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Abstract. I will focus on recent developments about the con-
dition metric in the solution variety for systems of homogeneous
polynomial equations.

First I will review the basic algebraic-geometric construction of
the solution variety and the condition number, and explain what
is the condition metric.

Then I will explain how the complexity of path-following can
be bounded in terms of the condition-metric of the path. This
will suggest a geometric version for Smale’s 17-th problem: finding
short homotopy paths.

As a tentative to understand the condition metric, we studied
the linear case: systems of polynomials of degree 1. In this context,
the logarithm of the condition number is convex along geodesics.
This self-convexity property is conjectured to be true for higher
degrees.

(This is joint work with Carlos Beltrán, Jean-Pierre Dedieu and
Mike Shub).
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1. What is self-convexity

Through this talk, (M, 〈·, ·〉x) is always a smooth Riemannian man-
ifold and α :M→ R>0 is a Lipschitz function.

We can endow the manifold M with a new metric, namely

〈·, ·〉′x = α(x)〈·, ·〉x
which is conformally equivalent to the previous one. This new norm
will be called the α-metric and sometimes the condition metric. It
defines a Riemann- Lipschitz structure on M.

Definition 1.1. We say that α is self-convex if and only if, for any
geodesic γ in the α-structure, t 7→ logα(γ(t)) is a convex function.

This definition makes sense when α is of class C1 so that the geodesic
differential equation has a solution. When α is merely Lipschitz, a ge-
odesic is a locally minimizing absolutely continuous (C1+Lip = W 2,∞)
path, parametrized by arc length a.e. (For a discussion, see Boito and
Dedieu (2010) and Beltrán, Dedieu, Malajovich, and Shub (TA)).

2. Known examples of self-convexity

Theorem 2.1. Let C ⊂ Rn a (closed) convex body. Let M = (Rn \ C
and let α : x 7→ d(x,C)−2. Then α is self-convex.

Theorem 2.2 (Beltrán, Dedieu, Malajovich, and Shub (2010), Th.2).
Let N ⊂ Rm be an embedded submanifold (without border of course).
Let M be the largest open set in Rm \ N such that every point of M
has a unique closest point in N . Let α : x 7→ d(x,N )−2. Then α is
self-convex.

Theorem 2.1 follows immediately from Li and Nirenberg (2005) and
the result above.

Theorem 2.3 (Beltrán, Dedieu, Malajovich, and Shub (TA), Th.1).
Let K = R or C. Let L(m,n) = Km×n where we assume that m ≥ n,
endowed with the trace inner product, and let M = L(m,n) \ {A :
Rank(A) < n}. Let α : A 7→ ‖(A∗A)−1‖. Then α is self-convex.

More examples are known, and also some counterexamples (Beltrán
et al., 2010; TA).

Since proofs can get extremely technical, I will not attempt to sketch
any argument. Instead, I intend to explain in the rest of the talk why
are we investigating such issues.

Our main motivation is Smale’s 17-th problem. This is a long story,
that started with the Bézout saga (Shub and Smale, 1993a; 1993b;
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1993c; 1996; 1994; Shub, 2009; Beltrán and Shub, 2009). As this is a
conference in honor of Mike Shub, it would be appropriate to tell this
story. However, I will spoil it: after introducing the basic language, I
will tell the end.

3. The algebra

Let Hd be the space of complex homogeneous polynomials of degree
d, in n variables. There are many standard ways to represent polyno-
mials, here are two:

F (X) =
∑

∑
ai=d

FaX
a1
1 X

a2
2 · · ·Xan

n =
∑

0≤j1,...,jd≤n

SjXj1Xj2 . . . Xjn .

In the last representation, we assume that the Sj are coefficients
of a symmetric d-contravariant tensor S(X,Y, . . . ,Z) and F (X) =
S(X, . . . ,X).

The quantity

‖S‖2 =
∑

0≤j1,...,jd≤n

|Sj|2

is invariant by unitary rotations. This is actually an exercise in my
book (Malajovich, 2011).

The corresponding norm in the polynomial representation

‖F‖2 =
∑

∑
ai=d

|Fa|2
a1! . . . an!

d!

is known as the Weyl norm or sometimes Bombieri norm. Both come
with an inner product. This is the inner product Hd is endowed with.

Moreover, Hd is a reproducing kernel space. If Kd(X,Y) =
〈X,Y〉d then

F (Y) = 〈F (·), Kd(·,Y)〉.
If d = (d1, . . . , dn), the space of systems of polynomials

Hd = Hd1 × · · · × Hdn

is also endowed with the unitarily invariant, product space inner prod-
uct.

4. The algebraic geometry

The solution variety is the set of pairs (problem, solution). Formally,

V = {(f ,x) ∈ P(Hd)× Pn : f(x) = 0} .
This compactification is not always necessary, but it is extremely

convenient. Through this talk I follow the convention that vectors are
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upper case (X) and the corresponding projective points are lower case
(x).

Let ev(F,X) denote the evaluation of F at X,

ev(F,X) =

F1(X)
...

Fn(X)

 =

〈F1(·), Kd1(·,X)〉
...

〈Fn(·), Kdn(·,X)〉


The i-th coordinate of the evaluation function is a polynomial in

F ∈ Hdi and X ∈ Cn, and it is an easy exercise to show that Dev(F,X)
is surjective. Thus V is a smooth algebraic variety. Consider now the
two canonical projections

π1 : V → P(Hd) and π2 : V → Pn

Let Σ be the set of critical values of π1. It follows from Sard’s
theorem that Σ has measure zero, and from elimination theory that Σ
is an algebraic set.

Moreover, π1 is onto.
Therefore, for generic F0 and F1, the complex line

(1− t)F0 + tF1

cuts Σ in finitely many (complex) values of t. Therefore if we require t ∈
[0, 1], the event of (Ft)t∈[0,1] hitting Σ has probability zero. Therefore
the lifting theorem applies and can be used to solve polynomial systems.
This is where the Bézout saga begins.

5. The calculus

Assume that (F0,X0) ∈ V , F0 6∈ Σ. Then we are under the hypothe-
ses of the implicit function theorem: there are δ > 0 and a function
G : B(f0, δ)→ Pn such that

ev(F, G(F)) ≡ 0

G(F0) = X0

In order to design path-following algorithms, it is important to give
bounds for δ. In the early Bézout saga, this was ultimately done in
terms of condition numbers.

There are two current definitions of the condition number. The un-
normalized condition number measures the sensitivity of the (pro-
jectivized) solution x to the (projectivized) input f . It is defined as
‖DG(f ,x)‖, where the operator norm of DG(f ,x) : TfP(Hd) → TxPn

is assumed.
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Lemma 5.1. In the context above, let F ∈ Hd, X ∈ Cn+1 be represen-
tatives of (f ,x) ∈ V.

(1) ‖DG(f ,x)‖ = ‖F‖

∥∥∥∥∥∥∥
‖X‖−d1+1

. . .

‖X‖−dn+1

DF(X)X⊥

−1
∥∥∥∥∥∥∥

(Again, operator norm is assumed).

Proof. We first differentiate G. Let (Ft,Xt) be a smooth path. Differ-
entiating Ft(Xt) ≡ 0, one gets

DFt(Xt)Ẋt + Ḟt(Xt) = 0

Therefore,

DG(Xt) : Ḟ→ −DFt(Xt)
−1

Kd1(·,Xt)
∗

. . .
Kdn(·,Xt)

∗

 Ḟ

The condition number and the right hand side of (??) are invari-
ant by scalings in Hd, in Cn+1 and also by unitary action (f ,x) 7→
(f ◦ U∗, Ux). Therefore we can assume without loss of generality that
‖F‖ = 1 and that X = e0. Calculations are immediate. �

Shub and Smale introduced the normalized condition number

µ(f ,x) = ‖F‖

∥∥∥∥∥∥∥∥

d
−1/2
1 ‖X‖−d1+1

. . .

d
−1/2
n ‖X‖−dn+1

DF(X)X⊥


−1
∥∥∥∥∥∥∥∥ .

The operator Hd 7→ H(1,··· ,1) given by

F 7→

d
−1/2
1 ‖X‖−d1+1

. . .

d
−1/2
n ‖X‖−dn+1

DF(X)X⊥

is an isometric projection. This definition makes the condition theorem
true:

Theorem 5.2. (Shub and Smale, 1993a) The condition number µ(f, x)
equal to the reciprocal of the distance of f to the discriminant variety
Σ along the fiber of systems vanishing at x.

(See Shub and Smale (1993a) or Blum et al. (1998) for the original
version and Malajovich (2011) for generalizations).
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Notice that

‖DG(f ,x)‖ ≤ µ(f ,x) ≤
√

max di‖DG(f ,x)‖

6. The numerical analysis

One of the main results of the early Bézout saga was a family of
path-following methods, with number of homotopy steps of

O
(
d(f0, f1) max

t∈[0,1]
µ(ft,xt)

2 dt

)
.

The general procedure was of the form:

(2) xi+1 = N(fti+1
,xti)

where N denotes certain Newton iteration in projective space.
I must say now what is an approximate zero. Let d(x,y) = min ‖X−

λY‖/‖X‖ be the projective metric in projective space, that is the sine
of the Riemannian distance.

Definition 6.1 (Smale). An approximate zero for F ∈ Hd is a point
0 6= Y ∈ Cn+1 so that the sequence yi+1 = N(f ,yi) satisfies

d(yi,yi+1) ≤ 2−2
i+1d(y0,y1).

It turns out that approximate zeros exist (Smale, 1986) and can be
numerically certified through Smale’ s alpha theory. (Again see my
book, Malajovich (2011)).

The outcome of Shub and Smale (1994) is that for every Hd, there
is a pair (F0,X0) such that, for every F1, there is a sequence ti, so that
(2) produces tN = 1 and XN so that XN is an approximate zero for
F1.

The following problems where left mostly open.

(1) How to find a good starting pair (F0,X0).
(2) How to generate the sequence of ti’s.

7. Smale’s 17-th problem

Open Problem 7.1. (Smale, 1998) Can a zero of n complex polyno-
mial equations in n unknowns be found approximately , on the average,
in polynomial time with a uniform algorithm?

All the terms above are technical. Here is my translation:

Does there exist a deterministic algorithm M (BSS machine over R
or a similar model) with input (n ∈ N, d1 ∈ N, . . . , dn ∈ N,F ∈ Hd)
producing X ∈ Cn+1 \ {0} so that

(1) x is an approximate zero for f , and
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(2) There is a polynomial p such that for any fixed d,

AVGF∈N(0,1;Hd)R(d,F) ≤ p(dim(Hd))

where R(d,F) is the running time of M with input F?

Two major advances in this subject are a polynomial time random-
ized algorithm (Beltrán and Pardo, 2011) and a deterministic algo-
rithm (Bürgisser and Cucker, 2011) that runs in time

(dimHd)log log dimHd .

8. The fast homotopy

Most path-lifting homotopy algorithms until now prescribed an up-
per bound for the time mesh ti+1−ti. In Dedieu, Malajovich, and Shub
(to appear), we constructed an algorithm with a lower bound for the
time mesh, in terms of a certain integral. (The existence of that time
mesh appeared in Shub (2009), and another algorithm can be found
in Beltrán (2011a).

The algorithm in Dedieu et al. (to appear) performs path-lifting in
at most

1 + 0.65(max di)
3/2ε−2L(ft,xt; 0, 1)

homotopy steps, where

(3)

∫ 1

0

µ(ft, zt)
(
‖ḟt‖ft + ‖ẋt‖xt

)
The algorithm is robust, and the accuracy parameter ε allows for

approximate computations. This is where the idea of the α-structure
comes from.

9. Geometric forms of Smale’s 17-th problem

Let α(f ,x) = µ(f ,x)2 and let M = {(f ,x) ∈ V : α(f ,x) <∞.

Conjecture 9.1. α is self-convex in M .

In particular, µ would be convex along the geodesics of the α-structure.
The maximum of µ along a geodesic would be found at an extremity.

Moreover, a short geodesic (in the condition-structure) between an
arbitrary (f ,x) and a global minimum for µ is guaranteed to exist (Beltrán
and Shub, 2009). At this time we do not know how to approximate
such a geodesic in polynomial time.

Here is a possible approach for Smale’s 17-th problem. For every
f ∈ P(Hd), produce a path ft ∈ P(Hd) with f1 = f , and produce
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z0 ∈ Pn so that the α-length of the lifting of ft passing through (f0, z0)
is ≤ dim(Hd)k (where k must be a universal constant).

The most technical algorithmic issues are gone. What we have above
is a geometrical or variational problem.

HAPPY MAY’68, MIKE!
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