Mark Kisin

Harvard

Let G be a connected reductive group over $\mathbb Q$ and X a conjugacy class of maps of algebraic groups over $\mathbb R$

$$h: \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_{\mathbb{R}}.$$

On \mathbb{R} -points such a map induces a map of real groups $\mathbb{C}^{\times} \to G(\mathbb{R})$.

Let G be a connected reductive group over $\mathbb Q$ and X a conjugacy class of maps of algebraic groups over $\mathbb R$

$$h: \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_{\mathbb{R}}.$$

On \mathbb{R} -points such a map induces a map of real groups $\mathbb{C}^{\times} \to G(\mathbb{R})$.

We require that (G, X) satisfy certain conditions, but we only explain the *consequences* of these.

Let G be a connected reductive group over $\mathbb Q$ and X a conjugacy class of maps of algebraic groups over $\mathbb R$

$$h: \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_{\mathbb{R}}.$$

On \mathbb{R} -points such a map induces a map of real groups $\mathbb{C}^{\times} \to G(\mathbb{R})$.

We require that (G, X) satisfy certain conditions, but we only explain the *consequences* of these.

Let $K = K_p K^p \subset G(\mathbb{A}_f)$ be a compact open subgroup. A theorem of Baily-Borel asserts that

 $\operatorname{Sh}_K(G, X) = G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f) / K$

has a natural structure of an algebraic variety over \mathbb{C} .

Let G be a connected reductive group over $\mathbb Q$ and X a conjugacy class of maps of algebraic groups over $\mathbb R$

$$h: \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_{\mathbb{R}}.$$

On \mathbb{R} -points such a map induces a map of real groups $\mathbb{C}^{\times} \to G(\mathbb{R})$.

We require that (G, X) satisfy certain conditions, but we only explain the *consequences* of these.

Let $K = K_p K^p \subset G(\mathbb{A}_f)$ be a compact open subgroup. A theorem of Baily-Borel asserts that

$$\operatorname{Sh}_K(G, X) = G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f) / K$$

has a natural structure of an algebraic variety over \mathbb{C} .

In fact $\operatorname{Sh}_K(G, X)$ has a model over a number field E = E(G, X) - the reflex field - which does not depend on K (Shimura, Deligne, ...).

Let G be a connected reductive group over $\mathbb Q$ and X a conjugacy class of maps of algebraic groups over $\mathbb R$

$$h: \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \to G_{\mathbb{R}}.$$

On \mathbb{R} -points such a map induces a map of real groups $\mathbb{C}^{\times} \to G(\mathbb{R})$.

We require that (G, X) satisfy certain conditions, but we only explain the *consequences* of these.

Let $K = K_p K^p \subset G(\mathbb{A}_f)$ be a compact open subgroup. A theorem of Baily-Borel asserts that

$$\operatorname{Sh}_K(G, X) = G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f) / K$$

has a natural structure of an algebraic variety over \mathbb{C} .

In fact $\operatorname{Sh}_K(G, X)$ has a model over a number field E = E(G, X) - the reflex field - which does not depend on K (Shimura, Deligne, ...).

We will again denote by $\operatorname{Sh}_K(G, X)$ this algebraic variety over E(G, X).

Heuristically Shimura varieties can be regarded as moduli spaces of "abelian motives". The simplest example is of course the moduli space of polarized AV's:

Heuristically Shimura varieties can be regarded as moduli spaces of "abelian motives". The simplest example is of course the moduli space of polarized AV's:

Let V be Q-vector space equipped with a perfect alternating pairing ψ . Take $G = \operatorname{GSp}(V, \psi)$ the corresponding group of symplectic similitudes, and let $X = S^{\pm}$ be the Siegel double space.

Heuristically Shimura varieties can be regarded as moduli spaces of "abelian motives". The simplest example is of course the moduli space of polarized AV's:

Let V be Q-vector space equipped with a perfect alternating pairing ψ . Take $G = \operatorname{GSp}(V, \psi)$ the corresponding group of symplectic similitudes, and let $X = S^{\pm}$ be the Siegel double space.

Each point of S^{\pm} corresponds to a decomposition

$$V_{\mathbb{C}} \xrightarrow{\sim} V^{-1,0} \oplus V^{0,-1}.$$

Heuristically Shimura varieties can be regarded as moduli spaces of "abelian motives". The simplest example is of course the moduli space of polarized AV's:

Let V be Q-vector space equipped with a perfect alternating pairing ψ . Take $G = \operatorname{GSp}(V, \psi)$ the corresponding group of symplectic similitudes, and let $X = S^{\pm}$ be the Siegel double space.

Each point of S^{\pm} corresponds to a decomposition

$$V_{\mathbb{C}} \xrightarrow{\sim} V^{-1,0} \oplus V^{0,-1}.$$

If $V_{\mathbb{Z}} \subset V$ is a \mathbb{Z} -lattice, and $h \in S^{\pm}$, then $V^{-1,0}/V_{\mathbb{Z}}$ is an abelian variety, which leads to an interpretation of $\mathrm{Sh}_K(\mathrm{GSp}, S^{\pm})$ as a moduli space for polarized abelian varieties.

This implies that

 $\operatorname{Sh}_K(G, X) \hookrightarrow \operatorname{Sh}_{K'}(\operatorname{GSp}, S^{\pm})$

This implies that

$$\operatorname{Sh}_K(G, X) \hookrightarrow \operatorname{Sh}_{K'}(\operatorname{GSp}, S^{\pm})$$

so that $\operatorname{Sh}_K(G, X)$ can really be regarded as a moduli space for abelian varieties equipped with extra structures (Hodge cycles).

This implies that

$$\operatorname{Sh}_K(G, X) \hookrightarrow \operatorname{Sh}_{K'}(\operatorname{GSp}, S^{\pm})$$

so that $\operatorname{Sh}_K(G, X)$ can really be regarded as a moduli space for abelian varieties equipped with extra structures (Hodge cycles).

If these extra structures can be taken to be *endomorphisms* of the abelian variety, then (G, X) is called of PEL type.

This implies that

$$\operatorname{Sh}_K(G, X) \hookrightarrow \operatorname{Sh}_{K'}(\operatorname{GSp}, S^{\pm})$$

so that $\operatorname{Sh}_K(G, X)$ can really be regarded as a moduli space for abelian varieties equipped with extra structures (Hodge cycles).

If these extra structures can be taken to be *endomorphisms* of the abelian variety, then (G, X) is called of PEL type.

Almost all Shimura varieties where G is a classical group are quotients of ones of Hodge type. These quotients are called *abelian type*.

We are interested in studying $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$. Possible applications:

We are interested in studying $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$. Possible applications:

• An analogue of Honda-Tate theory: Every isogeny class contains a point which lifts to a CM point.

We are interested in studying $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$. Possible applications:

• An analogue of Honda-Tate theory: Every isogeny class contains a point which lifts to a CM point.

• Counting the points mod p, to express the zeta function of $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$ in terms of automorphic *L*-functions (Langlands' program).

We are interested in studying $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$. Possible applications:

• An analogue of Honda-Tate theory: Every isogeny class contains a point which lifts to a CM point.

• Counting the points mod p, to express the zeta function of $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$ in terms of automorphic *L*-functions (Langlands' program).

To do this we need a reasonable notion of integral model for $Sh_K(G, X)$. One can expect a smooth model when K_p is *hyperspecial*:

We are interested in studying $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$. Possible applications:

• An analogue of Honda-Tate theory: Every isogeny class contains a point which lifts to a CM point.

• Counting the points mod p, to express the zeta function of $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$ in terms of automorphic *L*-functions (Langlands' program).

To do this we need a reasonable notion of integral model for $Sh_K(G, X)$. One can expect a smooth model when K_p is *hyperspecial*:

A compact open subgroup $K_p \subset G(\mathbb{Q}_p)$ is called *hyperspecial* if there exists a reductive group \mathcal{G} over \mathbb{Z}_p extending $G_{\mathbb{Q}_p}$ and such that $K_p = \mathcal{G}(\mathbb{Z}_p)$. (This implies K_p is maximal compact.)

We are interested in studying $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$. Possible applications:

• An analogue of Honda-Tate theory: Every isogeny class contains a point which lifts to a CM point.

• Counting the points mod p, to express the zeta function of $\operatorname{Sh}_K(G, X)(\overline{\mathbb{F}}_p)$ in terms of automorphic *L*-functions (Langlands' program).

To do this we need a reasonable notion of integral model for $Sh_K(G, X)$. One can expect a smooth model when K_p is *hyperspecial*:

A compact open subgroup $K_p \subset G(\mathbb{Q}_p)$ is called *hyperspecial* if there exists a reductive group \mathcal{G} over \mathbb{Z}_p extending $G_{\mathbb{Q}_p}$ and such that $K_p = \mathcal{G}(\mathbb{Z}_p)$. (This implies K_p is maximal compact.)

Such subgroups exist if G is quasi-split at p and split over an unramified extension.

Example: Take $(G, X) = (GSp, S^{\pm})$, defined by (V, ψ) as above. Let $V_{\mathbb{Z}} \subset V$ be a \mathbb{Z} -lattice, and K_p the stabilizer of $V_{\mathbb{Z}_p} = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}_p \subset V \otimes \mathbb{Q}_p$.

Example: Take $(G, X) = (GSp, S^{\pm})$, defined by (V, ψ) as above. Let $V_{\mathbb{Z}} \subset V$ be a \mathbb{Z} -lattice, and K_p the stabilizer of $V_{\mathbb{Z}_p} = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}_p \subset V \otimes \mathbb{Q}_p$. K_p is hyperspecial if and only if a scalar multiple of ψ induces a perfect, \mathbb{Z}_p -valued pairing on $V_{\mathbb{Z}_p}$. Then $K_p = GSp(V_{\mathbb{Z}_p}, \psi)(\mathbb{Z}_p)$. **Example:** Take $(G, X) = (GSp, S^{\pm})$, defined by (V, ψ) as above. Let $V_{\mathbb{Z}} \subset V$ be a \mathbb{Z} -lattice, and K_p the stabilizer of $V_{\mathbb{Z}_p} = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}_p \subset V \otimes \mathbb{Q}_p$. K_p is hyperspecial if and only if a scalar multiple of ψ induces a perfect, \mathbb{Z}_p -valued pairing on $V_{\mathbb{Z}_p}$. Then $K_p = GSp(V_{\mathbb{Z}_p}, \psi)(\mathbb{Z}_p)$.

The choice of $V_{\mathbb{Z}}$ makes $\operatorname{Sh}_{K}(\operatorname{GSp}, S^{\pm})$ as a moduli space for polarized abelian varieties, which leads to a model $\mathscr{S}_{K}(\operatorname{GSp}, S^{\pm})$ over $\mathcal{O}_{(\lambda)}$.

Example: Take $(G, X) = (GSp, S^{\pm})$, defined by (V, ψ) as above. Let $V_{\mathbb{Z}} \subset V$ be a \mathbb{Z} -lattice, and K_p the stabilizer of $V_{\mathbb{Z}_p} = V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z}_p \subset V \otimes \mathbb{Q}_p$. K_p is hyperspecial if and only if a scalar multiple of ψ induces a perfect, \mathbb{Z}_p -valued pairing on $V_{\mathbb{Z}_p}$. Then $K_p = GSp(V_{\mathbb{Z}_p}, \psi)(\mathbb{Z}_p)$. The choice of $V_{\mathbb{Z}}$ makes $Sh_K(GSp, S^{\pm})$ as a moduli space for polarized abelian varieties, which leads to a model $\mathscr{S}_K(GSp, S^{\pm})$ over $\mathcal{O}_{(\lambda)}$. The $\mathscr{S}_K(GSp, S^{\pm})$ are *smooth* over $\mathcal{O}_{(\lambda)}$ if and only if the degree of the polarization in the moduli problem is prime to p. This corresponds to the

condition that ψ induces a perfect pairing on $V_{\mathbb{Z}_p}$.

Conjecture. (Langlands-Milne) Suppose that $K = K_p K^p \subset G(\mathbb{A}_f)$ is open compact and K_p is hyperspecial. Then for $\lambda|p$, The tower

$$\operatorname{Sh}_{K_p}(G, X) = \lim_{\leftarrow K^p} \operatorname{Sh}_{K_p K^p}(G, X)$$

has a $G(\mathbb{A}_f^p)$ -equivariant extension to a smooth $\mathcal{O}_{(\lambda)}$ -scheme satisfying a certain extension property.

Conjecture. (Langlands-Milne) Suppose that $K = K_p K^p \subset G(\mathbb{A}_f)$ is open compact and K_p is hyperspecial. Then for $\lambda|p$, The tower

$$\operatorname{Sh}_{K_p}(G, X) = \lim_{\leftarrow K^p} \operatorname{Sh}_{K_p K^p}(G, X)$$

has a $G(\mathbb{A}_f^p)$ -equivariant extension to a smooth $\mathcal{O}_{(\lambda)}$ -scheme satisfying a certain extension property.

Theorem. If p > 2, K_p hyperspecial and (G, X) is of abelian type, then $\operatorname{Sh}_{K_p}(G, X)$ admits a smooth integral model $\mathscr{S}_{K_p}(G, X)$.

Conjecture. (Langlands-Milne) Suppose that $K = K_p K^p \subset G(\mathbb{A}_f)$ is open compact and K_p is hyperspecial. Then for $\lambda|p$, The tower

$$\operatorname{Sh}_{K_p}(G, X) = \lim_{\leftarrow K^p} \operatorname{Sh}_{K_p K^p}(G, X)$$

has a $G(\mathbb{A}_f^p)$ -equivariant extension to a smooth $\mathcal{O}_{(\lambda)}$ -scheme satisfying a certain extension property.

Theorem. If p > 2, K_p hyperspecial and (G, X) is of abelian type, then $\operatorname{Sh}_{K_p}(G, X)$ admits a smooth integral model $\mathscr{S}_{K_p}(G, X)$.

In the case of Hodge type, $\mathscr{S}_{K_p}(G,X)$ is given by taking the normalization of the closure of

$$\operatorname{Sh}_{K_p}(G, X) \hookrightarrow \operatorname{Sh}_{K'_p}(\operatorname{GSp}, S^{\pm}) \hookrightarrow \mathscr{S}_{K'_p}(\operatorname{GSp}, S^{\pm})$$

into a suitable moduli space of polarized abelian varieties.

Mod p points - the Langlands-Rapoport conjecture: We continue to assume K_p is hyperspecial. Modp points - the Langlands-Rapoport conjecture:

We continue to assume K_p is hyperspecial.

Conjecture. (Langlands-Rapoport) There exists a bijection

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

which is compatible with the action of $G(\mathbb{A}_f^p)$ and Frobenius on both sides.

Modp points - the Langlands-Rapoport conjecture:

We continue to assume K_p is hyperspecial.

Conjecture. (Langlands-Rapoport) There exists a bijection

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

which is compatible with the action of $G(\mathbb{A}_f^p)$ and Frobenius on both sides.

This requires some explanation but, heuristically, the φ parameterize "G-isogeny classes", while the $S(\varphi)$ parameterize the points in a given isogeny class.

Modp points - the Langlands-Rapoport conjecture:

We continue to assume K_p is hyperspecial.

Conjecture. (Langlands-Rapoport) There exists a bijection

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

which is compatible with the action of $G(\mathbb{A}_f^p)$ and Frobenius on both sides.

This requires some explanation but, heuristically, the φ parameterize "G-isogeny classes", while the $S(\varphi)$ parameterize the points in a given isogeny class.

We will indicate the definition of the φ and then explain the definition of $S(\varphi)$.

Mod p points - the Langlands-Rapoport conjecture:

We continue to assume K_p is hyperspecial.

Conjecture. (Langlands-Rapoport) There exists a bijection

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

which is compatible with the action of $G(\mathbb{A}_f^p)$ and Frobenius on both sides.

This requires some explanation but, heuristically, the φ parameterize "G-isogeny classes", while the $S(\varphi)$ parameterize the points in a given isogeny class.

We will indicate the definition of the φ and then explain the definition of $S(\varphi)$.

The precise definition of the φ involves the fundamental groupoid P of the category of motives over $\overline{\mathbb{F}}_p$. Then $P_{\overline{\mathbb{Q}}}$ is a pro-torus. The φ run over representations $\varphi: P \to G$ satisfying certain conditions.

Fix an integer r >> 0. Then attached to φ is a triple $(\gamma_0, b, (\gamma_l)_{l \neq p})$ where

Fix an integer r >> 0. Then attached to φ is a triple $(\gamma_0, b, (\gamma_l)_{l \neq p})$ where

• $\gamma_0 \in G(\mathbb{Q})$ is semi-simple, defined up to conjugacy in $G(\overline{\mathbb{Q}})$ (stable conjugacy).

Fix an integer r >> 0. Then attached to φ is a triple $(\gamma_0, b, (\gamma_l)_{l \neq p})$ where

- $\gamma_0 \in G(\mathbb{Q})$ is semi-simple, defined up to conjugacy in $G(\overline{\mathbb{Q}})$ (stable conjugacy).
- For $l \neq p, \gamma_l \in G(\mathbb{Q}_l)$ is a semi-simple conjugacy class, stably conjugate to $\gamma_0 \in G(\overline{\mathbb{Q}}_l)$.

Fix an integer r >> 0. Then attached to φ is a triple $(\gamma_0, b, (\gamma_l)_{l \neq p})$ where

- $\gamma_0 \in G(\mathbb{Q})$ is semi-simple, defined up to conjugacy in $G(\overline{\mathbb{Q}})$ (stable conjugacy).
- For $l \neq p, \gamma_l \in G(\mathbb{Q}_l)$ is a semi-simple conjugacy class, stably conjugate to $\gamma_0 \in G(\overline{\mathbb{Q}}_l)$.
- $b \in G(\operatorname{Fr} W(\mathbb{F}_{p^r}))$ is an element defined up to *Frobenius* conjugacy $(b \mapsto g^{-1}b\sigma(g), \sigma \text{ abs. Frobenius})$ such that $Nb = b\sigma(b) \dots \sigma^{r-1}(b)$ is stably conjugate to γ_0 .

Fix an integer r >> 0. Then attached to φ is a triple $(\gamma_0, b, (\gamma_l)_{l \neq p})$ where

• $\gamma_0 \in G(\mathbb{Q})$ is semi-simple, defined up to conjugacy in $G(\overline{\mathbb{Q}})$ (stable conjugacy).

• For $l \neq p, \gamma_l \in G(\mathbb{Q}_l)$ is a semi-simple conjugacy class, stably conjugate to $\gamma_0 \in G(\overline{\mathbb{Q}}_l)$.

• $b \in G(\operatorname{Fr} W(\mathbb{F}_{p^r}))$ is an element defined up to *Frobenius* conjugacy $(b \mapsto g^{-1}b\sigma(g), \sigma \text{ abs. Frobenius})$ such that $Nb = b\sigma(b) \dots \sigma^{r-1}(b)$ is stably conjugate to γ_0 .

The data is required to satisfy certain conditions (corresponding to those on the φ).

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Recall that $S(\varphi)$ is meant to parameterize points in a fixed isogeny class.

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Recall that $S(\varphi)$ is meant to parameterize points in a fixed isogeny class.

 $X_p(\varphi) \longleftrightarrow p$ -power isogenies

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Recall that $S(\varphi)$ is meant to parameterize points in a fixed isogeny class.

 $X_p(\varphi) \longleftrightarrow p$ -power isogenies

 $G(\mathbb{A}_f^p) \longleftrightarrow$ prime to *p*-isogenies

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Recall that $S(\varphi)$ is meant to parameterize points in a fixed isogeny class.

 $X_p(\varphi) \longleftrightarrow p$ -power isogenies

$$G(\mathbb{A}_f^p) \longleftrightarrow$$
 prime to *p*-isogenies

 $I(\mathbb{Q}) \longleftrightarrow$ automorphisms of the AV+extra structure and I is a compact (mod center) form of the centralizer G_{γ_0} .

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

$$X_p(\varphi) = \{ g \in G(L) / G(\mathcal{O}_L) : g^{-1} b \sigma(g) \in G(\mathcal{O}_L) \mu^{\sigma}(p^{-1}) G(\mathcal{O}_L) \}$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

$$X_p(\varphi) = \{ g \in G(L) / G(\mathcal{O}_L) : g^{-1} b \sigma(g) \in G(\mathcal{O}_L) \mu^{\sigma}(p^{-1}) G(\mathcal{O}_L) \}$$

The condition in the definition of $X_p(\varphi)$ corresponds is a group theoretic version of the usual condition on the shape of Frobenius on the Dieudonné module of a *p*-divisible group.

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

$$X_p(\varphi) = \{ g \in G(L) / G(\mathcal{O}_L) : g^{-1} b \sigma(g) \in G(\mathcal{O}_L) \mu^{\sigma}(p^{-1}) G(\mathcal{O}_L) \}$$

The condition in the definition of $X_p(\varphi)$ corresponds is a group theoretic version of the usual condition on the shape of Frobenius on the Dieudonné module of a *p*-divisible group.

Here μ is a cocharacter of G conjugate to the cocharacter μ_h corresponding to h

$$\mu_h: \mathbb{C} \to \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m(\mathbb{C}) = \mathbb{C} \times \mathbb{C} \xrightarrow{h} G(\mathbb{C}).$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

$$X_p(\varphi) = \{ g \in G(L) / G(\mathcal{O}_L) : g^{-1} b \sigma(g) \in G(\mathcal{O}_L) \mu^{\sigma}(p^{-1}) G(\mathcal{O}_L) \}$$

The condition in the definition of $X_p(\varphi)$ corresponds is a group theoretic version of the usual condition on the shape of Frobenius on the Dieudonné module of a *p*-divisible group.

Here μ is a cocharacter of G conjugate to the cocharacter μ_h corresponding to h

$$\mu_h: \mathbb{C} \to \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m(\mathbb{C}) = \mathbb{C} \times \mathbb{C} \xrightarrow{h} G(\mathbb{C}).$$

If the conjugacy class of μ is fixed by σ^s , then the p^s -Frobenius acts on $X_p(\varphi)$ by $\Phi_s(g) = (b\sigma)^s(g) = b\sigma(b) \dots \sigma^{s-1}(b)\sigma^s(g)$

$$\begin{split} & \coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G,X)(\bar{\mathbb{F}}_p) \\ & S(\varphi) = \lim_{\leftarrow \ K^p} I(\mathbb{Q}) \backslash (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p \end{split}$$

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Remarks:

(1) Implicit in the statement is a generalization of Tate's theorem on the Tate conjecture for endomorphisms of AV's over finite fields, since one seeks to classify isogeny classes in terms of Frobenius conjugacy classes.

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Remarks:

(1) Implicit in the statement is a generalization of Tate's theorem on the Tate conjecture for endomorphisms of AV's over finite fields, since one seeks to classify isogeny classes in terms of Frobenius conjugacy classes.

(2) The LR conjecture is related to the conjecture that every isogeny class contains a CM lifting. In fact Langlands-Rapoport showed that the first conjecture implies the second. In practice one ends up proving the second conjecture on the way to proving the first.

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

Remarks:

(1) Implicit in the statement is a generalization of Tate's theorem on the Tate conjecture for endomorphisms of AV's over finite fields, since one seeks to classify isogeny classes in terms of Frobenius conjugacy classes.

(2) The LR conjecture is related to the conjecture that every isogeny class contains a CM lifting. In fact Langlands-Rapoport showed that the first conjecture implies the second. In practice one ends up proving the second conjecture on the way to proving the first.

(3) In the case of PEL type (A,C) this is due to Kottwitz and Zink. A subtle point is that Kottwitz doesn't quite construct a canonical bijection, and neither do we. (This seems to me to require a new idea.)

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

(4) The conjecture leads, via the Lefschetz trace formula, to an expressions for $\operatorname{Sh}_{K_p}(G, X)(\mathbb{F}_q)$ in terms of (twisted) orbital integrals involving $(\gamma_0, (\gamma_l)_{l \neq p}, \delta)$.

$$\coprod_{\varphi} S(\varphi) \xrightarrow{\sim} \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$$

$$S(\varphi) = \lim_{\leftarrow K^p} I(\mathbb{Q}) \setminus (X_p(\varphi) \times G(\mathbb{A}_f^p)) / K^p$$

(4) The conjecture leads, via the Lefschetz trace formula, to an expressions for $\operatorname{Sh}_{K_p}(G, X)(\mathbb{F}_q)$ in terms of (twisted) orbital integrals involving $(\gamma_0, (\gamma_l)_{l \neq p}, \delta)$.

Kottwitz has explained how one can use the Fundamental Lemma to stabilize this expression, and compare it with the stabilized geometric side of the trace formula. This should allow one to express the zeta function of $\operatorname{Sh}_{K_p}(G, X)$ in terms of automorphic *L*-functions.

Theorem. Suppose p > 2, and (G, X) is of Abelian (e.g Hodge) type with K_p hyperspecial.

Theorem. Suppose p > 2, and (G, X) is of Abelian (e.g Hodge) type with K_p hyperspecial.

Then the LR conjecture holds for $\mathscr{S}_{K_p}(G, X)$.

Theorem. Suppose p > 2, and (G, X) is of Abelian (e.g Hodge) type with K_p hyperspecial.

Then the LR conjecture holds for $\mathscr{S}_{K_p}(G, X)$.

Moreover, every mod p isogeny class contains a point which lifts to a CM point.

Theorem. Suppose p > 2, and (G, X) is of Abelian (e.g Hodge) type with K_p hyperspecial.

Then the LR conjecture holds for $\mathscr{S}_{K_p}(G, X)$.

Moreover, every mod p isogeny class contains a point which lifts to a CM point.

First consider (G, X) of Hodge type. What are the difficulties compared to the PEL case ?

Theorem. Suppose p > 2, and (G, X) is of Abelian (e.g Hodge) type with K_p hyperspecial.

Then the LR conjecture holds for $\mathscr{S}_{K_p}(G, X)$.

Moreover, every mod p isogeny class contains a point which lifts to a CM point.

First consider (G, X) of Hodge type. What are the difficulties compared to the PEL case ?

1) Suppose $x \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$ so that $x \rightsquigarrow \mathcal{A}_x$ an AV. If $g \in X_p(b) = \{g \in G(L)/G(\mathcal{O}_L) : g^{-1}b\sigma(g) \in G(\mathcal{O}_L)\mu^{\sigma}(p^{-1})G(\mathcal{O}_L)\}$ then $gx \rightsquigarrow \mathcal{A}_{gx}$.

Theorem. Suppose p > 2, and (G, X) is of Abelian (e.g Hodge) type with K_p hyperspecial.

Then the LR conjecture holds for $\mathscr{S}_{K_p}(G,X)$.

Moreover, every mod p isogeny class contains a point which lifts to a CM point.

First consider (G, X) of Hodge type. What are the difficulties compared to the PEL case ?

1) Suppose $x \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$ so that $x \rightsquigarrow \mathcal{A}_x$ an AV. If $g \in X_p(b) = \{g \in G(L)/G(\mathcal{O}_L) : g^{-1}b\sigma(g) \in G(\mathcal{O}_L)\mu^{\sigma}(p^{-1})G(\mathcal{O}_L)\}$ then $gx \rightsquigarrow \mathcal{A}_{gx}$.

But it is not clear that $gx \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$ because this is defined as a closure and has no easy moduli theoretic description. So it isn't clear there is a map

$$X_p \to \mathscr{S}_{K_p}(G, X); \quad g \rightsquigarrow \mathcal{A}_{gx}.$$

3) Even once one has a map

$$X_p \times G(\mathbb{A}_f^p) \to \mathscr{S}_{K_p}(G, X); \quad g \rightsquigarrow \mathcal{A}_{gx}$$

It isn't clear that the stabilizer of a point is a compact form of G_{γ_0} .

3) Even once one has a map

$$X_p \times G(\mathbb{A}_f^p) \to \mathscr{S}_{K_p}(G, X); \quad g \rightsquigarrow \mathcal{A}_{gx}$$

It isn't clear that the stabilizer of a point is a compact form of G_{γ_0} .

i.e we need to know that $\operatorname{Aut}(\mathcal{A}_x, (s_\alpha))$ is big enough. Here \mathcal{A}_x is thought of as an abelian variety up to isogeny, and the s_α are certain cohomology classes (coming from the Hodge cycles).

3) Even once one has a map

$$X_p \times G(\mathbb{A}_f^p) \to \mathscr{S}_{K_p}(G, X); \quad g \rightsquigarrow \mathcal{A}_{gx}$$

It isn't clear that the stabilizer of a point is a compact form of G_{γ_0} .

i.e we need to know that $\operatorname{Aut}(\mathcal{A}_x, (s_\alpha))$ is big enough. Here \mathcal{A}_x is thought of as an abelian variety up to isogeny, and the s_α are certain cohomology classes (coming from the Hodge cycles).

In the PEL case one can deduce this from Tate's theorem.

To overcome 1) let $x \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$, and choose $\tilde{x} \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{Q}}_p)$ lifting x. Then one gets a map

$$G(\mathbb{Q}_p) \to \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p); \quad \tilde{x} \mapsto g\tilde{x}$$

To overcome 1) let $x \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$, and choose $\tilde{x} \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{Q}}_p)$ lifting x. Then one gets a map

$$G(\mathbb{Q}_p) \to \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p); \quad \tilde{x} \mapsto g\tilde{x}$$

Reduction of isogenies mod p gives a map

$$G(\mathbb{Q}_p) \to X_p(\varphi); \quad g \mapsto g_0.$$

To overcome 1) let $x \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$, and choose $\tilde{x} \in \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{Q}}_p)$ lifting x. Then one gets a map

$$G(\mathbb{Q}_p) \to \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p); \quad \tilde{x} \mapsto g\tilde{x}$$

Reduction of isogenies mod p gives a map

$$G(\mathbb{Q}_p) \to X_p(\varphi); \quad g \mapsto g_0.$$

For $g \in G(\mathbb{Q}_p)$, we can define the map $X_p(\varphi) \to \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$ at g_0 by sending g_0 to the reduction of $g\tilde{x}$.

To overcome 1) let $x \in \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$, and choose $\tilde{x} \in \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p)$ lifting x. Then one gets a map

$$G(\mathbb{Q}_p) \to \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p); \quad \tilde{x} \mapsto g\tilde{x}$$

Reduction of isogenies mod p gives a map

$$G(\mathbb{Q}_p) \to X_p(\varphi); \quad g \mapsto g_0.$$

For $g \in G(\mathbb{Q}_p)$, we can define the map $X_p(\varphi) \to \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$ at g_0 by sending g_0 to the reduction of $g\tilde{x}$.

Of course one can't expect that every element of $X_p(\varphi)$ has the form g_0 , but one shows that $X_p(\varphi)$ has a "geometric structure" and that \tilde{x} can be chosen so that the composite map

$$G(\mathbb{Q}_p) \to X_p(\varphi) \to \pi_0(X_p(\varphi))$$

is surjective. This uses joint work with M. Chen and E. Viehmann.

Some ideas:

To overcome 1) let $x \in \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{F}}_p)$, and choose $\tilde{x} \in \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p)$ lifting x. Then one gets a map

$$G(\mathbb{Q}_p) \to \mathscr{S}_{K_p}(G, X)(\bar{\mathbb{Q}}_p); \quad \tilde{x} \mapsto g\tilde{x}$$

Reduction of isogenies mod p gives a map

$$G(\mathbb{Q}_p) \to X_p(\varphi); \quad g \mapsto g_0.$$

For $g \in G(\mathbb{Q}_p)$, we can define the map $X_p(\varphi) \to \mathscr{S}_{K_p}(G, X)(\overline{\mathbb{F}}_p)$ at g_0 by sending g_0 to the reduction of $g\tilde{x}$.

Of course one can't expect that every element of $X_p(\varphi)$ has the form g_0 , but one shows that $X_p(\varphi)$ has a "geometric structure" and that \tilde{x} can be chosen so that the composite map

$$G(\mathbb{Q}_p) \to X_p(\varphi) \to \pi_0(X_p(\varphi))$$

is surjective. This uses joint work with M. Chen and E. Viehmann.

Finally

$$X_p \to \mathscr{S}_{K_p}(G, X).$$

is well defined on a connected component once it is defined at a point. This is a deformation theoretic argument.

Finally

$$X_p \to \mathscr{S}_{K_p}(G, X).$$

is well defined on a connected component once it is defined at a point. This is a deformation theoretic argument.

To solve 3) (that I is big enough) one uses a reformulation of the *proof* of Tate's theorem. (It uses the same key inputs, but is phrased so that it applies to AV's with Hodge cycles.)

Finally

$$X_p \to \mathscr{S}_{K_p}(G, X).$$

is well defined on a connected component once it is defined at a point. This is a deformation theoretic argument.

To solve 3) (that I is big enough) one uses a reformulation of the *proof* of Tate's theorem. (It uses the same key inputs, but is phrased so that it applies to AV's with Hodge cycles.)

We'll sketch this in Tate's *original* context of principally polarized AV's.

Suppose (\mathcal{A}, ψ) is a principally polarized abelian variety over \mathbb{F}_q .

Suppose (\mathcal{A}, ψ) is a principally polarized abelian variety over \mathbb{F}_q . For $l \neq p$ define a group I_l over \mathbb{Q}_l by

$$I_l = \operatorname{Aut}_{\operatorname{Frob}}(H^1(\mathcal{A}_{\bar{\mathbb{F}}_p}, \mathbb{Q}_l), \psi).$$

(i.e automorphisms compatible with Frobenius and, up to scalar, the polarization).

Suppose (\mathcal{A}, ψ) is a principally polarized abelian variety over \mathbb{F}_q . For $l \neq p$ define a group I_l over \mathbb{Q}_l by

$$I_l = \operatorname{Aut}_{\operatorname{Frob}}(H^1(\mathcal{A}_{\overline{\mathbb{F}}_p}, \mathbb{Q}_l), \psi).$$

(i.e automorphisms compatible with Frobenius and, up to scalar, the polarization).

View \mathcal{A} as an AV up to isogeny, and define a group I over \mathbb{Q} by

$$I = \operatorname{Aut}(\mathcal{A}, \psi)$$

(again compatible with ψ up to scalar).

Suppose (\mathcal{A}, ψ) is a principally polarized abelian variety over \mathbb{F}_q . For $l \neq p$ define a group I_l over \mathbb{Q}_l by

$$I_l = \operatorname{Aut}_{\operatorname{Frob}}(H^1(\mathcal{A}_{\bar{\mathbb{F}}_p}, \mathbb{Q}_l), \psi).$$

(i.e automorphisms compatible with Frobenius and, up to scalar, the polarization).

View \mathcal{A} as an AV up to isogeny, and define a group I over \mathbb{Q} by

$$I = \operatorname{Aut}(\mathcal{A}, \psi)$$

(again compatible with ψ up to scalar).

Theorem. We have

$$I \otimes_{\mathbb{Q}} \mathbb{Q}_l \xrightarrow{\sim} I_l.$$

$$I \otimes_{\mathbb{Q}} \mathbb{Q}_l \xrightarrow{\sim} I_l.$$

Proof. By independence of l it is enough to prove this for one $l \neq p$.

$$I \otimes_{\mathbb{Q}} \mathbb{Q}_l \xrightarrow{\sim} I_l.$$

Proof. By independence of l it is enough to prove this for one $l \neq p$. Fix a compact open $K_l \subset \operatorname{GSp}(\mathbb{Q}_l)$. Then we have

$$I \otimes_{\mathbb{Q}} \mathbb{Q}_l \xrightarrow{\sim} I_l.$$

Proof. By independence of l it is enough to prove this for one $l \neq p$. Fix a compact open $K_l \subset \operatorname{GSp}(\mathbb{Q}_l)$. Then we have

 $I(\mathbb{Q}) \setminus I_l(\mathbb{Q}_l) / I(\mathbb{Q}_l) \cap K_l \subset I(\mathbb{Q}) \setminus \operatorname{GSp}(\mathbb{Q}_l) / K_l$

and the quotient on the right parameterizes PPAV's which are l-power isogenous to \mathcal{A} .

$$I \otimes_{\mathbb{Q}} \mathbb{Q}_l \xrightarrow{\sim} I_l.$$

Proof. By independence of l it is enough to prove this for one $l \neq p$. Fix a compact open $K_l \subset \operatorname{GSp}(\mathbb{Q}_l)$. Then we have

 $I(\mathbb{Q}) \setminus I_l(\mathbb{Q}_l) / I(\mathbb{Q}_l) \cap K_l \subset I(\mathbb{Q}) \setminus \operatorname{GSp}(\mathbb{Q}_l) / K_l$

and the quotient on the right parameterizes PPAV's which are l-power isogenous to \mathcal{A} .

These corresponds to (some) points on a quasi-projective variety over \mathbb{F}_q , but they need not be defined over the same finite field as \mathcal{A} so the quotient on the right is not finite.

$$I \otimes_{\mathbb{Q}} \mathbb{Q}_l \xrightarrow{\sim} I_l.$$

Proof. By independence of l it is enough to prove this for one $l \neq p$. Fix a compact open $K_l \subset \operatorname{GSp}(\mathbb{Q}_l)$. Then we have

 $I(\mathbb{Q}) \setminus I_l(\mathbb{Q}_l) / I(\mathbb{Q}_l) \cap K_l \subset I(\mathbb{Q}) \setminus \operatorname{GSp}(\mathbb{Q}_l) / K_l$

and the quotient on the right parameterizes PPAV's which are l-power isogenous to \mathcal{A} .

These corresponds to (some) points on a quasi-projective variety over \mathbb{F}_q , but they need not be defined over the same finite field as \mathcal{A} so the quotient on the right is not finite.

However automorphisms in the definition of I_l commute with Frobenius, so the quotient on the left *is* finite. (First ingredient used by Tate !).

 $I(\mathbb{Q}_l) \setminus I_l(\mathbb{Q}_l)$ is compact

$I(\mathbb{Q}_l) \setminus I_l(\mathbb{Q}_l)$ is compact

Now we choose l so that I_l is a split group (use the compatible system - this choice of l is also made by Tate !).

$I(\mathbb{Q}_l) \setminus I_l(\mathbb{Q}_l)$ is compact

Now we choose l so that I_l is a split group (use the compatible system - this choice of l is also made by Tate !).

The theorem follows from the following

$I(\mathbb{Q}_l) \setminus I_l(\mathbb{Q}_l)$ is compact

Now we choose l so that I_l is a split group (use the compatible system - this choice of l is also made by Tate !).

The theorem follows from the following

Lemma. Let I' be a connected algebraic group over \mathbb{Q}_l , whose reductive quotient is split. If $I \subset I'$ is a closed subgroup such that $I(\mathbb{Q}_l) \setminus I'(\mathbb{Q}_l)$ is compact, then I contains a Borel subgroup of I'.

$I(\mathbb{Q}_l) \setminus I_l(\mathbb{Q}_l)$ is compact

Now we choose l so that I_l is a split group (use the compatible system - this choice of l is also made by Tate !).

The theorem follows from the following

Lemma. Let I' be a connected algebraic group over \mathbb{Q}_l , whose reductive quotient is split. If $I \subset I'$ is a closed subgroup such that $I(\mathbb{Q}_l) \setminus I'(\mathbb{Q}_l)$ is compact, then I contains a Borel subgroup of I'.

By the lemma $I_l/I_{\mathbb{Q}_l}$ is projective. But since I is reductive the quotient is also affine, and connected, hence a point.

Above we used 'independence of l', and we haven't proved this yet for arbitrary G. Still the above argument shows $I = \operatorname{Aut}(\mathcal{A}_x, (s_\alpha))$ has the same rank as G. One can use this to construct enough special points Above we used 'independence of l', and we haven't proved this yet for arbitrary G. Still the above argument shows $I = \operatorname{Aut}(\mathcal{A}_x, (s_\alpha))$ has the same rank as G. One can use this to construct enough special points

Theorem. Every isogeny class in $\mathscr{S}_K(G, X)(\overline{\mathbb{F}}_p)$ contains a point which admits a special lifting.

Above we used 'independence of l', and we haven't proved this yet for arbitrary G. Still the above argument shows $I = \operatorname{Aut}(\mathcal{A}_x, (s_\alpha))$ has the same rank as G. One can use this to construct enough special points

Theorem. Every isogeny class in $\mathscr{S}_K(G, X)(\overline{\mathbb{F}}_p)$ contains a point which admits a special lifting.

Using the theorem one can solve the problem 2) about existence of γ_0 and γ_l being stably conjugate, and hence get the independence of l.

Shimura varieties of Abelian type:

Recall that a Shimura datum (G_2, X_2) is called of *Abelian type* if there is a Shimura datum of Hodge type (G, X) and a central isogeny $G^{der} \to G_2^{der}$ which induces an isomorphism on adjoint Shimura data

$$(G^{\operatorname{ad}},X^{\operatorname{ad}}) \xrightarrow{\sim} (G_2^{\operatorname{ad}},X_2^{\operatorname{ad}}).$$

Shimura varieties of Abelian type:

Recall that a Shimura datum (G_2, X_2) is called of *Abelian type* if there is a Shimura datum of Hodge type (G, X) and a central isogeny $G^{der} \to G_2^{der}$ which induces an isomorphism on adjoint Shimura data

$$(G^{\mathrm{ad}}, X^{\mathrm{ad}}) \xrightarrow{\sim} (G_2^{\mathrm{ad}}, X_2^{\mathrm{ad}}).$$

The pro-scheme

$$\mathrm{Sh}(G,X) = \lim_{\leftarrow \ K} G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f) / K$$

has a natural conjugation action by $G^{\mathrm{ad}}(\mathbb{Q})^+ = G^{\mathrm{ad}}(\mathbb{Q}) \cap G(\mathbb{R})^+$.

Shimura varieties of Abelian type:

Recall that a Shimura datum (G_2, X_2) is called of *Abelian type* if there is a Shimura datum of Hodge type (G, X) and a central isogeny $G^{der} \to G_2^{der}$ which induces an isomorphism on adjoint Shimura data

$$(G^{\mathrm{ad}}, X^{\mathrm{ad}}) \xrightarrow{\sim} (G_2^{\mathrm{ad}}, X_2^{\mathrm{ad}}).$$

The pro-scheme

$$\operatorname{Sh}(G,X) = \lim_{\leftarrow K} G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f) / K$$

has a natural conjugation action by $G^{\mathrm{ad}}(\mathbb{Q})^+ = G^{\mathrm{ad}}(\mathbb{Q}) \cap G(\mathbb{R})^+$.

If $K_p = \mathcal{G}(\mathbb{Z}_p)$ is hyperspecial, then this induces an action of $\mathcal{G}(\mathbb{Z}_{(p)})^+$ on $\operatorname{Sh}_{K_p}(G, X) = \lim_{\leftarrow K^p} G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f) / K^p K_p$

which extends to an action on $\mathscr{S}_{K_p}(G, X)$.

The integral model $\mathscr{S}_{K_p}(G_2, X_2)$ is constructed from $\mathscr{S}_{K_p}(G, X)$ using this action; the geometrically connected components of the former are quotients of those of the latter. This is analogous to Deligne's construction of canonical models.

The integral model $\mathscr{S}_{K_p}(G_2, X_2)$ is constructed from $\mathscr{S}_{K_p}(G, X)$ using this action; the geometrically connected components of the former are quotients of those of the latter. This is analogous to Deligne's construction of canonical models.

It turns out that one can construct the analogous structures for $\coprod_{\varphi} S(\varphi)$; there is a $\mathcal{G}(\mathbb{Z}_{(p)})^+$ -action and a notion of connected components. This bijection

$$\mathscr{S}_{K_p}(G,X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$$

can be made compatible with $\mathcal{G}(\mathbb{Z}_{(p)})^+$ -actions.

The integral model $\mathscr{S}_{K_p}(G_2, X_2)$ is constructed from $\mathscr{S}_{K_p}(G, X)$ using this action; the geometrically connected components of the former are quotients of those of the latter. This is analogous to Deligne's construction of canonical models.

It turns out that one can construct the analogous structures for $\coprod_{\varphi} S(\varphi)$; there is a $\mathcal{G}(\mathbb{Z}_{(p)})^+$ -action and a notion of connected components. This bijection

$$\mathscr{S}_{K_p}(G,X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$$

can be made compatible with $\mathcal{G}(\mathbb{Z}_{(p)})^+$ -actions.

To do this it seems essential to work with the morphisms φ and not just the triples $(\gamma_0, (\gamma_l)_{l \neq p}, \delta)$.

$\mathscr{S}_{K_p}(G, X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$ can be made compatible with $\mathcal{G}(\mathbb{Z}_{(p)})^+$ -actions.

$$\mathscr{S}_{K_p}(G,X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$$

To do this one needs a moduli theoretic description of the action of the adjoint group: This is based on the following construction.

$$\mathscr{S}_{K_p}(G,X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$$

To do this one needs a moduli theoretic description of the action of the adjoint group: This is based on the following construction.

Suppose that $x \in \text{Sh}_K(G, X)$ and \mathcal{A}_x the corresponding abelian scheme. If $\gamma \in G^{\text{ad}}(\mathbb{Q})$ we can construct a *twist* of \mathcal{A}_x by γ as follows.

$$\mathscr{S}_{K_p}(G,X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$$

To do this one needs a moduli theoretic description of the action of the adjoint group: This is based on the following construction.

Suppose that $x \in \text{Sh}_K(G, X)$ and \mathcal{A}_x the corresponding abelian scheme. If $\gamma \in G^{\text{ad}}(\mathbb{Q})$ we can construct a *twist* of \mathcal{A}_x by γ as follows.

The fibre of $G \to G^{\mathrm{ad}}$ by γ is a Z_G -torsor \mathcal{P} . On the other hand \mathcal{A}_x is equipped with an action of $Z_G(\mathbb{Q})$ (in the isogeny category).

$$\mathscr{S}_{K_p}(G,X) \xrightarrow{\sim} \coprod_{\varphi} S(\varphi)$$

To do this one needs a moduli theoretic description of the action of the adjoint group: This is based on the following construction.

Suppose that $x \in \text{Sh}_K(G, X)$ and \mathcal{A}_x the corresponding abelian scheme. If $\gamma \in G^{\text{ad}}(\mathbb{Q})$ we can construct a *twist* of \mathcal{A}_x by γ as follows.

The fibre of $G \to G^{\mathrm{ad}}$ by γ is a Z_G -torsor \mathcal{P} . On the other hand \mathcal{A}_x is equipped with an action of $Z_G(\mathbb{Q})$ (in the isogeny category).

We can form an abelian scheme up to isogeny

$$\mathcal{A}_x^{\mathcal{P}} = (\mathcal{A}_x \otimes_{\mathbb{Q}} \mathcal{O}_{\mathcal{P}})^{Z_G}$$

where the RHS can be thought of in terms of fppf sheaves.