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Introduction

Goal

Understand locally and globally maximally dense packings of equal circles
on a fixed torus.
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The action of SL(2,Z) (and scaling) on oriented lattices preserves the
density of a packing and can be used to put the lattice into a normal form.
As we are working with unoriented lattices this is further reduced to the
following forms:

For the optimal packings of 2 circles on any
torus with a length one closed geodesic see
the work of Przeworski (2006).



Introduction

Which Torus?

A flat torus is the quotient of the plane by a rank 2 lattice, R2/Λ

The action of SL(2,Z) (and scaling) on oriented lattices preserves the
density of a packing and can be used to put the lattice into a normal form.
As we are working with unoriented lattices this is further reduced to the
following forms:

A Square Torus is the quotient of the plane
by unit perpendicular vectors. See the work
of H. Mellisen (1997) – proofs for 3 and 4
circles and conjectures up to 19 circles. For
large numbers (> 50) see the work of
Lubachevsky, Graham, and Stillinger (1997).
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The action of SL(2,Z) (and scaling) on oriented lattices preserves the
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following forms:

A Rectangular Torus is the quotient of the
plane by perpendicular vectors. See the work
of A. Heppes (1999) – proofs for 3 and 4
circles.



Introduction

Which Torus?

A flat torus is the quotient of the plane by a rank 2 lattice, R2/Λ

The action of SL(2,Z) (and scaling) on oriented lattices preserves the
density of a packing and can be used to put the lattice into a normal form.
As we are working with unoriented lattices this is further reduced to the
following forms:

A Triangular Torus is the quotient of the
plane by unit vectors with a 60 degree angle
between them. Understanding packings on
this torus might help prove a conjecture of
L. Fejes Tóth on the solidity of the
triangular close packing in the plane with
one circle removed.
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Packing Graphs & Strut Frameworks

Circle Packing

⇔

Equilateral Toroidal

Strut Framework
Combinatorial Graph

Viewing the packing graph as a strut framework helps us understand the
possible combinatorial (multi-)graphs.
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Rigid Spine And Free Circles

Consider the optimal packing of seven circles a hard boundary square. Due
to Schear/Graham(1965) Mellisen(1997)

The red circle is a free circle and the packing graph associated to the
green circles form the rigid spine. In what follows we will only consider
packings without free circles.



Strut Frameworks: Rigidity and Infinitesimal Rigidity

An assignment of vectors (~p1, ~p2, ~p3, . . . , ~pn) to each of the vertices
(p1, p2, p3, . . . , pn) in a toroidal strut framework is a infinitesimal flex of
the arrangement if

(~pi − ~pj) · (pi − pj) ≥ 0

for each strut (i , j) in the framework.
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Strut Frameworks: Rigidity and Infinitesimal Rigidity

An assignment of vectors (~p1, ~p2, ~p3, . . . , ~pn) to each of the vertices
(p1, p2, p3, . . . , pn) in a toroidal strut framework is a infinitesimal flex of
the arrangement if

(~pi − ~pj) · (pi − pj) ≥ 0

for each strut (i , j) in the framework. If the strut framework only admits
constant infinitesimal flexes then the framework is infinitesimally rigid .

Notes:

As this is a toroidal framework (pi − pj) will depend on more than
just the vertices. The homotopy class of the struts matters.

This forms a system of homogeneous linear inequalities.

Theorem (Connelly)

A (toroidal) strut framework is (locally) rigid if and only if infinitesimally
rigid
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Observation

Given a packing, if the associated toroidal strut framework is (locally) rigid
then the packing is locally maximally dense.

Theorem (Connelly)

If a toroidal packing is locally maximally dense then there is a subpacking
whose associated toroidal strut framework is (locally) rigid.
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Combinatorial Graph Edge Restrictions

Theorem (Connelly)

A locally maximally dense packing of n circles on a flat torus (without free
circles) has at least 2n − 1 edges.

Observations:

Each circle is tangent to at most 6 others

→ A combinatorial graph associated to an optimal packing has between
2n− 1 and 3n edges.

To be infinitesimally rigid each circle must be tangent to at least 3
others and the points of tangency can’t be restricted to a closed
semi-circle.

→ Every vertex in a combinatorial graph associated to an optimal packing
is incident to between 3 and 6 edges.

Note: These observations are enough to determine all the optimal
packings of 1-4 circles on a square flat torus.
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Algorithm

To determine all possible optimal packings of n circles on a torus:

1 Determine all the possible combinatorial graphs that could be
associated to a locally maximally dense packing of n circles. (Use
edge restrictions from Ridigity Theory.)

2 For each combinatorial graph determine all the possible ways it can be
embedded on a topological torus. (Use Topological Graph Theory.)

3 For each embedding, determine if there exists an equilateral
embedding on fixed torus (with all angles bigger or equal to 60
degrees).

Alternatively, construct the equilateral embedding and let it determine
the torus or tori onto which it embeds.

4 Determine which equilateral embeddings are associated to locally
maximally dense packings.



Three Circle Case

Step 1: Partial list of possible combinatorial graphs.



Three Circle Case
Step 2: Partial list of all embeddings of the combinatorial graphs on a
topological torus.

Many embeddings
with all circles 

self tangent



Three Circle Case
Steps 3 & 4: Equilateral Embeddings and Locally Maximally Dense
Packing/Regions.



Minimally Dense Arrangements

Rectangular Torus, ≈ 1.35 ratio

Density = 2π
√
3√

138+22
√
33

≈ 0.66930



Minimally Dense Arrangements

Equilateral Torus, 100 Degrees
Density = 3π

16 sin( 4π
9
)
≈ 0.61673

Rectangular Torus, ≈ 1.35 ratio

Density = 2π
√
3√

138+22
√
33

≈ 0.66930
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Tool: Stressed Arrangements

Definition

A collection of scalars ωij = ωji (one for each strut) is called an self-stress
if
∑

j ωij(pj − pi) = ~0 for all vertices pi .

Theorem (Roth-Whiteley)

A toroidal strut framework is (infinitesimally) rigid if and only if it is
infinitesimally rigid as a bar framework and it has a self-stress that has the
same sign and is non-zero on every strut.

Theorem (Connelly)

On a fixed torus, suppose there is a packing so that the associated
equilateral strut framework, F , is infinitesimally rigid then any other
infinitesimally rigid, equilateral strut framework freely homotopic to F on
the torus is congruent to F by translation.



Two Locally Optimally Dense Arrangements on One Torus



Two Locally Optimally Dense Arrangements on One Torus

The packing graphs are not homotopic on the fixed torus.
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Other Results on the Square and Triangular Torus

Using the same techniques the following are optimally dense.

5 Circles
Square Torus
10 contacts

5 Circles
Triangular Torus

9 contacts

6 Circles
Triangular Torus

18 contacts
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Strictly Jammed / Periodically Stable Packings

Definition

A packing on a torus is strictly jammed if there is no non-trivial
infinitesimal motion of the packing, as well as the lattice defining the
torus, subject to the condition that the total area of the torus does not
infinitesimally increase.

Counting for a toroidal packing of n circles:
Constraints: Packing Edges: e Area Constraint: 1

Variables: Coordinates: 2n Lattice Vectors: 4
Trivial Motions: Translations: 2 Rotation: 1

To have a unique solution, you must have one more inequality/constraint
than unconstrained variables so (e + 1) ≥ (2n + 4)− (2 + 1) + 1 or

e ≥ 2n + 1

in order to possibly be strictly jammed.



Non-Triangular-Close Based Strictly Jammed Example

(Connelly)

10 Circles
≈ 75◦ Torus with ≈ 1.17 Ratio

22 contacts
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Questions/Future Work

Continue to explore packing of small numbers of circles on the torus
or other smooth flat domains.

How can we algorithmically or computationally determine if an
embedded toroidal graph

has an equilateral embedding
corresponds to a locally optimal packing

Find other examples of strictly jammed packings and work toward
understanding the connection between a packing being strictly
jammed and packings such that every cover of the torus is locally
optimal.

Is this algorithm practical for toroidal bi- or poly-dispersed packings?

Is there a 3-d analog for this algorithm for packing sphere in a
3-torus?
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