex and a 1-
polytope is an edge. A polygon is a 2-polytope and a 3-polytope is
called a polyhedron.

If the affine hull of points p0, p1, . . . pn ∈ En is of dimension n, then
Conv{p0, p1, . . . pn} is a convex n-polytope, called a n-simplex.

Given a n-polytope P , we can embed it in En+1. If p ∈ En+1 is
such that p /∈ Aff(P ), then Conv(P, p) is called a pyramid and it is
a polytope.

Exercise 29 Show that if P and P ′ are polytopes, then

P × P ′ := {(a, a′) | a ∈ P, a′ ∈ P ′}

is again a polytope.

Theorem 30 Every convex polytope is the intersection of a finite
number of halfspaces.

Given a convex setK and a hyperplaneHa
α, we say thatHa

α supports
K if

α = sup{x1a1 + x2a2 + . . .+ xnan | x ∈ K}.

Given a polytope P and a hyperplane Ha
α that supports P , the in-

tersection F := P ∩Ha
α is called a proper face of P . Note that every

face F of P is also a convex polytope, hence it has a dimension. If
F is a j-polytope, then we say that F is a j-face of P . The faces
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of dimensions 0, 1 and n − 1 are called vertices, edges and facets,
respectively. Often we shall also say that ∅ and P are the improper
faces of P . We denote by P := P(P ) to the set of all (proper and
improper) faces of P .

We now turn our attention to some combinatorial properties of
convex polytopes, which will then motivate our definition of an
abstract polytope.

a) P is a partially ordered set (poset), under the order F ≤ G if
and only if F ⊆ G. We shall say that two faces F and G are
incident if F ≤ G or G ≤ G

b) P is a lattice, where the meet of two faces F and G is F ∧G :=
F ∩ G, and the join F ∨ G is the unique smallest face of P
that contains both F and G.

c) If F < G are such that dimF = j−1 and dimG = j+1, there
are exactly two faces H of dimension j such that F < H < G.

Figure 8: A tetrahedron, represented as a poset.
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d) For every two faces F,G ∈ P such that F ≤ G, the section

G/F := {H ∈ P | F ≤ H ≤ G}

of P is isomorphic to the face-lattice of a polytope of dimen-
sion dimG− dimF − 1.

e) If dimP ≥ 2, the P is connected in the sense that any two
proper faces can be joined by a chain of (proper) incident
faces.

f) P is strongly connected, that is, if F and G are two proper
faces of P such that dimG ≥ dimF +3, then the section G/F
is connected.

4.1 Regular convex polytopes

A symmetry g of P is an isometry of En such that Pg = P , and the
group of symmetries of P is denoted G(P ). An automorphism of P
is a permutation of the face-lattice P which preserves the inclusion;
the automorphism group of P is denoted Aut(P ).

Exercise 31 Given a convex polytope P , is every symmetry of P
an automorphism? What about the other way around?

A flag of a n-polytope P is a subset of pairwise incident faces of the
form {F−1, F0, F1, . . . , Fn−1, Fn} (where Fj is a j-face of P ). The
set of all flags of P is denoted by F(P ).

A convex poytope P is said to be regular if the symmetry group
G(P ) is transitive on the flags. It is said to be combinatorially
regular if its automorphism group is transitive on the flags.

Exercise 32 Is every regular polytope a combinatorially regular
polytope? What about the other way around?

Exercise 33 Consider the two following definitions:

• A polygon is (combinatorially) regular if all its edges are of
the same length and all the angles between them are the equal.
For n ≥ 3, a n-polytope is (combinatorially) regular if the
facets are regular and congruent and the vertex-figures are
isomorphic.
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• A polytope is (combinatorially) regular if G(P ) (Aut(P )) is
transitive on j-faces, for every j = 0, . . . , n− 1.

Are these two definitions equivalent? Are they equivalent to the
ones given before for regular and combinatorially regular poytopes?

Note that to every involutory isometry R of En, we can associate a
mirror {x ∈ En | xR = x} (i.e. the set of all the points invariant
under R). The mirror of a (hyperplane) reflection is a hyperplane!

A Coxeter group is one of the form G := 〈R0, R1, . . . , Rn−1〉,
where each Ri is an involution and satisfies (only!) the relations
RiRj)

pij = E, the identity, where each pij is a positive integer or
infinity, and pij = pji, pii = 1. A Coxeter group is called a string
Coxeter group if pij = 2 if |i − j| > 1. Defining pj := pj−1,j, we
denote the above string Coxeter group by [p1, . . . , pn−1].

Theorem 34 The symmetry group of a regular convex n-polytope
is a finite string Coxeter group. The generators of the group are
(hyperplane) reflections R0, . . . Rn−1 and each pj ≥ 3.

Theorem 35 Any finite string Coxeter group for which pj ≥ 3, for
every j = 1, . . . , n − 1 is (isomorphic to) the symmetry group of a
regular convex polytope.
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5 Abstract polytopes

An (abstract) polytope of rank n or an n-polytope is a partially or-
dered set P endowed with a strictly monotone rank function having
range {−1, . . . , n}. For 0 ≤ j < n, the elements of P of rank j are
called j-faces, and often a j-face is denoted by Fj. The faces of rank
0, 1 and n−1 are usually called the vertices, edges and facets of the
polytope, respectively. We require that P has a smallest face F−1,
and a greatest face Fn (called the improper faces of P), and that
each maximal chain (called a flag) of P contains exactly n+2 faces.
We denote by F(P) the set of all flags of P . Two flags are said to
be adjacent if they differ by exactly one face. Also, we require that
P be strongly flag-connected, that is, any two flags Φ,Ψ ∈ F(P)
can be joined by a sequence of flags Φ = Φ0,Φ1, . . . ,Φk = Ψ
such that each two successive flags Φi−1 and Φi are adjacent, with
Φ ∩Ψ ⊆ Φi for all i. Finally, we require the homogeneity property
(often called the diamond condition), that is, whenever F ≤ G,
with rank(F ) = j − 1 and rank(G) = j + 1, there are exactly two
faces H of rank j such that F ≤ H ≤ G.

Exercise 36 Are the geometric structures of Figure 9 abstract
polytopes?

Figure 9: Are they polytopes?

A 0-polytope contains only two (incident) elements, F−1 and F0;
hence, up to isomorphism, there is only one 0-polytope, and it can
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be thought of as a single point or vertex. A 1-polytope must have
a diagram with diamond shape (see Figure 10), and we can think
of it as an edge with its two end-vertices.

Figure 10: Rank 0 and 1 polytopes, respectively, as posets.

If P is a 2-polytope, it is easy to see that the number of vertices
and edges of P are exactly the same. Furthermore, every vertex is
incident to exactly two edges and every edge is incident to exactly
two vertices (see Figure 11). For this reason, a 2-polytope is called a
polygon, or if it is finite and has p vertices (and hence also p edges),
a p-gon. Finally, 3-polytopes are also often called polyhedra.

F-1

F2

Edges

VerticesVertices

Edges

F2

F-1

Figure 11: The (Hasse) diagram of a 5-gon and a ∞-gon, respec-
tively.

Note that every two geometric p-gons are combinatorially equiva-
lent. For example, a convex pentagon and a pentagram (in Figure
12) are different representations of the same abstract polytope, the
5-gon (in Figure 11).

Given two faces F and G of a polytope P such that F ≤ G, the
section G/F of P is the set of faces {H|F ≤ H ≤ G}. If F0 is
a vertex, then the section Fn/F0 is called the vertex-figure of F0.
Note that every section G/F of a polytope P is also a polytope
and has rank rank(G/F ) = rank(G) − rank(F ) − 1. Hence, the
diamond condition states that all the sections of P of rank 1 have
a diamond-shaped Hasse diagram.
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Figure 12: A convex pentagon and a pentagram are combinatorially
equivalent.

We now reexamine the third condition in our definition of a poly-
tope. A poset P is said to be connected if for any two proper
faces (elements) F and G of P , there is a sequence of proper faces
F = F 0, F 1, . . . , F k = G such that F i and F i+1 are incident (i.e
F i ≤ F i+1 or F i+1 ≤ F i), for every i = 0, . . . , k − 1. A poset P is
said to be strongly connected if every section of P , including itself,
is connected.

Proposition 37 A poset P with a strictly monotone rank function
having range {−1, . . . , n}, a smallest (−1)-face F−1, a greatest n-
face Fn and such that each flag of P contains exactly n+ 2 faces is
strongly connected if and only if it is strongly flag-connected.

Let P be an n-polytope and Φ be a flag of P . The diamond condi-
tion tells us that for i = 0, . . . , n− 1 there is exactly one flag that
differs from Φ in the i-face. Such a flag is called the i-adjacent flag
to Φ and it is denoted by Φi. Furthermore, we define Φi,j := (Φi)j

and extend such notation by induction. We shall denote by (Φ)i

the i-face of the flag Φ. For convenience, we often omit the im-
proper faces when describing a flag, thus, a flag Φ can be denoted
as {(Φ)0, (Φ)1, . . . , (Φ)n−1}. Two i-faces of P , F and F ′, are said
to be adjacent if there exists a flag Φ such that (Φ)i = F and
(Φi)i = F ′.

Proposition 38 For i, j ∈ {0, 1, ..., n− 1},

1. (Φi)i = Φ.

2. if |i− j| > 1, Φi,j = Φj,i.

3. (Φ)i = (Φj)i if and only if i 6= j.
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An n-polytope P , n ≥ 2, is said to be equivelar if, for each j =
1, . . . , n− 1, there exists an integer pj, such that, for each flag Φ ∈
F(P), the section (Φ)j+1/(Φ)j−2 is a pj-gon. In this case, we say
that P has Schläfli type (or sometimes only type) {p1, p2, . . . pn−1}.
All 2-polytopes are equivelar; furthermore, a p-gon has Schläfli type
{p}. We note that an infinite 2-polytope or aperiogon has Schläfli
type {∞}. A polyhedron is equivelar of Schläfli type {p, q} if and
only if all its facets are p-gons and all its vertex-figures are q-gons.
In particular this implies that the Platonic Solids are equivelar.
For example, a regular dodecahedron has type {5, 3}. Every two
2-polytopes with the same Schläfli type are isomorphic abstract
polytopes. However this is not true for higher rank.

Exercise 39 If we take a cube and identify opposite vertices, edges
and faces, we obtain a hemi-cube. The hemi-cube can be represented
in the projective plane as in Figure 13. What is the Schläfli type
of the hemi-cube? Can you find an abstract polytopes that is not
isomorphic to the hemi-cube, but has the same Schläfli type?

Figure 13: A hemi-cube.

An example of a 4-polytope is a hypercube or 4-cube. It has cubes
as facets, three of them around each edge (see Figure 5) implying
that its vertex-figures are tetrahedra. Hence, its Schläfli type is
{4, 3, 3}.

Alternatively, the Schläfli type of an equivelar polytope can be
defined as follows. For rank 2, we say that the Schläfli type of
a p-gon is {p}. For higher rank, an n−polytope P is said to
have Schläfli type {p1, p2, . . . , pn−2} if all its facets have Schläfli
type {p1, p2, . . . , pn−1} and all its vertex-figures have Schläfli type
{p2, p3, . . . , pn−1}.
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Symmetries of polytopes

Let P and Q be two n-polytopes. An isomorphism from P to Q
is a bijection γ : P → Q such that γ and γ−1 preserve the order.
An anti-isomorphism δ : P → Q is a bijection reversing the order,
in which case P and Q are said to be duals of each other, and the
usual convention is to denote Q by P∗. (Note that (P∗)∗ ∼= P .)
An isomorphism from P onto itself is called an automorphism of
P . An anti-isomorphism from P onto itself is called a duality of P
(sometimes also self-duality). A polytope P is said to be self-dual
if there exists a duality of P . The set of all automorphisms and
dualities of a polytope P forms a group, the extended group D(P)
of P , which contains Aut(P), the subgroup of all automorphisms
of P , as a subgroup of index at most 2. When a polytope P is not
self-dual, then its extended group coincides with its automorphism
group.

Figure 14: The tetrahedron is self-dual. The dodecahedron is dual
to the icosahedron.

Lemma 40 Let P be an n-polytope, let γ ∈ Aut(P) and let Φ be a
flag of P. Then,

(Φi)γ = (Φγ)i and (Φ)iγ = (Φγ)i,

for every i = 0, 1, . . . , n− 1.

Furthermore, if P is self-dual and δ is a duality of P then

(Φi)δ = (Φδ)n−1−i and (Φ)iδ = (Φδ)n−1−i,

for every i = 0, 1, . . . , n− 1.
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Corollary 41 Let P be an n-polytope, then Aut(P) acts freely on
F(P), that is, every automorphism of P that fixes one flag is the
identity.

Lemma 42 Let P be an n-polytope, and let us denote by Orb(P)
the set of all flag orbits of P under the action of Aut(P). Let
O1,O2 ∈ Orb(P) and Φ ∈ O1. If for some i ∈ {0, . . . n − 1},
Φi ∈ O2, then for any Ψ ∈ O1, Ψi ∈ O2.

Since Aut(P) acts freely on F(P), for each O ∈ Orb(P) and each
Φ ∈ O, there exists a bijection φ : Aut(P) → O, φ : γ 7→ Φγ.
Therefore there exists a bijection between every two flag orbits of
P . In particular, if P is finite, |Aut(P)| = |O| = |F(P)|

|Orb(P)| . Hence,

|Aut(P)| ≤ |F(P)|.

Regular polytopes

We started this course with a brief historical introduction to regular
polytopes. We now formally define the concept of regularity. An
(abstract) polytope is said to be regular if its automorphism group
has exactly one orbit on the flags. Equivalently, a polytope P is
regular if and only if Aut(P) is transitive on F(P).

Every regular convex polytope is a regular abstract polytope. The
Kepler-Poinson polyhedra and the Petrie-Coxeter polyhedra are
regular abstract polytopes.

Note that regular n-polytopes are equivelar since for each j =
1, . . . , n − 1 and any two flags Φ,Ψ of the polytope, the sections
(Φ)j+1/(Φ)j−2 and (Ψ)j+1/(Ψ)j−2 are isomorphic. Furthermore, for
any i, j ∈ {0, . . . , n − 1} with i < j, the sections (Φ)j/(Φ)i and
(Ψ)j/(Ψ)i are isomorphic and regular.

Exercise 43 Is every equivelar n-polytope P a regular polytope?

Exercise 44 1. Show that every 2-polytope is regular.

2. Consider the following definition: Every 2-polytope is regu-
lar; a n-polytope (n ≥ 3) is regular if its facets and vertex
figures are regular and alike. Is this definition equivalent to
our concept of regularity?

Let P be an regular n-polytope of Schläfli type {p1, p2, . . . pn−1}
and let Φ be a base flag of P . Since Aut(P) is transitive on the
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flags, for every i = 0, 1, . . . , n − 1, there exists ρi ∈ Aut(P) such
that Φρi = Φi.

Then,
Φρ2

i = (Φi)ρi = (Φρi)
i = Φi,i = Φ;

also, if |i− j| > 1, then

Φρiρj = (Φi)ρj = (Φρj)
i = Φj,i = Φi,j = Φρjρi.

Since Aut(P) acts freely on F(P), this implies that

ρ2
i = (ρiρj)

2 = ε, if |i− j| > 1. (1)

Lemma 45 Suppose that P is a polytope such that for some base
flag Φ there exist automorphisms ρi such that Φρi = Φi for every
i ∈ {0, . . . , n− 1}. Then P is a regular polytope. Furthermore, the
automorphisms ρiare unique and they generate the automorphism
group.

We shall refer to ρ0, ρ1, . . . , ρn−1 as the distinguished generators of
P with respect to Φ.

For the reminder of this Section, unless otherwise stated we let P be
a regular n-polytope, Φ be a base flag of P and let ρ0, ρ1, . . . , ρn−1

be the distinguished generators of P with respect to Φ.

Lemma 46 Let j and k such that −1 ≤ j ≤ k ≤ n, and consider
the section Q := (Φ)k/(Φ)j of P. Then Q is regular and

Aut(Q) ∼= 〈ρj+1, ρj+2, . . . , ρk−1〉.

Corollary 47 1. For each i, 0 < i < n,

Aut((Φ)i+1/(Φ)i−2) ∼= 〈ρi−1, ρi〉.

Thus if {p1, p2, . . . , pn−1} is the Schläfli type of P, we have

(ρi−1ρi)
pi = ε.

2. for any J ⊆ {0, . . . , n − 1}, let ΦJ := {(Φ)j| j ∈ J}. Then
the stabilizer (under the action of Aut(P)) of ΦJ is precisely
the group 〈ρj| j /∈ J〉.

Lemma 48 Let P be a regular n-polytope, let Φ be a base flag of
P and let ρ0, ρ1, . . . , ρn−1 be the distinguished generators of P with
respect to Φ. Then the distinguished generators of P satisfy the
intersection condition

〈ρi| i ∈ I〉∩〈ρj| j ∈ J〉 = 〈ρi| i ∈ I∩J〉, for every I, J ⊆ {0, . . . n−1}.
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A group that is a quotient of a sting Coxeter group and whose
generators satisfy the intersection condition of lemma 48 is called
a string C-group.

Theorem 49 The automorphism group of a regular polytope is a
string C-group. And conversely, every string C-group is the auto-
morphism group of a regular polytope.

Chiral polytopes

Coxeter defined a regular “map” (think 3-polytope) as a map whose
automorphism group contains two particular elements: one that
cyclically permutes consecutive edges in one face, and another
which cyclically permutes the successive edges meeting at one ver-
tex of this face. Note that the automorphism groups of such maps
need not be transitive on the flags. When the automorphism group
of a “regular” map possesses an automorphism ρ0 which inter-
changes the two vertices of some edge without interchanging the
incident two faces, the map becomes reflexible in Coxeter’s termi-
nology. If no such automorphism exists, then the map is irreflexible.

In more terms of abstract polytopes, reflexible maps are regular
(abstract) polytopes while irreflexible maps are not (as their auto-
morphism groups are not transitive on the flags). In fact, irreflexible
maps are now often called chiral maps. Extending this idea to rank
n > 3, we define a chiral n-polytope as follows.

An n-polytope P with base flag Φ is called chiral if it is not regu-
lar, but there exist automorphisms σ1, σ2, . . . , σn−1 such that each σi

fixes all faces in Φ different from (Φ)i−1 and (Φ)i, and cyclically per-
mutes consecutive i-faces of P in the rank 2 section (Φ)i+1/(Φ)i−2

of P . Such automorphisms generate Aut(P) and are called the
distinguished generators of Aut(P) with respect to Φ.

Let Ψ be a flag of a polytope P . We say that Ψ is even with respect
to Φ if there exists a sequence of adjacent flags Φ = Φ0, Φ1, . . .
Φ2k−1, Φ2k = Ψ. If Ψ ∈ F(P) is not even, then we say that it is odd
(with respect to Φ). It is not hard to see that the orbit of Φ under
the automorphism group of a chiral polytope P is precisely the set
of all even flags with respect to Φ. This implies that odd flags exist
in P and thus, the automorphism group of a chiral polytope has two
orbits on the flags (the set of even flags and the set of odd flags).
Furthermore, all the flags adjacent to an even flag are odd (and all
flags adjacent to an odd flag are even). Hence, chiral polytopes are
precisely those polytopes whose automorphism group has exactly
two orbits on the flags, with adjacent flags in different orbits.
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Figure 15: A chiral polytope on the torus.

Chiral polytopes can be said to occur in pairs of enantiomorphic
forms, with one being the ‘mirror image’ of the other (see Figure
16 for an example)

Figure 16: A chiral polyhedron and its enantiomorphic form.
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