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History

• Symmetry of figures studied since the early days of ge-
ometry.

• The regular solids occur from very early times and are
attributed to Plato (427-347bce). Euclid (300bc).

dodecahedron, icosahedron {3,5},
tetrahedron, octahedron, cube



• Regular star-polyhedra — Kepler-Poinsot polyhedra
(Kepler 1619, Poinsot 1809). Cauchy (1813).

• Higher-dimensional geometry and group theory in the 19th
century. Schläfli’s work.

• Influential work of Coxeter. Unified approach based on a
powerful interplay of geometry and algebra.



Polyhedra With the passage of time, many
changes in point of view about polyhedra or complexes, and
their symmetry: Platonic (solids, convexity), Kepler-Poinsot
(star polygons), Petrie-Coxeter (convex faces, infinite), .....



Skeletal approach to polyhedra and symme-
try!

• Impetus by Grünbaum (1970’s) in two ways — geomet-
rically and combinatorially.

Basic question: what are the regular polyhedra in ordinary
space? Answer: Grünbaum-Dress Polyhedra.

• Rid the theory of the psychologically motivated block
that membranes must be spanning the faces! Allow skew
faces! Restore the symmetry in the definition of “polyhe-
dron”! Graph-theoretical approach!

• Later: the group theory forces skew faces and vertex-
figures! General reflection groups.



Polyhedron

A polyhedron P in E3 is a family of simple polygons, called

faces, such that

• each edge of a face is an edge of just one other face,

• all faces incident with a vertex form one circuit,

• P is connected,

• each compact set meets only finitely many faces (dis-

creteness).

P is regular if its symmetry group is transitive on the flags.

(flag: incident triple of a vertex, an edge, and a face)



{6,6}



{6,6}



{4,6}



Petrie-Coxeter Polyhedra (1930’s): convex faces, skew vertex-

figures. Just three such polyhedra!

{4,6|4} {6,4|4} {6,6|3}



Polyhedron {6,6}4 derived from the Petrie-Coxeter polyhe-
dron {4,6|4}

{4,6|4}

• Bicolor the vertices of {4,6|4}.
• Vertex-figures at vertices in one class give faces of {6,6}4.

• New polyhedron {6,6}4 has planar vertex-figures.



Symmetry group G(P )

• Generated by reflections R0, R1, R2 in points, lines, or

planes.

• Standard relations (R0R1)p = (R1R2)q = (R0R2)2 = I,

and in general more relations (geometry of the polyhedron).

• Wythoff’s construction recovers polyhedron from its group.

Classification of triples of reflections R0, R1, R2 such that R0

and R2 commute and R1 and R2 have a common fixed point.

Grünbaum (70’s), Dress (1981); McMullen & S. (1997)



Enumeration of regular polyhedra

18 finite (5 Platonic, 4 Kepler-Poinsot, 9 Petrials)

tetrahedral {3,3} π←→ {4,3}3

octahedral {6,4}3
π←→ {3,4} δ←→ {4,3} π←→ {6,3}4

icosahedral {10,5} π←→ {3,5} δ←→ {5,3} π←→ {10,3}
l ϕ2 l ϕ2

{6, 5
2}

π←→ {5, 5
2}

δ←→ {5
2,5}

π←→ {6,5}
l ϕ2 l ϕ2

{10
3 ,3}

π←→ {5
2,3}

δ←→ {3, 5
2}

π←→ {10
3 ,

5
2}

duality δ : R2, R1, R0; Petrie π : R0R2, R1, R0; facetting ϕ2 : R0, R1R2R1, R2



Infinite polyhedra, or apeirohedra

Their symmetry groups are crystallographic groups (discrete

groups of isometries with compact fundamental domain)!

6 planar (3 tessellations by squares, triangles, hexagons; and

their Petrials)

24 apeirohedra (12 reducible, or blends; 12 irreducible)

• The 12 reducible polyhedra are obtained by blending a

planar polyhedron and a linear polygon (line segment or tes-

sellation).

• In a sense, the 12 irreducible polyhedra fall into a single

family, derived from the cubical tessellation. Various rela-

tionships between them.



Irreducible polyhedra

{∞,4}6,4
π←→ {6,4|4} δ←→ {4,6|4} π←→ {∞,6}4,4

σ ↓ ↓ η

{∞,4}·,∗3 {6,6}4
ϕ2−→ {∞,3}(a)

π l l π

{6,4}6
δ←→ {4,6}6

ϕ2−→ {∞,3}(b)

σδ ↓ ↓ η

{∞,6}6,3
π←→ {6,6|3}

halving η : R0R1R0, R2, R1; skewing σ=πδηπδ : R1, R0R2, (R1R2)2



Breakdown by mirror vector (for R0, R1, R2)

mirror {3,3} {3,4} {4,3} faces vertex-
vector figures

(2,1,2) {6,6|3} {6,4|4} {4,6|4} planar skew

(1,1,2) {∞,6}4,4 {∞,4}6,4 {∞,6}6,3 helical skew

(1,2,1) {6,6}4 {6,4}6 {4,6}6 skew planar

(1,1,1) {∞,3}(a) {∞,4}·,∗3 {∞,3}(b) helical planar

The polyhedra in the last line occur in two enantiomorphic
forms, yet they are geometrically regular!

Presentations for the symmetry group are known. The fine
Schläfli symbol signifies defining relations. Extra relations
specify order of R0R1R2, R0R1R2R1, or R0(R1R2)2.



{∞,3}(b) (R0R1)4(R0R1R2)3 = (R0R1R2)3(R0R1)4



Helix-faced polyhedron {∞,3}(b)



Chiral Polyhedra in E3

• Two orbits on the flags under the geometric symmetry
group, such that adjacent flags are always in different orbits.

• Local definition

Generators S1, S2 for type {p, q}

S
p
1 = S

q
2 = (S1S2)2 = 1 & generally more relations

• Maximal “rotational” symmetry but no “reflexive” sym-
metry! Irreflexible!



Observations

• No examples were known (to me). Convex polytopes can-

not be chiral! (McMullen)

• Variant of Wythoff’s construction (exploiting S1S2)!

• There are no finite chiral polyhedra in E3!

• There are no planar or blended chiral polyhedra in E3.

• Classification breaks naturally into finite-faced and helix-

faced polyhedra!

S. (2004/5)



Three Classes of Finite-Faced Chiral Polyhedra

(S1, S2 rotatory reflections, hence skew faces and skew vertex-figures.)

Schläfli {6,6} {4,6} {6,4}

Notation P (a, b) Q(c, d) Q(c, d)∗

Param. a, b ∈ Z, c, d ∈ Z, c, d ∈ Z,
(a, b) = 1 (c, d) = 1 (c, d) = 1

geom. self-dual
P (a, b)∗ ∼= P (a, b)

Special gr [3,3]+ × 〈−I〉 [3,4] [3,4]

Regular P (a,−a)={6,6}4 Q(a,0)={4,6}6 Q(a,0)∗={6,4}6
cases P (a,a)={6,6|3} Q(0,a)={4,6|4} Q(0,a)∗={6,4|4}

Vertex-sets and translation groups are known!



P (1,0), of type {6,6}
Neighborhood of a single vertex.



Q(1,1), of type {4,6}
Neighborhood of a single vertex.



Three Classes of Helix-Faced Chiral Polyhedra
(S1 screw motion, S2 rotation; helical faces and planar vertex-figures.)

Schläfli symbol {∞,3} {∞,3} {∞,4}

Helices over triangles squares triangles

Special group [3,3]+ [3,4]+ [3,4]+

Relationships P (a, b)ϕ2 Q(c, d)ϕ2 Q∗(c, d)κ

a 6= b (reals) c 6= 0 (reals) c, d reals

Regular cases {∞,3}(a) {∞,3}(b) {∞,4}·,∗3
= P (1,−1)ϕ2 = Q(1,0)ϕ2 self-

= {6,6}ϕ2
4 = {4,6}ϕ2

6 Petrie

Vertex-sets and translation groups are known!



{∞,3}(b)



Remarkable facts

• Essentially: any two finite-faced polyhedra of the same

type are non-isomorphic.

P (a, b) ∼= P (a′, b′) iff (a′, b′) = ±(a, b),±(b, a).

Q(c, d) ∼= Q(c′, d′) iff (c′, d′) = ±(c, d),±(−c, d).

• The finite-faced polyhedra are intrinsically (combinatori-

ally) chiral! [Pellicer & Weiss 2009]

• The helix-faced polyhedra are combinatorially regular!

Combinatorially only three polyhedra! Chiral helix-faced

polyhedra are “chiral deformations” of regular helix-faced

polyhedra! [Pellicer & Weiss 2009]



• Chiral helix-faced polyhedra unravel Platonic solids!
Coverings

{∞,3} 7→{3,3}, {∞,3} 7→{4,3}, {∞,4} 7→{3,4}.

• Relationships between the classes of chiral polyhedra

Q∗ δ←→ Q
ϕ2−→ P2

lκ ↓η

P3 P
ϕ2−→ P1

& %
'-

δ

δ = (S−1
2 , S−1

1 ), η = (S2
1S2, S

−1
2 ), ϕ2 = (S1S

−1
2 , S2

2), κ = (−S1,−S2)



Finite Regular Polyhedra of Index 2 in E3

(joint with A.Cutler)

• P is combinatorially regular. Combinatorial automorphism

group Γ(P ) is flag-transitive!

• Geometric symmetry group G(P ) is of index 2 in the

combinatorial automorphism group Γ(P ).

Combinatorially regular but “fail geometric regularity

by a factor of 2”. Hidden combinatorial symmetries!



Orientable finite regular polyhedra of index 2 with planar

faces (Wills, 1987).

Five polyhedra

• dual maps {4,5}6, {5,4}6 of genus 4;

• dual maps {6,5}4, {5,6}4 of genus 9;

• self-dual map of type {6,6}6 (not universal) of genus 11.

General case was open!

Models by David Richter.





Full classification of finite polyhedra: 32 regular
polyhedra of index 2.

• Exactly two flag orbits under G(P ); and at most two or-

bits under G(P ) on the vertices, edges, and faces.

• G(P ) is a finite subgroups of O(3). Rule out reducible

groups and rotation subgroups of Platonic solids.

Only possibilities: full symmetry groups of Platonic solids.

Platonic solids provide reference figures!



• Combinatorial regularity means Γ(P ) = 〈ρ0, ρ1, ρ2〉 and
Γ+(P ) = 〈σ1, σ2〉, with σ1 := ρ0ρ1 and σ1 := ρ1ρ2.

Exploit index 2 property! Squaring ends up in G(P).

• Face stabilizers GF (P ) are of index 1 or 2 in the (dihedral)
face stabilizer ΓF (P ).

• Class of regular polyhedra of index 2 invariant under Petrie
duality.



Classification splits naturally

• two vertex orbits (18 + 4 = 22 polyhedra).

• one vertex orbit (10 polyhedra).

Case of two vertex orbits

• families of polyhedra rather than individual polyhedra,

depending on relative sizes of the circumspheres of their

vertex orbits.

• vertices of P located at those of a pair of similar, aligned

or opposed, Platonic solids, S and S�, with G(S) = G(P ).

Cutler & S. (2011), Cutler (2011).



The 22 families of polyhedra with two vertex-orbits

• 18 are related to the ordinary finite regular polyhedra (of

index 1).

• 4 have full tetrahedral symmetry; 2 have full octahedral

symmetry; and 16 have full icosahedral symmetry.

• All polyhedra are orientable and face-transitive. All, but

two, individual polyhedra have non-planar faces.



Type Generated Face Vector Edge Face Map
{p, q}r from (f0, f1, f2) Length Shape

{4,3}6 {4,3} (8,12,6) 1 [r, r] —
{6,3}4 Petrial of {4,3} (8,12,4) 1 [r, l] —
{4,3}6 Petrial of {3,3} (8,12,6) 1 [r, l] —
{6,3}4 {3,3} (8,12,4) 1 [r, r] —

{6,4}6 Petrial of {3,4} (12,24,8) 1 [r, l] R3.4∗

{6,4}6 {3,4} (12,24,8) 1 [r, r] R3.4∗

{10,3}10 Petrial of {5,3} (40,60,12) 1 [r, l] R5.2∗

{10,3}10 {5,3} (40,60,12) 1 [r, r] R5.2∗

{10,3}10 {5
2
,3} (40,60,12) 4 [r, r] R5.2∗

{10,3}10 Petrial of {5
2
,3} (40,60,12) 4 [r, l] R5.2∗

{4,5}6 — (24,60,30) 1 [hr, sr] R4.2
{6,5}4 — (24,60,20) 1 [hr, sl] R9.16∗

{4,5}6 — (24,60,30) 2 [hr, sl] R4.2
{6,5}4 — (24,60,20) 2 [hr, sr] R9.16∗

{6,5}10 Petrial of {5
2
,5} (24,60,20) 2 [hr, hl] R9.15∗

{10,5}6 {5
2
,3} (24,60,12) 2 [hr, hr] R13.8∗

{6,5}10 {3,5} (24,60,20) 1 [hr, hr] R9.15∗

{10,5}6 Petrial of {3,5} (24,60,12) 1 [hr, hl] R13.8∗

{6,5}10 Petrial of {5, 5
2
} (24,60,20) 1 [sr, sl] R9.15∗

{10,5}6 {5, 5
2
} (24,60,12) 1 [sr, sr] R13.8∗

{6,5}10 {3, 5
2
} (24,60,20) 2 [sr, sr] R9.15∗

{10,5}6 Petrial of {5, 5
2
} (24,60,12) 2 [sr, sl] R13.8∗



Octahedral symmetry.

From {3,4}π, {3,4}.



Icosahedral. Type {10,3}10. From

{5,3}π, {5,3}, {5
2
,3}, {5

2
,3}π.



Icosahedral. Types {4,5}6 or {6,5}4.

Not derived. At top, planar faces poss.



The 10 families of polyhedra with one vertex-orbit

• All 10 have full icosahedral symmetry.

Type Face Vector Edge Shape Map
{p, q}r (f0, f1, f2) Length

{6,6}6 (20,60,20) 1,4 [r, r] R11.5 planar faces
self-dual map

{6,6}6 (20,60,20) 1,4 [r, l]&[l, r] N22.3 face trans.
{4,6}5 (20,60,30) 2 [hl, f ] N12.1
{5,6}4 (20,60,24) 2 [f, f ]&[hl, hl] R9.16 planar faces
{6,4}5 (30,60,20) d [r, l] N12.1∗

{5,4}6 (30,60,24) d [r, r]&[l, l] R4.2∗ planar faces
{4,6}10 (20,60,30) 3 [hl, f ] R6.2
{10,6}4 (20,60,12) 3 [f, f ]&[hl, hr] N30.11∗

{6,4}10 (30,60,20) 2d [r, r] R6.2∗

{10,4}6 (30,60,12) 2d [r, l]&[l, r] N20.1∗



Figure 3: The two polyhedra with edges of unequal length. They have type {6,6}6 and the
vertices coincide with those of a dodecahedron. They are Petrie-dual and C(P)-dual to each
other. The left one has shape [r,r] and is orientable; the right one has shape [r,l]&[l,r] and is
non-orientable, with one face orbit under G(P). Shown is one face.



..... The End .....

Thank you



Abstract Two-Orbit Polyhedra in Ordinary Space

In the past few years, there has been a lot of progress in the
classification of highly-symmetric discrete polyhedral struc-
tures in Euclidean space by distinguished transitivity proper-
ties of the geometric symmetry groups. We discuss recent
results about two particularly interesting classes of polyhedra
in ordinary 3-space, each described by a “two-flag orbits”
condition. First we review the chiral polyhedra, which have
two flag orbits under the symmetry group such that adja-
cent flags are in distinct orbits. They occur in six very large
2-parameter families of infinite polyhedra, three consisting
of finite-faced polyhedra and three of helix-faced polyhedra.
Second, we describe a complete classification of finite “regu-
lar polyhedra of index 2”, a joint effort with Anthony Cutler.



These polyhedra are combinatorially regular but “fail geo-

metric regularity by a factor of 2”; in other words, the com-

binatorial automorphism group is flag-transitive but their

geometric symmetry group has two flag orbits. There are

32 such polyhedra.





Tetrahedral symmetry. From

{4,3}, {4,3}π, {3,3}π, {3,3}.



Icosahedral. Types {6,5}10,{10,5}6

(second set of four).

From {5, 5
2
}π, {5, 5

2
}, {3, 5

2
}, {3, 5

2
}π.



Icosahedral. Types {6,5}10,{10,5}6

(first set of four).

From {5
2
,5}π, {5

2
,5}, {3,5}, {3,5}π.



Figure 4: The four polyhedra with edges of equal length and vertices coinciding with those
of a dodecahedron. The top left has type {4,6}5 and shape [hl,f] and is non-orientable.
Below it are shown the two face orbits of its Petrie-dual of type {5,6}4 and shape
[hl,hl]&[f,f], which is orientable. In the right column are the C(P)-dual polyhedra.The top
one has type {4,6}10 and shape [hl,f] and is orientable. Below it are the two face orbits of
its Petrie-dual of type {10,6}4 and shape [hl,hr]&[f,f], which is non-orientable.



Figure 5: The four polyhedra with edges of equal length and vertices coinciding with those
of an icosidodecahedron. The top left has type {6,4}5 and shape [r,l] and is
non-orientable. Below it are shown the two face orbits of its Petrie-dual of type {5,4}6 and
shape [r,r]&[l,l], which is orientable. In the right column are the C(P)-dual polyhedra.The
top one has type {6,4}10 and shape [r,r] and is orientable. Below it are the two face orbits
of its Petrie-dual of type {10,4}6 and shape [r,l]&[l,r], which is non-orientable.


