Traceable regressions

Nanny Wermuth

Chalmers Technical University, Gothenburg, and International Agency of Research on Cancer, Lyon

Fields Institute, Toronto, April 2012

Set-up for sequences of regressions in vector variables $Y_a Y_b \dots$

Main goal: understanding development with data from

- cohort studies, multi-wave panel data
- studies with randomized, sequential interventions
- cross-sectional and even retrospective studies

General motivation

- Trying to understand short- and long-term effects of risks or of interventions is motivating empirical research in many fields of science
- For this, the main purpose of statistical planning, analysis and interpretation is to capture and use potential data generating processes and to trace pathways of dependence
- Sequences of multivariate or univariate regressions, simplified by independences, provide a flexible framework; joint responses may be discrete, continuous or be mixed of both types

A regression graph, $G^N_{
m reg}$, is traditionally the focus of interest

 $G^N_{
m reg}$ is a chain graph defined by node set N and three types of edge sets E_{\prec} , E_{--} , and E_{--}

It has

- a split of N=(u,v) with sequences of
- response nodes coupled as \circ – \circ in u and
- context nodes coupled as \circ \circ in v
- a unique set of the concurrent nodes in g_j for $j=1,\ldots,J$
- in each compatible ordering of g_j , arrows, \circ \prec \circ , never point to $g_{>j}=g_{j+1}\cup g_{j+2},\ldots,\cup g_J$

Example for a refined sets of concurrent nodes in g_j obtained by statistical analyses after a first ordering into five blocks

within a set of concurrent nodes, g_j , each node can be reached via at least one undirected path, no order is implied by stacked boxes

Example continued: deleting all arrows gives uniquely the sets of concurrent responses and concurrent context variables, the chain components g_j

A joint density f_N is said to be generated over $G_{ m reg}^N$

if it has the basic factorizations with regressions $f_{g_j \mid g_{>j}}$ as

$$f_N = f_{u|v} f_v$$
 with $f_{u|v} = \prod_{j \in u} f_{g_j|g_{>j}}$ and $f_v = \prod_{j \in v} f_{g_j}$

and satisfies the independences implied for each missing edge

For i,k a node pair and $c \subset N \setminus \{i,k\}$, we have in general

$$i \bot\!\!\!\bot k | c \iff (f_{i|kc} = f_{i|c}) \iff f_{ik|c} = (f_{i|c} f_{k|c})$$

For tracing pathways of dependence, the variable pairs needed to generate f_N are instead the focus of interest and

the substantive context determines which variable pairs are modeled by a conditional independence and which variable pairs are taken to be dependent

Suppose one regressor is a risk factor for a response, then the prevention of the risk is generally judged to be of quite different importance if, for instance, the response is

- the occurrence of a common cold
- the infection with an HIV virus or
- an accident in a nuclear plant

We write $i \Uparrow k | c$ for Y_i, Y_k conditionally dependent given Y_c for some $c \subset N \setminus \{i,k\}$

A graph is **edge-minimal** for a distribution generated over it, if every missing edge in the graph corresponds to a conditional independence statement and every edge present to a dependence statement

A dependent variable pair Y_i , Y_k is one needed in the generating process of f_N and a family of densities f_N generated over an edge-minimal graph changes if any one edge is removed from the graph

Defining dependences and independences for an edge-minimal $G_{ m reg}^N$

Definition 1

An edge-minimal regression graph with N = (u,v) and $g_1 < \cdots < g_J$ specifies a generating process for f_N , where

 $i{-}{-}k:\ i\pitchfork k|g_{>j}$ for i,k concurrent response nodes in g_j of u $i{\leftarrow}k:\ i\pitchfork k|g_{>j}\setminus\{k\}$ for response i in g_j of uand explanatory k in $g_{>j}$

 $i = k: \; i \pitchfork k | v \setminus \{i,k\}$ for i,k concurrent context nodes in g_j of v

define edges present in $G^N_{\rm reg}$ define edges missing in $G^N_{\rm reg}$ when the dependence sign \pitchfork is replaced by $\bot\!\!\!\!\bot$

Thus, for an edge-minimal $G^N_{
m reg}$

- one fixed ordering of g_j is assumed, so that the density of variables in g_J is generated first, the one of g_{J-1} given g_J next, up to the density of g_1 given $g_{>1}$
- the graph implies for each variable pair either conditional dependence or independence given the same type of conditioning set
- for each node i of g_j in u, nodes in

 $g_{>j} = g_{j+1} \cup g_{j+2}, \dots, g_{J-1} \cup g_J$ are in the **past of** g_j

Requirements for two results on the independence structure of G_{reg}^N Let a, b, c, d denote disjoint subsets of N where only d may be empty and let any joint independence $b \perp ac | d$ have three equivalent decompositions as

(i)
$$(b \perp a \mid cd \text{ and } b \perp c \mid d)$$

(ii) $(b \perp a \mid d \text{ and } b \perp c \mid d)$
(iii) $(b \perp a \mid cd \text{ and } b \perp c \mid ad)$

then (i) named contraction, holds for all probability distributions (ii) combines decomposition and composition, holds in a regression when there is also a main-effect for every higher-order interactive or nonlinear dependence (iii) combines weak union and intersection, holds for all positive distributions

Given the three equivalent decompositions of any joint dependence, active paths in $G^N_{\rm reg}$ can be expressed in terms of anterior paths

An **anterior** ik-path is a descendant-ancestor iq-path with a context-nodes qk-path attached to it (or any subpath)

Let $\{a, b, c, m\}$ partition N, where c denotes a conditioning set of interest for a, b and m the set of nodes to be ignored

A path in G_{reg}^N is active given c if of its inner nodes, every collision node is in $c \cup ant_c$ and every transmitting node is in m

Lemma 1 Global Markov property of G_{reg}^N (Sadeghi, 2009) G_{reg}^N implies $a \perp\!\!\!\!\perp b | c$ if and only if there is no active path in G_{reg}^N between a and b given c

Lemma 2

Equivalence of the pairwise and the global Markov property

(Sadeghi and Lauritzen, 2012) The independence structure of $G_{
m reg}^N$ is equivalently defined by its lists of the three types of missing edges and by its global Markov property.

Two-edge subgraphs induced by three nodes in $G^N_{
m reg}$, named Vs

There are just two basic types of Vs in G_{reg}^N collision Vs:

$$i$$
---o $\leftarrow k, i$ \rightarrow o $\leftarrow k, i$ ---o---k,

and transmitting Vs:

$$i { \longleftarrow } \circ { \longleftarrow } k, \ i { \longleftarrow } \circ { \longrightarrow } k, \ i { \longleftarrow } \circ { \longrightarrow } k, \ i { \longleftarrow } \circ { \longrightarrow } k, \ i { \longleftarrow } \circ { \longrightarrow } k,$$

Lemma 3

Markov equivalence (Wermuth and Sadeghi, 2012) Two regression graphs with the same skeleton are Markov equivalent if and only if their sets of collision Vs are identical

Lemma 4

The conditioning set of any independence statement implied by G_{reg}^{N} for the endpoints of any of its Vs, includes the inner node if it is a transmitting V and excludes the inner node if it is collision V

To make Vs dependence-inducing, we take an edge-minimal regression graph for f_N , assume the three equivalent decompositions of a joint dependence and require in addition singleton transitivity

Singleton transitivity. For i,h,k distinct nodes and $d \subseteq N \setminus \{i,h,k\}$ $(i \bot\!\!\!\bot k | d ext{ and } i \bot\!\!\!\bot k | hd) \implies (i \bot\!\!\!\bot h | d ext{ or } k \bot\!\!\!\bot h | d)$

Thus, for a conditional independence of Y_i, Y_k given Y_d and given Y_h, Y_d to hold both, there has to be at least one additional independence given Y_c involving Y_h

An edge-minimal G_{reg}^N forms a **dependence base** for f_N , generated over it, if singleton transitivity holds (always for $f_{g_j|g_{>j}}$, $f_{g_{>j}}$ a cut for all j)

Proposition 1

Dependence inducing Vs. For (i, o, k) any V of a dependence base G_{reg}^N and each $c \subseteq N \setminus \{i, k, o\}$ such that this regression graph implies one of $i \perp k | c$ or $i \perp k | oc$, the following two equivalent statements hold:

Thus, in a dependence base G_{reg}^N , conditioning on the inner node of a collision V and marginalizing over the inner node of transmitting V is dependence-inducing for the endpoints of the V given any appropriate c

Definition 2

Traceable regressions. For $\{a,b,c,d\}$ partitioning N, we say

 f_N results from traceable regressions if

- 1. it could have been generated over a dependence base regression graph, $G_{\rm reg}^N$,
- 3. dependence-inducing V's of $G^N_{
 m reg}$ are also dependence-inducing for f_N

Thus, traceable regression behave like regular Gaussian families generated over an edge-minimal $G_{
m reg}^N$

Next goal:

Obtaining a matrix criterion to decide whether a dependence base $G^N_{
m reg}$ implies $lpha \! \perp \! eta | c \,$ or $\, lpha \, \pitchfork eta | c \,$ for partitioning

We use edge matrix representation of G_{reg}^N : adjacency matrices with ones added along the diagonal so that sums of products of submatrices become well-defined

First task:

Given N=(u,v) and the edge matrices of G_{reg}^N for $f_N=f_{u|v}f_v$ find the implied edge-matrices for another split N=(a,b) with $a=\alpha\cup m,b=\beta\cup c$ and $G_{\mathrm{reg}}^{N-a|b}$ for $f_N=f_{a|b}f_b$ having multivariate regression of Y_a on Y_b and a concentration graph for Y_b Regression graphs have three types of edge sets, E_{\leftarrow} , E_{--} , and E_{--}

The edge matrix components of $G_{
m reg}^N$ are a $d_N imes d_N$ upper block-triangular matrix $\mathcal{H}_{NN} = (\mathcal{H}_{ik})$ such that

and a $d_u imes d_u$ symmetric matrix $\mathcal{W}_{uu} = (\mathcal{W}_{ik})$ such that

$$\mathcal{W}_{ik} = egin{cases} 1 & ext{if and only if } i ext{---}k ext{ in } G^N_{ ext{reg}} ext{ or } i=k, \ 0 & ext{otherwise}, \end{cases}$$

where, E_{--} corresponds to \mathcal{W}_{uu} , E_{--} to \mathcal{H}_{vv} , and E_{\prec} to \mathcal{H}_{uN} ($\mathcal{W}_{uv}=0, \mathcal{W}_{vu}=0, \mathcal{W}_{vv}=\mathcal{H}_{vv}$)

Example

For a Gaussian family in a mean-centered Y_N generated over $G^N_{
m reg}$ with just two concurrent response sets a, b, the parameter matrices are for

$$H_{NN}Y_N=arepsilon_N,~~\mathrm{cov}(arepsilon_N)=W_{NN}$$

$$H_{NN}=egin{pmatrix} I_{aa}-\Pi_{a|b.v}-\Pi_{a|v.b}\ 0_{ba} \quad I_{bb} \quad -\Pi_{b|v}\ 0_{va} \quad 0_{vb} \quad \Sigma^{vv.ab} \end{pmatrix} \quad W_{NN}=egin{pmatrix} \Sigma_{aa|bv} & 0_{ab} & 0_{av}\ 0_{ba} \quad \Sigma_{bb|v} & 0_{bv}\ 0_{va} \quad 0_{vb} \quad \Sigma^{vv.ab} \end{pmatrix}$$

where the Yule-Cochran notation is used: $\Pi_{a|bv} = (\Pi_{a|bv} \Pi_{a|v,b})$; edge matrices \mathcal{H}_{NN} , \mathcal{W}_{NN} implicitly define such Gaussian families

Partial closure

The edge matrix calculus of Wermuth, Wiedenbeck and Cox (2006) uses partial closure, denoted by $ext{zer}_a(\mathcal{F})$, which operates on all nodes i in $a \subseteq N$ of a symmetric edge matrix \mathcal{F}

After a reordering to have node i in position (1,1) of $ilde{\mathcal{F}}$ and $b=N\setminus i$

$$\mathrm{zer}_i \, ilde{\mathcal{F}} = \mathrm{In}[egin{pmatrix} 1 & \mathcal{F}_{ib} \ \mathcal{F}_{bi} & \mathcal{F}_{bb} + \mathcal{F}_{bi} \mathcal{F}_{ib} \end{pmatrix}]$$

is seen to close, by an edge, every V with inner node i

Basic properties of partial closure

Partial closure is

(i) commutative

 $\left(ii
ight)$ cannot be undone and

(iii) is exchangeable with selecting a submatrix

Lemma 5

Partial closure applied to G_{reg}^N . For N = (a, b), the transformation $\mathcal{K}_{NN} = \operatorname{zer}_a(\mathcal{H}_{NN})$ closes each a-line anterior path and $\mathcal{Q}_{uu} = \operatorname{zer}_b(\mathcal{W}_{uu})$ each dashed, b-line collision path

Examples of three dependence base, 3-node graphs

Active path (1,2,3) induces in a) $1 \pitchfork 3$, in b) $1 \pitchfork 3 | 2$, and in c) $1 \pitchfork 3$

By letting the edge induced by the three V 's '**remember the type of** edge at the path endpoints' the induced edges become in

a)
$$1 \leftarrow 3$$
, b) $1 - -3$, c) $1 - -3$

For N = (a, b), o_a nodes in a, o_b nodes in b and i, k the endpoints of paths that are active for $G_{reg}^{N-a|b}$, there remain three types of active ik-path given b in the graph having edge matrices \mathcal{K}_{NN} and \mathcal{Q}_{uu} :

$$i \leftarrow o_a - - o_b \leftarrow k, \ i \leftarrow o_a - - o_a \rightarrow k, \ i \rightarrow o_b - - o_b \leftarrow k$$

Proposition 2

The active path remaining in $\mathcal{K}_{NN} = \operatorname{zer}_a(\mathcal{H}_{NN})$, $\mathcal{Q}_{uu} = \operatorname{zer}_b(\mathcal{W}_{uu})$ for $G_{\operatorname{reg}}^{N-a|b}$ are closed with the induced edge matrices $\mathcal{P}_{a|b}$, $\mathcal{S}_{aa|b}$, \mathcal{S}^{bb}

$$\mathcal{P}_{a|b} = \operatorname{In}[\mathcal{K}_{ab} + \mathcal{K}_{aa}\mathcal{Q}_{ab}\mathcal{K}_{bb}]$$

 $\mathcal{S}_{aa|b} = \operatorname{In}[\mathcal{K}_{aa}\mathcal{Q}_{aa}\mathcal{K}_{aa}^{\mathrm{T}}], \quad \mathcal{S}^{bb.a} = \operatorname{In}[\mathcal{H}_{bb}^{\mathrm{T}}\mathcal{Q}_{bb}\mathcal{H}_{bb}]$

After remembering the types of edge at the path endpoints, we have with $\mathcal{P}_{a|b}$ an induced bipartite graph of arrows pointing from b to a $\mathcal{S}_{aa|b}$ an induced covariance graph $\mathcal{S}^{bb.a}$ an induced concentration graph

Lemma 6

Edge matrices induced by G_{reg}^N for $f_{\alpha\beta|c}$. The subgraph induced by nodes $\alpha \cup \beta$ in $G_{\mathrm{reg}}^{N-a|b}$ captures the independence implications of G_{reg}^N for $f_{\alpha|\beta c}f_{\beta|c}$ with multivariate regression of Y_{α} on Y_{β}, Y_c and conditional concentration graph for Y_{β} given Y_c

This subgraph has induced edge matrices

$$\mathcal{P}_{lpha|eta.c} = [\mathcal{P}_{a|b}]_{lpha,eta} \,\,\, \mathcal{S}_{lphalpha|b} = [\mathcal{S}_{aa|b}]_{lpha,lpha} \,\,\, \mathcal{S}^{etaeta.a} = [\mathcal{S}^{bb.a}]_{etaeta}$$

Proposition 3

Edge criteria for implied independences and dependences

A dependence base $G^N_{
m reg}$ implies $lpha \! \perp \! eta | c$ if $\mathcal{P}_{lpha | eta . c} = 0$ and it implies $lpha \pitchfork eta | c$ if $\mathcal{P}_{lpha | eta . c}
eq 0$

Corollary

The transformations of G^N_{reg} to get $\mathcal{P}_{\alpha|\beta.c}$ use implicitly set transitivity since edges may be introduced but never removed

For a, b, c, d disjoint subsets of index set N, set transitivity means

 $(a \, \bot \!\!\!\bot b | d \text{ and } a \, \bot \!\!\!\bot b | cd) \implies (a \, \bot \!\!\!\bot c | d \text{ or } b \, \bot \!\!\!\bot c | d)$

Thus, the implications of the graph for a generated family ignores path cancellations, that are possible for a member

Most recent relevant work

Sadeghi and Lauritzen (2012), submitted and http://arxiv.org/abs/1109.5909

Wermuth (2011) Bernoulli

Wermuth (2012) submitted and http://arxiv.org/abs/1110.1986

Wermuth and Sadeghi (2012), to appear as invited discussion paper in TEST

A regular Gaussian family violating set transitivity. For N = (u, v), let Y_u and Y_v be mean-centered vector variables with a joint Gaussian distribution. Let them have equal dimension, d_u , the components of Y_u and of Y_u be mutually independent and all elements in the covariance matrix $\operatorname{cov}(Y_u, Y_v) = \Sigma_{uv}$ be nonzero, then

$$\operatorname{cov}(Y_u) = \Sigma_{uu}$$
 diagonal, $\operatorname{cov}(Y_v) = \Sigma_{vv}$ diagonal

Let further the components of Y_v have equal variances $\omega > 1$ and the equal variances of the components Y_u be $\kappa > \omega + 1$. Whenever in the described situation Σ_{uv} is orthogonal, then also

$$\operatorname{cov}(Y_u|Y_v) = \Sigma_{uu|v}$$
 diagonal, $\operatorname{cov}(Y_v|Y_u) = \Sigma_{vv|u}$ diagonal