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Digital and print brain atlases have been used with success to help in

the planning of neurosurgical interventions. In this paper, a technique

presented for the creation of a brain atlas of the basal ganglia and

the thalamus derived from serial histological data. Photographs of

coronal histological sections were digitized and anatomical structures

were manually segmented. A slice-to-slice nonlinear registration

technique was used to correct for spatial distortions introduced into

the histological data set at the time of acquisition. Since the

histological data were acquired without any anatomical reference

(e.g., block-face imaging, post-mortem MRI), this registration

technique was optimized to use an error metric which calculates a

nonlinear transformation minimizing the mean distance between the

segmented contours between adjacent pairs of slices in the data set. A

voxel-by-voxel intensity correction field was also estimated for each

slice to correct for lighting and staining inhomogeneity. The

reconstructed three-dimensional (3D) histological volume can be

viewed in transverse and sagittal directions in addition to the original

coronal.

Nonlinear transformations used to correct for spatial distortions of

the histological data were applied to the segmented structure contours.

These contours were then tessellated to create three-dimensional

geometric objects representing the different anatomic regions in

register with the histological volumes. This yields two alternate

representations (one histological and one geometric) of the atlas.

To register the atlas to a standard reference MR volume created

from the average of 27 T1-weighted MR volumes, a pseudo-MRI was

created by setting the intensity of each anatomical region defined in the

geometric atlas to match the intensity of the corresponding region of

the reference MR volume. This allowed the estimation of a 3D

nonlinear transformation using a correlation based registration scheme

to fit the atlas to the reference MRI.

The result of this procedure is a contiguous 3D histological volume, a

set of 3D objects defining the basal ganglia and thalamus, both of which
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are registered to a standard MRI data set, for use for neurosurgical

planning.
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Introduction

Functional stereotactic neurosurgery is increasingly used for the

treatment for movement disorders such as Parkinson’s disease

(Atkinson et al., 2002; Cohn et al., 1998; Cuny et al., 2002; Gross

et al., 1999; Lenz et al., 1995; Lombardi et al., 2000; Samuel et al.,

1998). While symptoms associated with Parkinson’s disease (such

as tremor, rigidity, bradykinesia, and impaired gait) can be treated

pharmacologically, intractable cases require surgical intervention.

For surgical candidates, this can include the introduction of

recording or stimulating probes in deep cerebral structures and

the creation of lesions in the thalamus (thalamotomy) (Atkinson et

al., 2002; Gross et al., 1999; Lenz et al., 1995) or globus pallidus

(pallidotomy) (Cohn et al., 1998; Lombardi et al., 2000; Samuel et

al., 1998), or insertion of brain stimulation electrodes in the

thalamus, globus pallidus, or subthalamic nucleus. Pre-surgical

planning of these procedures requires a detailed analysis of the

thalamus and the basal ganglia from pre-operative Computed

Tomography (CT) and Magnetic Resonance Imaging (MR)

volumes. However, cyto-architectonic boundaries between specific

subcortical nuclei are often indistinguishable due to the limited

contrast and resolution of these imaging modalities.

While newMR imaging and image processing techniques enable

visualization of some nuclei (Deoni et al., 2005; Fujita et al., 2001;

Starr et al., 1999), atlases are often used in conjunction with more

standard imaging techniques to enhance the visualization of surgical

targets for pre-operative planning and to accurately predict the

optimal location of surgical targets in sub-cortical nuclei (Atkinson

et al., 2002; Bertrand et al., 1973; Nowinski et al., 1997, 2000;
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Fig. 2. Close-up of the region of interest shown in Fig. 1. Between each pair of

vertical lines, four nissl- and myelin-stained slices were acquired. Adjacent

pairs of nissl- andmyelin-stained sliceswere photographed and overlaid on top

of one another to create a single slice used in this dataset. Examples of the 2D

histological data used to create a 3D histological volume are shown in Fig. 3.

Fig. 1. The brain from which the data set was taken. The region of interest

for the serial histological data acquisition is outlined with the dotted line.
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St-Jean et al., 1998; Xu and Nowinski, 2001). Diffusion tensor

imaging has also been used to map thalamo-cortical connections in

order to derive probabilistic segmentations of the human thalamic

nuclei (Behrens et al., 2003; Johansen-Berg et al., 2005). However,

at this time, neither of these in vivo imaging techniques is able to

provide the resolution required to accurately identify the subcortical

nuclei targeted in functional neurosurgery, and therefore cannot

provide the detailed segmentation that we present here.

Print atlases were the first visualization tools used to aid in the

identification of anatomical structures for surgical planning (Afshar

et al., 1978; Ono et al., 1990; Schaltenbrand and Bailey, 1959;

Schaltenbrand and Wahren, 1977; Schnitzlein and Murtagh, 1980;

Talairach and Tournoux, 1988, 1993; Van Buren and Borke, 1972;

Watkins, 1969). Typically, digital atlases are 3D visualizations of

the data presented in these atlases. When digital atlases were first

used, linear transformations matching the atlas to patient data were

used to register an atlas to an individual patient scan (Bertrand et al.,

1973; Nowinski et al., 1997; Otsuki et al., 1994). Our group was

one of the first to estimate and apply nonlinear transformations to

warp a digital atlas to fit pre-operative patient MR data in order to

account for local variations in the anatomy (St-Jean et al., 1998).

A number of digital atlases of the human brain, based on print

atlases, have been previously published. Nowinski et al. (1997)

have developed an integrated digital atlas that incorporated data

from three print atlases by Ono et al. (1990), Schaltenbrand and

Wahren (1977), and Talairach and Tournoux (1988). All three

atlases are registered together using landmark based linear trans-

formations needed to map the Ono et al. (1990) and Schaltenbrand

and Wahren (1977) atlases into Talairach space (Talairach and

Tournoux, 1988). In order to register the combined atlas to a

subject or patient, a piece-wise linear approach is used to transform

the atlas to the MR volume. The Talairach and Tournoux atlas was

also used as the foundation for a digital atlas by Ganser et al.

(2004). The original plates were scanned and reconstructed in three

dimensions by calculating a Delauney tetrahedrization. The

surfaces of anatomic structures in the Talairach atlas were

reconstructed using the marching cubes algorithm (Lorensen and

Cline, 1987). The resulting volume was then intersected at half the

slice-to-slice distance to complete the interpolation.

The digital atlas used previously at the Montreal Neurological

Institute (MNI) was developed by St-Jean et al. (St-Jean et al.,

1998). It is based on a 3D reconstruction of the axial contour data

from the Schaltenbrand and Wahren atlas (Schaltenbrand and

Wahren, 1977). The digital atlas included 16 structures and has a

varying slice thickness of 0.5 to 3mm due to the slice-to-slice
distance of the original atlas. The reconstructed data set was

interpolated with a Hermite polynomial (Foley et al., 1990) to

achieve a 0.5mm isotropic resolution. Slice-to-slice spatial incon-

sistencies in structure contours were considered to be small, and

thus not accounted for. The interpolated digital atlas was warped in

3D to fit a high resolution, high signal-to-noise ratio standard

reference volume that is the result of the average of 27 MRI scans

of the same subject (Holmes et al., 1998), known as the Colin27

MRI average. The warping was achieved via a thin-plate-spline

(TPS) (Bookstein, 1989) transformation based on 250 homologous

landmarks manually identified by a neuroanatomist on both

volumes. The result is a set of anatomical labels defined in the

region of the basal ganglia and thalamus that are aligned with the

Colin27 MRI average. In order to customize the digital atlas to

patient MRI data, a nonlinear transform between the Colin27 MRI

average and a patient’s MRI is estimated automatically (Collins

and Evans, 1997; Collins et al., 1995). This transformation is

applied to the digital atlas to map it onto patient’s pre-operative

MRI to facilitate surgical planning.

While this atlas has proven very useful (Atkinson et al., 2002;

Duerden et al., 2003), it has limited inherent resolution in the slice

direction (0.5 mm), contains a limited number of structures, and

contains some small misregistrations between the digital atlas and

the Colin27 MRI average that are propagated to patient MRI data

during the atlas customization procedure.

In this manuscript, these limitations are addressed. Techniques

are developed for the creation of a new and improved atlas for

stereotactic neurosurgery. This atlas contains both histological and

geometric (i.e., structural anatomical) data and is registered to aMRI

reference volume. Preliminary work on this new atlas was presented

in (Chakravarty et al., 2003). The new digital atlas is derived from a

single set of high-resolution, thin-slice histological data of the region

of basal ganglia and thalamus. The atlas contains 105 anatomical

structures that were manually delineated by a neuroanatomical

expert on the histological data using sources for the gross anatomy

(Schaltenbrand and Wahren, 1977), for the temporal lobe (Gloor,



Fig. 3. An example of the data set: a coronal slice through the center of the volume. Slices show the nuclei of the thalamus, caudate nucleus, putamen, globus

pallidus, claustrum as well as the myelinated fibers of the internal capsule, corpus collosum, external capsule, and the extreme capsule. Left: the color data with

segmentation lines drawn. Middle: the segmented contours. Right: grey-level image.
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1997) and for the thalamus (Hirai and Jones, 1989). The histology

was parcelated three times according to these sources. To reconstruct

the histological and geometric data in three dimensions (3D), the

structure contours were used in the development of an optimization

procedure for slice-to-slice registration and intensity correction of

the histological data. These reconstructions were registered to the

Colin27 high resolution referenceMRI (Holmes et al., 1998), using a

novel atlas-to-MRI matching technique. Atlas customization (to any

subject scan) can be achieved through a flexible nonlinear atlas-to-

subject registration technique.

Our long-term goal is to use this refined atlas to improve pre-

operative planning and thereby positively affect the outcome for

patients undergoing surgeries for movement disorders. Since this

atlas contains a detailed segmentation and classification of

subcortical nuclei, it can also be used in post-operative follow-up

and in other applications requiring a detailed analysis of the basal

ganglia and thalamus.

In this paper, we will discuss the optimization of a slice-to-slice

histological data registration technique (Chakravarty et al., 2003)

used to minimize morphological misalignment throughout the

histological volume. The parameters are optimized based on the

minimization of error between the segmented contours of seven

pairs of adjacent slices which span the dataset. These parameters are

then used to register all consecutive pairs of slices of the

histological data. In addition, an improved intensity inhomogeneity

correction technique based on previous work (Chakravarty et al.,

2003), the creation of a 3D geometric atlas, and an atlas-to-template

warping technique are also presented. Since the reconstruction and

intensity correction of histological data plays an integral role in this

work, the next section will review previous techniques used in these

domains.
Table 1

Parameters used in the registration procedure for different resolutions in

scale space

Step 1 Step 2 Step 3

FWHM (Am) 640 340 200

Step size (Am) 1700 850 510

Lattice diameter (Am) 3400 1700 1020

Sub lattice 30 20 20
Previous work: the 3D reconstruction of histological data

The atlas presented in this paper is based on a 3D histological

reconstruction technique which was developed for the reconstruc-

tion of a fully labeled set of histological data. Serial histological

data sets are notoriously difficult to reconstruct due to the

unpredictable nature of the artefacts introduced when the brain is

sectioned in a microtome. Such artefacts include tearing, stretch-

ing, and compression. Intensity inhomogeneities can also occur

due to inhomogeneous staining densities and inconsistent lighting.
Groups studying the reconstruction of histological data typically

employ one or more of the following steps:

(1) Slice-to-slice registration techniques to minimize structural

inhomogeneities between slices.

(2) Slice-to-blockface registration to further minimize the

structural inhomogeneities of a single slice. We define the

blockface to be the photograph of the volume prior to the

acquisition of a single slice histological data. The blockface

serves as a local reference for the single slice.

(3) Reconstructed volume to global reference warping to deal

with global structural inhomogeneities. Global references

may include Magnetic Resonance Imaging (MRI), Com-

puted Tomography (CT) or Positron Emission Tomography

(PET) data.

This section will briefly review methods used for the

reconstruction and intensity correction of histological data.

A group dealing with the analysis of signal changes found in the

MR volumes acquired from patients suffering from Creutzfeld–

Jakob disease developed novel techniques to reconstruct photo-

graphs from the anterior and posterior surfaces of thickly sliced (12

mm) cryogenic data (Bardinet et al., 2003; Colchester et al., 2000).

Two different transformations are estimated. In the first, a landmark-

based rigid-body transformation is used on each individual slice to

register the anterior and posterior side photographs. In the second, a

block-matching strategy (Ourselin et al., 2001) is used to estimate a

rigid transformation between the anterior side and the block-face of

the cryogenic volume. The 3D reconstructed histological volume

was then registered to an MR volume of the same brain using an

iterative closest point (ICP) technique. These methods were later

improved by Kenwright et al. (2003) by using an ICP technique to

first register the outer brain surfaces of the histological volume and



Fig. 4. Data used for parameter optimization of ANIMAL. Seven pairs of adjacent slices were taken from the volume. Slices from different areas of the brain

will have different shape and intensities due to varying amounts of grey and white matter in each slice. These slices were selected get a representative sample

from the entire data set in order to estimate the optimal stiffness, weight, and similarity values to use in the registration process.
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the MR volume. This transformation was then refined by registering

each individual slice within the MR volume.

Malandain et al. (2004) performed the 3D reconstruction of 2D

autoradiographs of a rhesusmonkey in order correlate histologywith

functional activity found in the awake monkeys during an fMRI

scan. The data used do not have any photographic block face

reference, but an MRI volume is used as a global reference. The 3D

reconstruction uses the block matching strategy of Ourselin

(Ourselin et al., 2001) mentioned in the previously. An initial set

of 3D subsections is created. A slice in each subsection is chosen as a

reference to which the remaining slices in the subsection are

registered using a rigid body transformation. Each of these

subsections is then registered to a single reference section in order

to create a 3D volume. A slice-by-slice intensity correction scheme

which uses an affine transformation to match the histograms of each

slice to a single reference slice is employed. A refinement of this

initial reconstruction is done using a slice-by-slice correspondence

established with the reference MR. Only 2D affine slice-to-MRI

transformations are used so no slice is interpolated out of the

autoradiograph slice-acquisition plane.

Schormann and Zilles (1998) developed a technique for the

reconstruction of serial histological data, which was later used in a

population study of the position and spatial variability of the optic

radiations (Burgel et al., 1999) and the human motor system
Table 2

Region of the parameter space resampled to determine optimal

transformation

FWHM (Am) Similarity (t1) Stiffness (t2) Weight (t3)

640 0.65 � t1 � 0.95 0.35 � t2 � 1 0.85 � t3 � 1.5

340 0.65 � t1 � 0.95 0.35 � t2 � 1 0.75 � t3 � 1.5

200 0.75 � t1 � 0.95 0.15 � t2 � 1 0.05 � t3 � 0.45
(Rademacher et al., 2001). Slices of histological data are digitized using

a camera and individual slices were registered to a single slice in the

dataset using linear rigid-body transformation estimated using a least-

squares technique. Each slice is then registered with the corresponding

video block face using a linear transformation estimated using amodified

version of the principal-axes transformation (PAT) which accounts for

shearing in the slice plane that the regular PAT does not (Schormann and

Zilles, 1997), and a 2D nonlinear transformation. The resulting

reconstructed volume was modeled as an elastic medium which was

registered to an MRI reference using a nonlinear deformation estimated

from the solution of a system of partial differential equations subject to

the mechanical constraints of the medium.

Other groups have used landmark based techniques to

reconstruct serial histological data. Toga et al. (1997) used a

fiducial marker based registration process to align serial sections of

cryogenic data. Their method uses a combination of local and

differential scaling to put the anatomical data in Talairach space

(Talairach and Tournoux, 1988). Kim et al. (1997) used a TPS

(Bookstein, 1989) technique to reconstruct a set of rat brain

autoradiographs to a video block face reference. Their technique

was implemented using landmarks which are automatically defined

on a grid or circle, and these landmarks move during each iteration

so that the transformation seeks to minimize the mutual informa-

tion between the images after warping.
Table 3

Optimized parameters found for similarity, stiffness, and weight for each

resolution used in the outer loop

FWHM (Am) Similarity (t1) Stiffness (t2) Weight (t3)

640 0.95 0.6 1.3

340 0.9 0.6 1.3

200 0.9 0.2 0.5
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Techniques which rely on image features have also been

developed. A histological volume for atlas-based target identifica-

tion in deep brain surgical stimulation for patients suffering from

Parkinson’s disease was developed by Ourselin et al. (2001). Their

reconstruction is based on a block-matching (Ourselin et al., 2000)

strategy to calculate local affine transformations to minimize the

effects of the slice-to-slice structural inhomogeneities. The

reconstructed histological volume is registered to MR data of the

same subject via a 3D version of the same block-matching

registration strategy. Volumes from PET were used as references

for histological reconstruction by Mega et al. (1997). First,

histologically stained images are registered to a cryogenic block-

face using a 3D elastic warping technique (Thompson and Toga,

1996). A region of interest analysis between the reconstructed

histological volume and PET data yielded a method of correlating

the two different modalities. Delzescaux et al. (2003) registered

histological images of a baboon brain to an MR reference using a

free-form deformation based on the optimization of mutual

information, to estimate a deformation to map the histological

volume to MRI volume of the same brain.

The correction of local intensities variations in histological data

has not received much attention, but global slice-to-slice intensity

correction via histogrammatching has been addressed byMalandain

et al. (Malandain and Bardinet, 2003; Malandain et al., 2004).

Daguet et al. (2004) also perform a histogram matching, where

ranges of intensities representing a specific tissue class (grey matter,

white matter, or basal ganglia) are matched on a slice-to-slice basis.
Fig. 5. Intensity correction. Top, from left to right: the original source image, the

with intensity correction values stored in a neighborhood, the intensity correction

represent lower scaling factors whereas hot colors represent higher scaling facto

estimated and averaged with both the previous and next slice in the series.
The reconstruction technique presented here does not rely on

anatomical references (such as MR volumes or video information

of the block-face) to correct for local and global structural

inhomogeneities, due to the age of the serial histological data. A

slice-to-slice nonlinear registration technique which minimizes

anatomic mis-registration throughout the reconstructed data set is

presented here. An intensity correction scheme is also presented

which analyzes local neighborhoods on each slice in order to build

a voxel-by-voxel multiplicative field to correct for local variations

in image intensities between slices.
Histological data acquisition

The brain used to create this histological data set was acquired in

1957 from a male patient who died of non-neurological causes at the

Montreal Neurological Institute/Hospital. This data set was chosen

because it has been intensively studied and used for teaching over

the past 45 years. In addition, it has been manually segmented over

the course of 2 years and revised over the past 3 years.

The specimen was fixed in 10% formalin. After fixation, the

brain was split along the midline with the left half of the septum

pellucidum intact. The aqueduct of Sylvius was also divided through

the length of the midline. From this left hemisphere, a rectangular

block of tissue was cut with its superior and inferior surfaces parallel

to the inter-commissural plane and the anterior, posterior, medial,

and lateral surfaces perpendicular to the inter-commissural plane.
target image, the corrected image. Bottom, from left to right: estimated grid

grid resampled to match the voxel size of the original image. Cool colors

rs. Note that the intensity correction procedure described in this paper is
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The superior portion of this block lies tangent to the upper-most

portion of the corpus collosum and includes some of the cingulate

cortex at the anterior and posterior ends of the block. The inferior

plane of the block is at the level of infundibulum. The anterior most

frontal section is a few millimeters behind the tip of the genu of the

corpus collosum and the posterior most section is cut through the

posterior end of the splenium of the corpus collosum and the very

posterior aspect of the quadrigeminal plate. On the fixed brain, this

block measured approximately 6 cm from front to back, 4.4cm from

top to bottom, and 3.2 cm from side to side. This volume contains all

of the thalamus, hypothalamus, and basal ganglia together with the

amygdala and the hippocampus (except for the posterior portion).

The original brain with the region of interest marked is shown in Fig.

1. A close-up of the region of interest is shown in Fig. 2.

After fixation, the block was mounted in paraffin prior to being

microtomed into coronal sections. Pairs of slices were sampled from

this data set at 0.70 mm intervals, yielding a total of 86 pairs of slices

across the block. For each pair of slices, one was stained with Luxol

Blue for myelin while the other was stained with a Nissl stain for cell

bodies. Each slice was then photographed in black and white and the

positive of each image was digitized using a flatbed scanner.

Correspondingmyelin and cell body photographs were overlayed on

top of one another and the anatomy of each image was manually

matched. The resulting images were digitally colored in Adobe

Photoshop in red and blue to represent details regarding the cell

density as well as myelinated fiber tracts. These are the histological

images that are used to build a 3D reconstructed volume. This data

was manually segmented by one of the authors (GB) using Adobe

Photoshop. Each image has a center-to-center voxel spacing of

0.034 mm � 0.034 mm and a slice-to-slice spacing of 0.7 mm. The
Fig. 6. ROIs defined for intensity correction optimization. Top: ROI for corpus co

volume before intensity correction.
images were manually segmented and labeled combining informa-

tion and nomenclature from three different references: for gross

anatomy (Schaltenbrand andWahren, 1977), the thalamus (Hirai and

Jones, 1989), and the temporal lobe and the limbic system (Gloor,

1997). All of the labels, numbers and the anatomy associated with

them are shown in Appendix A. The contours from this segmenta-

tion are used to build a geometric atlas.

For subsequent image processing, the contours were separated

from the histological data layer. Both the histological and contour

data were converted to grey-level images and used as input for the

processing described in the next section. An example of the data

set and the contours can be seen in Fig. 3.
3D reconstruction

As mentioned in the Introduction, artefacts are introduced into

the data set during the acquisition of histological data. These may

include, tearing, local compression, shearing, or stretching. If

these slices of histological data are reconstructed (i.e., stacked)

without any additional image processing steps, the resulting

volume will be inhomogeneous with respect to intensity and

morphometry in the slice direction (the so called ‘‘stack of

pancakes’’ or the ‘‘banana reconstruction’’ problem (Malandain et

al., 2004)). A nonlinear registration approach to reduce the effects

of spatial artefacts in the data is presented in this section. Our

preliminary work (Chakravarty et al., 2003) is improved here by

optimizing different parameters used in the Automatic Nonlinear

Image Matching and Anatomical Labeling (ANIMAL) (Collins

and Evans, 1997; Collins, 1995) algorithm for slice-to-slice
llosum Bottom: ROI for striatum. ROIs shown are overlaid on histological



Fig. 7. Graphs of standard deviation versus changing step size for the ROI.

Top: standard deviations for the striatum. Bottom: standard deviations for

the corpus callosum. In both cases, the standard deviations for each slice is

at a minimum at a step size of 4.76 mm.

Fig. 8. Graph of the mean intensity on each slice in the ROI after the

intensity correction process. Top: graph for striatum. Bottom: graph for

corpus collosum. One can see that the slice-to-slice intensity varies much

less after correction.
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registration of histological data. The following sections describe

the ANIMAL algorithm and the parameter optimization proce-

dure. The ANIMAL slice-to-slice registration procedure is applied

to align all slices together to build a contiguous 3D histological

volume in an algorithm described later.

Once a spatially contiguous 3D volume has been built, slice-to-

slice intensity artefacts due to lighting and staining differences may

remain. The intensity correction scheme presented here is an

improvement over the global technique presented in (Chakravarty

et al., 2003). Instead of computing a slice-by-slice global

correction, the technique is modified to examine local changes in

intensity on each slice in order to create a voxel-by-voxel scalar

correction field. This intensity correction technique is also

optimized in order to achieve the best intensity correction for the

entire reconstructed volume. Details of this improved intensity

inhomogeneity correction technique and the optimization of this

technique are also provided.

ANIMAL and histological morphology correction

In the literature, slice-to-slice anatomical consistency is typically

achieved by registration of the histological data to a reference image

such as a block face (Bardinet et al., 2003; Colchester et al., 2000;

Delzescaux et al., 2003; Kenwright et al., 2003; Kim et al., 1997;

Ourselin et al., 2000; Toga et al., 1997). Since no reference data was
available for the histological data used here, the anatomical

consistency between adjacent slices within the data set is maximized

to achieve global three-dimensional consistency.

Nonlinear registration

Spatial inhomogeneities between successive slices are reduced

by estimating a 2D deformation field to register two slices together.

For each source– target pair of slices to be matched, ANIMAL

defines a 2D regular lattice of control nodes. Avector is estimated at

each node that maximizes the correlation ratio between the source

and target data of the local intensity neighborhood centered at each

lattice point. This similarity criterion is not sensitive to global

intensity changes between slices. Only local changes in the contrast

will affect the transformation estimation. This allows the compu-

tation of the spatial registration first, and the intensity correction

afterwards. Bi-cubic interpolation is used to interpolate the

deformation field between node points.

The nonlinear transformation is calculated in a hierarchical

fashion, where large deformations are calculated on slices blurred

with a Gaussian kernel with a large full-width at half-maximum

(FWHM). The transformation estimated at a lower resolution is

used as the input for the next step where it is refined by estimating a

transformation on slices which have been blurred with a Gaussian

kernel with a smaller FWHM. This procedure is repeated three

times, and is known as the outer loop. At each step of the outer
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loop, the ANIMAL algorithm is applied iteratively in an inner loop

to optimize the nonlinear transformation (N) that maximizes the

similarity between a source slice (S) and a target slice (T) with the

following objective function G:

& S; T ;Nð Þ ¼ b S; T ;Nð Þ þ C Nð Þ ð1Þ

where b is the local similarity measure (i.e., the correlation ratio)

and C is a cost function. The nonlinear transformation is

represented by a deformation field that is iteratively calculated in

a two step process: the first step involves the calculation of local

translations for each node defined by the optimizing Eq. (1) and the

second is a smoothing step to ensure that the deformation field is

continuous and does not cause stretching, tearing, or overlap.

The transformation N is estimated by calculating local trans-

lations at each node of the lattice grid. The global optimization of

Eq. (1) is achieved by the local optimization at each node. Three

parameters can be set which can change the quality of the nonlinear

transformation that is estimated in the inner loop: the similarity

cost ratio (t1), the stiffness (t2), and the weight (t3). If we let di be

the local translation at a node then
Fig. 9. Results of the 3D reconstruction. Left: reconstruction of the slices withou

volume). Middle: reconstruction of the slices after slice-to-slice registration. Righ
&i dið Þ ¼ t1b S; T ; ni þ dið Þ þ 1� t1ð ÞC dið Þ: ð2Þ

b is the local similarity measure calculated at a node ni, C is a cost

function limiting the size of the translation vector, and t1 is the

similarity-cost ratio which balances the similarity measure and the

cost function. The similarity cost ratio is constant for all ni.

As mentioned earlier, the transformation being calculated

should be smoothly varying and therefore should not induce

infinite compression, allow the overlap of two distinct nodes, or

induce tearing of the image. The deformation field is therefore

regularized using the average of the translation vectors from the

neighboring nodes:

diV ¼ 1� t2ð Þdi þ t2Mi; ð3Þ

where Mi, is the mean deformation vector calculated from the

immediate neighborhood of node ni, and t2 is the stiffness

parameter where 0 � t2 � 1. Large values for the stiffness

parameter yield a smooth deformation field, at the expense of

properly estimating very local translations. Smaller stiffness values
t any image processing steps (i.e., 2D images are simply stacked to form a

t: reconstruction of the slices after intensity inhomogeneity correction.
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will emphasize local translations, but the deformation runs the risk

of being discontinuous.

ANIMAL builds an estimate of the nonlinear transformation

over a fixed number of iterations for each resolution step (i.e., each

step of the outer loop). At each iteration a fraction of each local

translation estimate is added to the current iteration:

T ið Þ ¼ t3di þ Ti�1 ð4Þ

where t3 is a weight parameter for iterative update. The local trans-

lations are under-corrected if t3 < 1 and are over corrected if t3 > 1.

ANIMAL parameter optimization

The original parameters (t1, t2 and t3) for ANIMAL were

optimized for registration of 3D MRI data. These parameters are

re-optimized here for registration of 2D histological data. There are

two differences between the procedure used here, compared to that

of Robbins (Robbins et al., 2003). First, instead of minimizing

entropy between two segmented MR volumes, 2D binary contour

data is used with a distance function to evaluate the goodness of fit

of the transformation estimated by ANIMAL. Second, the

parameters are optimized independently for each step in the outer

loop instead of globally.

The parameter optimization process was based on seven pairs

of adjacent slices, selected throughout the data set to account for

the changing anatomy over the volume of data (see Fig. 4). For

each pair of slices one is assigned to be the source slice and the

other slice to be the target. All three parameters were varied as

follows: 0 < t1 � 1, 0 < t2 � 1, and 0 < t3 � 1.5 in 0.1 unit steps

while the other registration parameters (see Table 1) remained

constant. An exhaustive search strategy was used where a

transformation was estimated for each combination of parameters
Fig. 10. Histological volume with voxel-label-atlas overlaid. Top: voxel-label data a

Bottom: voxel-label data before the nonlinear transformation has been applied to ea

view. The results demonstrate how each structure is labeled by a unique colo

reconstruction described in 3D reconstruction of 2D histological slices. This is p

caudate nucleus and the putamen. Shown in all views are the 1. striatum, 2. inter
(1400 in all). The estimated transformation was then applied to the

segmented contour data for each source image. The mean chamfer

distance (Borgefors, 1984) between the transformed source contour

data and the target contour data was recorded for each trans-

formation over all pairs of slices (9800 distances maps) and used as

the goodness of fit metric. The chamfer distance is an approx-

imation the Euclidean distance function (Duda et al., 2000) which

can be assessed on binary data where each non-contour pixel in

each image is assigned a value which represents its distance from

the closest contour.

The optimization was refined by supersampling the parameter

space near the global minimum (i.e., within 5% of the minimum

distance) with 0.05 unit steps as specified in Table 2. The

optimization strategy described above was performed at each

resolution in scale space (each step of the outer loop described in

the section describing the ANIMAL algorithm for a total of 29400

transformations), yielding optimal parameters for similarity t1,

stiffness t2 and weight t3 summarized in Table 3. The scale space

parameters are the same as those outlined in Table 1.

3D reconstruction of 2D histological slices

Using the scale space technique described, each slice of the

volume is registered twice; once to the adjacent slice previous to it in

the series, and once to the next slice in the series. The optimized

parameters found in the previous section were used to calculate each

transformation. The average of these two transformations is applied

to the original slice, such that the newly warped slice best matches its

adjacent slices simultaneously. The registration procedure is given in

Algorithm 1. It is important to note that the transformations are

estimated for all slices in the dataset before they are applied to

achieve the correction. The two transformations calculated will have
fter the nonlinear transformations estimated have been applied to each slice.

ch slice in the dataset. Left: sagittal view. Middle: axial view. Right: coronal

r, and also how the structural borders have been smoothed after by the

articularly evident in the striatum, particularly in the striations between the

nal capsule, and 3. pulvinar.
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an additional function as they will also be used in the intensity

correction procedure presented in the next section.

It should be noted here that this technique can only account for

local deformations which exist between adjacent slices. Global

deformations, such as overall shrinkage, cannot be accounted for

using this slice-to-slice registration technique and will be addressed

in the context of atlas-to-template warping.
Intensity inhomogeneity correction

Due to varying light intensity during photography, staining

density, and slice thickness, the resulting histological volume will

have varying intensities from slice-to-slice. For each slice, the hue

and grey and white matter contrast were manually corrected using

Adobe Photoshop by one of the authors (GB). These corrections

were done in order to facilitate grey and white matter differentiation

for structure identification on single slices. This correction does not

correct for slice-to-slice differences throughout the volume. In the

resulting 3D reconstruction of this volume, anatomical structures

will not have homogeneous intensity values, visible as striping in

the reconstructed slice directions. The limited work on the intensity

correction of serial histological data (Chakravarty et al., 2003;

Daguet et al., 2004; Malandain and Bardinet, 2003) has considered

global slice-to-slice intensity correction strategies. The intensity

correction scheme developed here is a refinement of the global

correction scheme presented in our previous work (Chakravarty et

al., 2003) where a Least Trimmed Squares (LTS) fit (Rousseeuw

and Leroy, 1987) was used to calculate a third order polynomial fit

between the intensities of two different slices. Instead of a single

global correction, our technique is modified here to account for

local intensity inhomogeneity.

Intensity inhomogeneity correction algorithm

The intensity inhomogeneity algorithm minimizes the effects of

intensity differences on the entire volume by correcting local

intensity differences on each slice. We approach the slice-by-slice

intensity correction of the histological data with a similar strategy

as the morphological correction strategy presented earlier in this

paper where the intensities in local neighborhoods on each slice are

corrected by examining intensities in the same local neighborhood
on adjacent slices. Local differences in anatomy from slice-to-slice

must be aligned to prevent the creation of intensity artefacts via

local intensity correction estimates (as explained later in this

section). To accomplish this alignment the final transformations

estimated in the previous section are used to warp the adjacent

slices of each slice. We then proceed to calculate a voxel-by-voxel

correction grid for each slice.

After the warping, intensities are corrected in a two stage

process described in Algorithm 2. The first is similar to our

previous technique (Chakravarty et al., 2003) where the LTS fitting

technique of Prima et al. (2001) was used to calculate two third

order polynomials for each slice, where each polynomial maps

intensities from a single slice to the slices adjacent to it. These

polynomials are then averaged and applied to the single slice.

In the second step, local intensity variations are accounted for

by estimation of a nonlinear correction field. Images are sectioned

into square neighborhoods of equal size. We assume that if each

square neighborhood is small enough, a first-order polynomial or

scaling factor can be estimated mapping intensity values from a

target neighborhood to a source neighborhood. For each neighbor-

hood of slice i, two polynomials are estimated. One polynomial

maps the intensities from the slice i to the corresponding

neighborhood in slice i � 1, and the other to slice i + 1. The

average of the two scaling factors is stored for each neighborhood

center. After polynomials for all neighborhoods are estimated, an

intensity correction field is interpolated using a bi-cubic kernel to

match the resolution of the histological image. The original image is

multiplied by the correction field to yield the corrected image. To

demonstrate the application of the intensity correction between two

images, Fig. 5 shows an example of an original image, a target

image, the estimated field and the corrected image.
Optimization for step size

The step size for the intensity inhomogeneity correction was

optimized to find the best value that would decrease the standard

deviation of specific structure intensities. The effects of varying



Fig. 11. 3D Geometric Atlas created from the voxel label data shown in Fig.

10. Structures identified are the striatum, anterior commissure, optic tract,

red nucleus, and pulvinar (from a total of 105 structures in the atlas).
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the step size were studied on two regions of interest (ROI). The

ROIs selected were the striatum and the corpus collosum as they

are relatively large structures which, in comparison to other

anatomical structures in the brain, are expected to have relatively

more uniform intensity throughout the histological volume (see

Fig. 6). Intensity correction fields were estimated for each slice in

the volume for step sizes from 2.04 to 6.46 mm, sampled at

intervals of 0.34 mm. Step sizes lower than this range increase

the computational burden of the correction process and step sizes

above this range are too large to properly deal with the local

natures of the intensity artefacts. The mean and standard

deviation of intensity were computed in the region of interest

for all voxels in the ROI. Since these regions are homogeneous,

each one should have a similar mean value for all voxels. This is

indicated by a minimal standard deviation value. Fig. 7 shows the

standard deviation in the striatum and the corpus collosum as a

function of changing step size. In both graphs, we see that a step

size of 4.76 mm yields a minimum for the standard deviation.

The standard deviation of intensities decreased 25% (from 11.84

to 8.4) in the corpus collosum and a 32% decrease in the striatum

(from 29.59 to 20.11). Fig. 8 shows a plot of the mean intensity

at each slice in the ROI before and after correction with a step

size of 4.76 mm. This figure shows that the slice-to-slice intensity

variation has been reduced.
Fig. 12. Examples of histology-to-MR landmark definitions. Left: close
Results and discussion of 3D reconstruction

The result of the 3D reconstruction can be seen in Fig. 9. The

figure is organized as follows: The left panels show the

reconstruction of the raw data, the middle panels show the

reconstruction after undergoing the morphological correction, and

the panel on the right show the reconstructions of the data after

morphological correction and the intensity correction algorithms.

The results demonstrate increased slice-to-slice continuity com-

pared to a simple reconstruction of the data without any image

processing steps. In the left and middle panels, while the overall

structure can be seen in the reconstructed transverse and sagittal

images, one can see banding in the anterior to posterior direction

corresponding to differing slice-to-slice intensities. In the middle

panels of Fig. 9, the sagittal and lateral views of the volume, we see

a reduction in the local slice-to-slice misregistrations that are

evident in the views of the left-most panel. Fig. 9 demonstrates

how these local misregistrations, which are evident in the left

panel, have been smoothed so that structural borders are now better

defined. The right panels of the figure show a reduction in the

slice-to-slice variation of intensities, and therefore better defini-

tions of structural contours (see region identified in Fig. 9).

This initial reconstruction technique was devised to better

define structures for histological data with no reference data. The

volume must therefore be refined to account for any global

deformations (such as shrinking or shearing) as well as other

anatomical inaccuracies (as in the ’’stack of pancakes’’ or ’’banana

reconstruction’’ problems). However, limitations of this technique

(i.e., enforcing local consistency without any local block face or

volumetric global references) can be accounted for by nonlinearly

warping the atlas to the pre-operative MRI scans from a single

patient, which is the subject of ongoing research (Chakravarty et

al., 2005). This technique is introduced later in this article in the

form of the warping of the atlas to an MRI template.

The slice-to-slice morphological and intensity correction

techniques described rely on local measures to correct for global

anatomical consistency. The validation of these techniques requires

other fully segmented histological datasets to be reconstructed. It is

likely that parameters (t1, t12, and t3 for morphological correction

and step size for intensity correction) would require re-optimization

for data which has been stained differently or from a different part

of the brain using the optimization strategy presented here.

Different types of data may require that the transformation be less

stiff in order to allow larger local displacement of histological data

which is more geometrically complex or have greater spatial

distortion. The use of these datasets to validate these techniques
up of the ROI in the reference-MR. Right: histological volume.



Fig. 13. Pseudo-MRI. Left: an average of 27 T1-weighted MR volumes taken from the same subject (the Colin27 MRI average). Close up into axial views of

the basal ganglia and thalamus areas. Right: a pseudo-MRI created by matching replacing the voxel label values in Fig. 10 with intensity values from the MR-

volume on the left.
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is beyond the scope of this paper and will be the topic of

further research.
Table 4

Parameters used to calculate atlas-to-subject transformation using ANIMAL

Step Step size

(mm)

Sub lattice

diameter

Sub

lattice

1 4 10 8

2 2 6 6

3 1 6 3
Atlas of the basal ganglia and thalamus

The main goal of the atlas creation process is to develop a tool

that will facilitate visualization and understanding of the 3D

relationships of the structures that make up the basal ganglia and

thalamus. This is achieved by building two atlas data sets from the

contours manually defined on the original histological data. The

first atlas is voxel-based, where structure labels are assigned to

each voxel of the reconstructed histological volume. The voxel

label atlas facilitates investigation of the histological volume when

navigating through the transverse, sagittal or coronal slices of the

volume. The second atlas is geometric, and enables visualization of

the atlas structures in 3D from any viewpoint.

The process begins with the contour data defined on the original

histological data as input to the generation of both atlases. In order

to label all voxels of the histological volume, it was necessary to fill

the regions defined by the contours with a unique label. Each
region was assigned an integer label (totaling 105 regions). Region

filling was done with a simple 4-connected flood-fill algorithm

(Duda et al., 2000) using manually placed seeds within each region.

Leaks were manually fixed. When completed, each voxel of each

histological slice was labeled with a structure identifier.

Since the structure region labels were defined on the original

histological slice data, they suffer from the same slice-to-slice

morphological inconsistencies. These spatial artefacts can be

corrected by applying the averaged transformations estimated at

each slice to each label in the dataset. Since both histological slice

data and voxel labels are warped by the same transformation,

structures and labels remain contiguous from slice-to-slice. The
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transformed label data from each slice are then stacked together to

form a 3D voxel label atlas of the region of the basal ganglia and

thalamus (see Fig. 10).

Generation of geometric structures from the voxel label atlas was

completed using amodified version of themarching cubes algorithm

(MacDonald, 1998) and can be seen as a set of 3D objects in Fig. 11.
Atlas to template warping

Our current atlas-to-patient warping technique (St-Jean et al.,

1998) uses the Colin27 MRI average (Holmes et al., 1998) as an

intermediate template for registration. To use the reconstructed

histological volume, the voxel label atlas and the geometric atlas

created here for surgical planning, they must be first aligned with

the Colin27 MRI average.

A two step procedure is used to bring the atlas data into the

same reference space as the Colin27 template. First, an affine

transformation based on 24 homologous landmark-pairs (see Fig.

12) was estimated (Sibson, 1978) to roughly align the atlas and

template volumes. The homologous landmark pairs were chosen

on easily identifiable structures such as the striatum, thalamus, and

the lateral ventricle. These points are required only to estimate an

initial affine transformation between the atlas and the Colin27

MRI reference. As mentioned in the results and discussion

section, this initial transformation is an estimate which accounts

for the global deformations between the reconstructed volume and

the Colin27-MRI average that the morphological correction

algorithm cannot. However, this technique cannot recover the

global deformations of the original dataset, as no original global

reference exists.

In the second step of this procedure, the atlas is warped using

the ANIMAL nonlinear registration strategy to account for the

remaining morphological differences between the atlas and

template. Since ANIMAL uses cross-correlation as a similarity

criterion to compute local 3D translations, a pseudo-MRI was

created from the voxel label atlas. Each of the structures in the

voxel label atlas was manually assigned an intensity value from the
Fig. 14. Reconstructed histological volume and voxel label data warped to fit the

template, and the warped voxel label atlas overlaid on the Colin27 template. Fro
corresponding structure found in the Colin27 template. The result

is a pseudo-MRI volume which has similar contrast to the Colin27

template MRI volume (see Fig. 13). The intensity values given to

structures on the atlas to create the pseudo-MRI are limited to the

structures which are also visible on the MRI template. Intensities

for structures that were difficult to resolve on the template MRI but

exist on the atlas were approximated based on the structure on both

templates.

ANIMAL was applied using the parameters listed in Table 4 to

estimate the transformation required to bring the pseudo-MRI into

alignment with the Colin27 template. This deformation field was

applied to all the atlas data to bring it into alignment with the

Colin27 template and was estimated using a mask which allows

ANIMAL to only estimate a transformation in the space in which

the atlas exists.

Though not shown in this paper, this atlas needs only to be

reflected about the midline of the Colin27 MRI average to exist on

the right side. Local variability on the right side can be minimized

by re-estimating a nonlinear transformation. Subject-to-subject

anatomical variability can be accounted for using ANIMAL to

estimate an atlas-to-subject nonlinear transformation. Different

atlas-to-subject nonlinear warping techniques are currently being

explored and are the subject of ongoing investigation (Chakravarty

et al., 2005).

Fig. 14 shows sagittal and coronal views of the reconstructed

histological volumes and the voxel label data warped to fit the

Colin27 template. Fig. 15 shows the voxel label atlas and the

geometric atlas, warped to fit the Colin27 template. These images

demonstrate how the nonlinear warp accounts for local variations

between the atlas and the reference-MR. In the bottom right of

Fig. 15 the 3D geometric atlas is shown after being warped in the

reference space of the reference- MR.
Conclusions and further research

This paper develops the steps used to create an atlas which can be

customized to MR volumes. The process begins with serial
Colin27 MRI average. From left to right: histological volume, colin27 MRI

m top to bottom: sagittal and axial views.



Fig. 15. Voxel label data warped to fit the Colin27 MRI average: the 3D Geometric Atlas is also warped to fit the reference MR and can be navigated with the

tri-planar view.

Table A1

List of labels and anatomical structures

Label Schaltenbrand

and Wahren

Gloor Hirai

and Jones

Notes

1 striatum

2 cortex

3 claustrum

4 internal capsule

5 Globus

Pallidus (Pm)

6 Nucleus amygdalae

profundus

lateralis (A.p.l)

Lateral

nucleus

(L)

amygdala

7 Optic Tract (II)

8 Nucleus amygdalae

profundus

intermedius (A.p.i)

Basal

nucleus

(B)

amygdala
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histological data, stained with Luxol blue and Nissl stains. All of

these slices are segmented manually to identify the basal ganglia and

the thalamus. A histological volume was created using a nonlinear

registration technique to greatly reduce the effect of artefacts that are

introduced in the histological acquisition process. Optimal param-

eters were found to align histological slices using an error metric

which compares the distance between segmented contours on

adjacent slices. An improved intensity correction technique which

analyzes local differences in intensity within the serial histological

data set was used for a voxel-by-voxel intensity correction.

The transformations calculated for the histological data were

applied to the manually identified contours to reduce the effects of

slice-to-slice morphological variability. A new geometric atlas was

created based on the tessellation of segmented contour data defined

on the histological data.

An atlas customization technique, where a nonlinear trans-

formation mapping this geometric atlas to a reference MR scan,

was also presented. We will investigate a similar technique for atlas

customization to patient scans. Since the atlas is based a single set

of histological data from a single hemisphere, we must still

determine if using nonlinear registration techniques will account

for atlas-to-subject morphological variability. Future work includes

the analysis of different atlas-to-subject registration processes,

investigation of atlas-to-patient registration parameters and vali-

dation of the usefulness of this tool in the surgical planning
process. We are presently working on incorporating the new atlas

data into our current image guided surgical planning software.

Appendix A. A list of anatomical structures

Appendix Table A1 give a complete list of anatomical

structures available in the atlas.



Label Schaltenbrand

and Wahren

Gloor Hirai

and Jones

Notes

9 anterior commissure

(Cm.a.)

10 lateral medullary

lamina (la.p.l)

11 Globus Pallidus

Internal (Pm.i)

12 Globus Pallidus

External (Pm.e)

13 Anterior Perforated

Substance (B)

14 Nucleus

amygdalae

profundus

lateralis (A.p.m)

Accessory

Basal

Nucleus

(AB)

amygdala

15 Ventro-oralis

internus (V.o.i.)

thalamus

16 Stratum septi

pellucidi (Str.sep)

17 Pro-thalamicus

principalis

centralis

(Pth. Pr. Ce.)

bed nucleus

of the stria

terminalis

(BNST)

hypothalamus

19 Nucleus

facialis (VII)

20 Nucleus

amygdalae

profundus

ventralis (A.p.v)

Para

Laminar

nucleus (PL)

amygdala

21 Medial medullary

lamina (la.p.m)

22 Stria medullaris

thalami (st. m)

23 Nucleus

paraventricularis

hypothalami (Pv)

24 Nucleus

Reticulatus

Polaris (Rt.po.)

25 Zona incerta (Z.i.)

26 Nucleus

lateropolaris

thalami (Lpo)

Ventral

Anterior

Nucleus (VA)

thalamus:see

labels 36,

89, 90

27 Nucleus

fasciculosus

thalami (Fa)

Medioventral

Nucleus (MV)

thalamus

28 Nucleus Anterior

Principalis (Apr)

Nucleus

Anterventralis

(AV)

thalamus

29 Mamillary

body (M.m)

35 Fornix (Fx)

36 Dorso-oralis

externus (D.o.e)

Ventral

Anterior

Nucleus (VA)

thalamus:see

labels 26,

89, 90

for HJ

37 Nucleus

Medialis (M)

Mediodorsal

Nucleus

(MD)

thalamus

39 subthalamic

nucleus (Sth)

40 Lamella

medialis

thalami (La. M.)

thalamus

Table A1 (continued )

(continued on next page)

Table A1 (continued )

Label Schaltenbrand

and Wahren

Gloor Hirai

and Jones

Notes

41 Campus

Forellii (pars H2)

thalamus

47 pars compacta

(Ni.c)/pars

reticula (Ni.r)

substantia

nigra

48 Ruber (Ru) red nucleus

49 Nucleus

Centralis (Ce.)

Central Median

Nucleus (CM)

thalamus

51 Nucleus

Parafasiculairs (Pf.)

thalamus

52 WM in red

Nucleus and

travelling

towards the

thalamus

53 Nucleus Dorsalis

superficialis (D.sf.)

Lateral dorsal

Nucleus (LD)

thalamus

60 Fasciculus

gracillis Goll (G)

61 Praegeniculatum (prG)

63 Peduncle

64 Nucleus

peripendicularis (Ppd.)

thalamus

66 Ganglion

habenulae

medialis (H.m)

forms Hb

with 67

67 Ganglion

habenulae

internus (H.i.)

forms Hb

with 66

68 Corpus geniculatum

mediale (G.m/G.Md)

70 Nucleus Limitans (Li) Posterior

nucleus (Po)

thalamus

71 Ventro-caudalis

parvocell (V.c.pc)

Basal ventral

medial nucleus/

Ventral posterior

inferior nucleus

(VMb/VPI)

thalamus

73 Lemniscus

medialis (L.m.)

74 Brachium colliculi

inferioris (B.co.i)

75 Nucleus

Vestibularis (VIII)

76 Area triangularis

Wernicke (A.tr.W)

81 Ventro-oralis

medialis (V.o.m.)

Ventral Medial

Nucleus

(VM)

thalamus

86 Ventro-oralis

internus (V.o.i.)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus: see

labels 86, 91,

92, 93, 94,

104, 111, 112,

114, 120

for HJ

87 Ventro-oralis

anterior (V.o.a)

Ventral Lateral

Anterior

Nucleus (VLa)

thalamus: see

labels 87, 88,

91, 123 for HJ

88 Ventro-oralis

posterior (V.o.p.)

Ventral Lateral

Anterior

Nucleus (VLa)

thalamus:

see labels

87, 88, 91,

123 for HJ
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Label Schaltenbrand

and Wahren

Gloor Hirai

and Jones

Notes

89 Dorso-oralis

internus (D.o.i)

Ventral

Anterior

Nucleus (VA)

thalamus: see

labels 26, 36,

90 for HJ

90 Zentrolateralis

oralis (Z.o.)

Ventral

Anterior

Nucleus (VA)

thalamus: see

labels 87, 88,

91, 123

for HJ

91 Ventro-intermedius

internus (V.im.i)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus: see

labels 86, 91,

92, 93, 94,

104, 111,

112, 114,

120 for HJ

92 Zentro-lateralis

externus (Z.im.e)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus: see

labels 86, 91,

92, 93, 94,

104, 111,

112, 114,

120 for HJ

93 Zentro-intermedius

internus (Z.im.i)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus: see

labels 86, 91,

92, 93, 94,

104, 111,

112, 114,

120 for HJ

94 Ventro-intermedius

externus (V.im.e)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus:

see labels

86, 91, 92,

93, 94,

104, 111,

112, 114,

120 for HJ

95 Ventro-caudalis

internus (V.c.i)

Ventral

Posterior

Medial

Nucleus (VPM)

thalamus:

see label

95, 113

96 Ventro-caudalis

anterior internus

(V.c.a.e)

Ventral

Posterior

Lateral Nucleus

(VPLa)

thalamus:

see labels

96, 97, 98

for HJ

97 Zentro caudalis

externis (Z.c.e)

Ventral

Posterior

Lateral Nucleus

(VPLa)

thalamus:

see labels

96, 97, 98

for HJ

98 Zentro caudalis

internis (Z.c.i)

Ventral

Posterior

Lateral Nucleus

(VPLa)

thalamus:

see labels

96, 97, 98

for HJ

99 Dorso-caudalis

(D.c.)

Lateral

Posterior

Nucleus (LP)

thalamus:

see labels

99, 100,

101

100 Nucleus

pulvinaris

orolateralis

(Pu.o.l.)

Lateral

Posterior

Nucleus (LP)

thalamus:

see labels

99, 100,

101

101 Nucleus

pulvinaris

oromedialis

(Pu.o.m.)

Lateral

Posterior

Nucleus (LP)

thalamus:

see labels

99, 100,

101

102 Ventro-caudalis

portae (V.c.por)

Anterior

Pulvinal

Nucleus (Pla)

thalamus:

see labels

102, 103

Label Schaltenbrand

and Wahren

Gloor Hirai

and Jones

Notes

103 Nucleus pulvinaris

oroventralis (Pu.o.v)

Anterior

Pulvinal

Nucleus (Pla)

thalamus: see

abels 102, 103

104 Nucleus

ventroimtermedius

internus (V.im.i)

Ventral Lateral

Posterior

Nucleus

(VLp)

thalamus:

see labels 86,

91, 92, 93, 94,

104, 111, 112,

114, 120

for HJ

105 Nucleus pulvianris

intergeniculatus

(Pu.ig)

Inferior

Pulvinar

Nucleus (Pli)

thalamus

106 Nucleus pulvianris

(Pu.m)

Medial

Pulvinar

Nucleus (Plm)

thalamus

107 Pulvinar laterale

(Pu.l)

Lateral

Pulvinar

Nucleus (Pll)

thalamus

108 corpus collosum

109 Cerebro-Spinal

Fluid

110 general white matter

111 Dorso-intermedius

internus (D.im.i)

Ventral Lateral

Posterior

Nucleus

(VLp)

thalamus:

see labels

86, 91, 92,

93, 94,

104, 111,

112, 114,

120 for HJ

112 Dorso-intermedius

externus (D.im.e)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus:

see labels

86, 91, 92,

93, 94,

104, 111,

112, 114,

120 for HJ

113 Ventro-caudalis

anterior internus

(V.c.a.i)

Ventral

Posterior

Medial

Nucleus

(VPM)

thalamus:

see label

95, 113

114 Zentrolateralis

intermedius

(Z.im)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus

115 Ventro-caudalis

externus (v.c.e)

Ventral

Posterior

Lateral Nucleus

(VPLa)

thalamus:

see labels

115, 118

116 Nucleus pulvinaris

superficialis

(Pu.sf)

thalamus

117 Ventro-caudalis

parvocell

externus (V.c.pc.e)

Ventral

Posterior

Inferior

Nucleus (VPI)

thalamus

118 Ventro-caudalis

posterior externus

(V.c.p.e)

Ventral

Posterior

Lateral Nucleus

(VPLa)

thalamus

Table A1 (continued ) Table A1 (continued )

(continued on next page)
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Label Schaltenbrand

and Wahren

Gloor Hirai

and Jones

Notes

119 Pulvinar mediale

(Pu.m)

Medial

Pulvinar

Nucleus

(Plm)

thalamus

120 Ventro-oralis

posterior (V.o.p)

Ventral Lateral

Posterior

Nucleus (VLp)

thalamus:

see labels

86, 104,

120 for HJ

121 Zentro-intermedius

externus (Z.im.e)

Ventral Lateral

Anterior

Nucleus (VLa)

thalamus

122 Ventro-intermedius

externus (V.im.e)

Ventral Lateral

Anterior

Nucleus (VLa)

thalamus

123 Dorso-oralis

internus (D.o.i)

Ventral Lateral

Anterior

Nucleus (VLa)

thalamus:

see labels

87, 88,

91, 123

for HJ

Table A1 (continued )
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