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Abstract. We prove that every clone of operations on a finite set A, if it

contains a Malcev operation, is finitely related – i.e., identical with the clone

of all operations respecting R for some finitary relation R over A. It follows

that for a fixed finite set A, the set of all such Malcev clones is countable.

This completes the solution of a problem that was first formulated in 1980, or

earlier: how many Malcev clones can finite sets support? More generally, we

prove that every finite algebra with few subpowers has a finitely related clone

of term operations. Hence modulo term equivalence and a renaming of the

elements, there are only countably many finite algebras with few subpowers,

and thus only countably many finite algebras with a Malcev term.

1. Introduction

An algebraic structure (or algebra, for short) is usually represented as a non-

void set together with a set of finitary operations on it. In the present paper,

we contribute to the following question: how many essentially different finite al-

gebraic structures exist? Clearly, on a finite set of size at least two, there are

countably many finitary operations, and hence there are continuum many ways to

choose a set of basic operations. However, many of these algebras are equivalent

in the sense that the same functions can be composed from their basic operations;

these compositions are called the term functions of the algebra. Two algebras

are term equivalent if they have the same set of term functions. The Boolean

algebra 〈B,∧,∨,¬〉 and its counterpart, the Boolean ring 〈B, +, ·, 1〉, are exam-

ples of term equivalent algebras. Many structural properties of an algebra, like

its subalgebras, congruence relations, automorphisms, etc., depend on its term

functions rather than on the particular choice of basic operations. Hence we are

motivated to classify algebras modulo term equivalence. In 1941 E. Post [Pos41]

published that there are only countably many term inequivalent algebras of size

two (modulo renaming of the elements), and he described them all explicitely. In
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1959 J. Janov and A. Mučnik [JM59] showed that even modulo term equivalence,

the number of algebras on a finite set with at least three elements is uncountable.

Many classical algebraic structures have the property that their congruence

relations commute with respect to the relation product. A. Malcev [Mal54] has

characterized varieties of algebras with this property (a variety is a class of alge-

bras of the same type that is defined by equations); a consequence of his result is

that an algebra generates such a congruence-permutable variety if and only if it

has a ternary (Malcev) term operation m satisfying m(x, y, y) = m(y, y, x) = x

for all x, y. These algebras include all finite algebras that have a quasigroup

operation among their binary term functions, and hence, e.g., all finite groups,

rings, modules, loops, and planar ternary rings. It has long been open how many

of the 2ℵ0 finite term inequivalent algebras on a set of size at least three have a

Malcev term (see e.g. [KP92, Problem 5.19]). We will prove that this number is

countably infinite. In particular, Theorem 6.2 yields that for every finite algebra

A with a Malcev term there is an n ∈ N and a single subalgebra R of An such

that A is determined by R up to term-equivalence.

Recently a combinatorial characterization of finite algebras with a Malcev term

has been found. As a consequence of [BIM+10], a finite algebra A has a Malcev

term if and only if there is a positive real c such that every independent subset of

An has at most cn elements (Here a subset X is independent if no proper subset

of X generates the same subalgebra of An as X). This condition immediately

yields that An has at most |A|cn
2

subalgebras. In general, a finite algebra A

for which there exist a polynomial p such that An has at most 2p(n) subalgebras

is said to have few subpowers (Note that the number of subalgebras of An is

certainly bounded by 2|A|n. The adjective ‘few’ refers to the fact that the number

of subalgebras does not grow doubly exponential in n). In [BIM+10] algebras

with few subpowers are characterized by the existence of an edge operation (see

Section 2) among their term functions. The class of algebras with an edge term is

a vast extension of the class of algebras with a Malcev term. It also comprises, e.g.,

all lattices and algebras with lattice operations, and is properly contained in the

class of algebras that generate congruence modular varieties. Theorem 6.2 yields

that every finite algebra with few subpowers is finitely related (see Section 2).

Hence on a finite set A, modulo term equivalence, the number of algebras with

few subpowers is at most countably infinite.

Algebras with few subpowers recently appeared in connection with the con-

straint satisfaction problem (CSP) in computer science. By [IMM+07] CSPs that

afford an edge term can be solved by a polynomial-time algorithm. It is expected

that more generally, CSPs admissible over finite algebras in congruence-modular



ON THE NUMBER OF FINITE ALGEBRAIC STRUCTURES 3

varieties are solvable in polynomial time as well. This would follow from a partial

converse of our result which has been conjectured by M. Valeriote. The conjecture

is that a finite algebra in a congruence-modular variety, if it is finitely related,

must have few subpowers. A special case of this, which had earlier been conjec-

tured by L. Zádori, has been established recently by L. Barto [Bar09] (see also P.

Marković and R. McKenzie [MM08]): A finite algebra in a congruence-distributive

variety is finitely related if and only if it has a near-unanimity operation.

2. Algebras and Clones

We will express our results using the terminology of universal algebra [BS81,

MMT87] and clone theory [PK79, Sze86]. Following [HM88], we understand an

algebra A := 〈A, F 〉 as a set A together with a set of finitary operations F

on A. For a non-void set A, by a clone on A we shall mean any set of finitary

operations on A (of positive arity) that is closed under compositions and contains

the projection operations en
i (x1, . . . , xn) = xi for all positive integers n and for all

i ∈ {1, . . . , n}. The set of term operations of an algebra A is a clone, and every

clone on A takes this form.

For k ≥ 2 a function t : Ak+1 → A is a k-edge operation if for all x, y ∈ A we

have

t(y, y, x, . . . , x) = t(y, x, y, x, . . . , x) = x

and for all i ∈ {4, . . . , k + 1} and for all x, y ∈ A, we have

t(x, . . . , x, y, x, . . . , x) = x, with y in position i.

We note that a ternary operation t is a 2-edge operation if and only if m(x, y, z) :=

t(y, x, z) is a Malcev operation. For k > 2 a k-ary near unanimity operation f

is a function such that t(x1, . . . , xk+1) := f(x2, . . . , xk+1) is a k-edge operation.

Thus the class of clones with edge operations contains all clones with Malcev or

near unanimity operations. From [KS09] we know that an algebra has an edge

term if and only if it has a socalled parallelogram term.

A clone C on A is finitely related if there exist subalgebras R1, . . . , Rk of fini-

tary powers of 〈A, C〉 such that every function on A that preserves every Ri for

i ∈ {1, . . . , k} is in C. We call an algebra finitely related if its clone of term

functions is finitely related. Clones containing a near-unanimity operation are

finitely related by the Baker-Pixley Theorem [BP75]. In [Aic09] the first author

shows that, on a finite set, every clone that contains a Malcev operation and

all constant functions, is finitely related. Special cases of the result in [Aic09]

were given, for example, by P. Idziak [Idz99], A. Bulatov [Bul01], K. Kearnes and
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Á. Szendrei [KS05], the second author [May08], N. Mudrinski and the first author

[AM10]. In this paper we prove the common generalization that on a finite set

every clone with edge operation is finitely related (Theorem 6.1).

The conjecture that on a finite set the number of clones with Malcev operation

is countable dates back to the mid 1980’s or earlier. The two tools which we use

to prove this conjecture were first combined to good effect in [Aic09]. They are,

first, a combinatorial theorem due to G. Higman [Hig52], which occurs here in a

generalized form as Lemma 3.2; and second, the result that for an algebra A with

k-edge term every subalgebra of a finite power of A has a small generating set

that takes a specific form (Lemma 4.1). The second result also lies at the core of

the proof in [IMM+07] that every constraint satisfaction problem whose template

relations are admissible over an algebra with few subpowers, is tractable – i.e,

admits a polynomial time algorithm for its solution.

3. Preliminaries from order theory

We will first give a short survey of those results from order theory that we will

need in the sequel. The partially ordered set 〈X,≤〉 is well partially ordered if

it satisfies the descending chain condition (DCC) and has no infinite antichains.

The following facts about well partial orders can be found in [Lav76] (cf. [NW63]).

A sequence of elements 〈xk ||| k ∈ N〉 is good if there are i, j ∈ N with i < j and

xi ≤ xj ; a sequence is bad if it is not good. Using Ramsey’s Theorem, one can

prove that 〈X,≤〉 is well partially ordered if and only if every sequence in X is

good. If 〈X,≤〉 satisfies the (DCC), but is not well partially ordered, then there

exists a bad sequence 〈xk ||| k ∈ N〉 with the property that for all i ∈ N and for all

yi ∈ X with yi < xi, every sequence starting with (x1, . . . , xi−1, yi) is good. Such

a sequence is called a minimal bad sequence. For an ordered set 〈X,≤〉, a subset

Y of X is upward closed if for all y ∈ Y and x ∈ X with y ≤ x, we have x ∈ Y .

For A = {1, 2, . . . , t}, we will use the lexicographic ordering on An. For a =

(a1, . . . , an) and b = (b1, . . . , bn), we say a ≤lex b if

(∃i ∈ {1, . . . , n} : a1 = b1 ∧ . . . ∧ ai−1 = bi−1 ∧ ai < bi) or

(a1, . . . , an) = (b1, . . . , bn).

For every finite set A, we let A+ be the set
⋃
{An ||| n ∈ N}. We will now

introduce an order relation on A+. For a = (a1, . . . , an) ∈ A+ and b ∈ A, we define

the index of the first occurrence of b in a, firstOcc (a, b), by firstOcc (a, b) := 0 if

b 6∈ {a1, . . . , an}, and firstOcc (a, b) := min{i ∈ {1, . . . , n} ||| ai = b} otherwise.
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Definition 3.1. Let A be a finite set, and let a = (a1, . . . , am) and b =

(b1, . . . , bn) be elements of A+. We say a ≤E b (read: a embeds into b) if

there is an injective and increasing function h : {1, . . . , m} → {1, . . . , n} such

that

(1) for all i ∈ {1, . . . , m} : ai = bh(i),

(2) {a1, . . . , am} = {b1, . . . , bn},

(3) for all c ∈ {a1, . . . , am}: h(firstOcc (a, c)) = firstOcc (b, c).

We will call such an h a function witnessing a ≤E b.

Less formally, we have a ≤E b for words a,b over the alphabet A if and only

if b can be obtained from a by inserting additional letters anywhere after their

first occurrence in a. We will use the following fact about this ordering, which

generalizes Higman’s Theorem 4.4 in [Hig52].

Lemma 3.2. Let A be a finite set. Then 〈A+,≤E〉 is well partially ordered.

Proof: It is easy to see that ≤E is a partial order relation and that 〈A+,≤E〉

satisfies the (DCC). It remains to show that for every sequence 〈x(k) ||| k ∈ N〉 in

A+, there exist i, j ∈ N such that i < j and x(i) ≤E x(j). We will prove this by

induction on |A|. For |A| = 1, the claim is obvious. Assume |A| > 1 and that

〈B+,≤E〉 is well partially ordered for every proper subset B of A.

Seeking a contradiction we suppose we have a minimal bad sequence 〈x(k) ||| k ∈

N〉 in A+. For each x = (x1, . . . , xn) ∈ A+, let Symbols (x) := {x1, . . . , xn} be the

set of all elements of A that occur in the word x, let Last (x) := xn denote the

last letter of x, and, if n ≥ 2, let Start (x) := (x1, . . . , xn−1). Since A is finite, we

have a ∈ A and an infinite T ⊆ N such that for all i ∈ T , Last (x(i)) = a and the

length of x(i) is at least two.

Let us first consider the case that there exist an infinite S ⊆ T such that

Symbols (Start (x(i))) ⊆ A \ {a} for all i ∈ S. By the induction hypothesis, ≤E is

a well partial order on (A \ {a})+. Hence there are i, j ∈ S with i < j such that

Start (x(i)) ≤E Start (x(j)). Since a does not occur in Start (x(i)) nor in Start (x(j)),

and since Last (x(i)) = Last (x(j)) = a, we have x(i) ≤E x(j), contradicting the fact

that 〈x(k) ||| k ∈ N〉 is a bad sequence.

Thus we may assume that there exist an infinite subset S := {s1, s2, . . .} of T

(with si < sj whenever i < j) such that Symbols (Start (x(s))) = A for all s ∈ S.

Now consider the sequence

〈y(k) ||| k ∈ N〉 := 〈x(1),x(2), . . . ,x(s1−1), Start (x(s1)), Start (x(s2)), . . .〉.
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We show that 〈y(k) ||| k ∈ N〉 is bad by distinguishing three cases: If i < j <

s1, then clearly x(i) 6≤E x(j). If i < s1 and j ≥ 1, then x(i) ≤E Start (x(sj))

yields x(i) ≤E x(sj), contradicting the fact that 〈x(k) ||| k ∈ N〉 is bad. If i < j,

then Start (x(si)) ≤E Start (x(sj)) implies x(si) ≤E x(sj) because Last (x(si)) =

Last (x(sj)) = a and a already occurs both in Start (x(si)) and in Start (x(sj)).

This again contradicts the badness of 〈x(k) ||| k ∈ N〉. Hence 〈y(k) ||| k ∈ N〉 is

bad. However, since y(s1) = Start (x(s1)) <E x(s1), this contradicts the choice

of 〈x(k) ||| k ∈ N〉 as a minimal bad sequence. Hence 〈A+,≤E〉 is well partially

ordered. �

For a,b ∈ A+ with a ≤E b we observe a correspondence between the ele-

ments that are lexicographically smaller than a and certain elements that are

lexicographically smaller than b. But before that we need to introduce some

notation.

Definition 3.3. Let A be a finite set, let a = (a1, . . . , am) ∈ Am, b =

(b1, . . . , bn) ∈ An be such that a ≤E b, and let h be a function from {1, . . . , m} →

{1, . . . , n} witnessing a ≤E b. We define a function Ta,b,h : Am → An. Let

x = (x1, . . . , xm) ∈ Am. If j ∈ range(h), then the j-th entry of Ta,b,h(x), abbre-

viated by Ta,b,h(x) (j), is defined by

Ta,b,h(x) (j) := xi,

where i ∈ {1, . . . , m} is such that h(i) = j. If j 6∈ range(h), then

Ta,b,h(x) (j) := xi,

where i := firstOcc (a, bj).

Lemma 3.4. Let t ∈ N, let A = {1, 2, . . . , t}, and let a ∈ Am, b ∈ An with

h : {1, . . . , m} → {1, . . . , n} witnessing a ≤E b. Let c ∈ Am be such that

c <lex a. Then we have

(1) Ta,b,h(a) = b,

(2) Ta,b,h(c) <lex b.

Proof: (1) follows immediately from the definition of Ta,b,h. For prov-

ing (2), let k be the index of the first place in which c differs from a. Hence

c = (a1, . . . , ak−1, ck, ck+1, . . .), a = (a1, . . . , ak−1, ak, ak+1, . . .), and ck < ak.

We first show that for all j < h(k), we have Ta,b,h(c)(j) = Ta,b,h(a)(j). If j

is in the range of h, there is an i with h(i) = j, and we have Ta,b,h(c)(j) = ci

and Ta,b,h(a)(j) = ai. Since h(i) < h(k), we have i < k. Thus ci = ai, since

k is the first index at which c and a differ. We now consider the case that
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j is not in the range of h. Since {b1, . . . , bn} = {a1, . . . , am}, we have that

i := firstOcc (a, bj) satisfies i > 0. By the definition of ≤E we have h(i) =

firstOcc (b, bj) and therefore h(i) ≤ j. Hence h(i) < h(k) and i < k. Thus

ci = ai. Since Ta,b,h(x1, . . . , xm)(j) := xi for all x ∈ Am, we finally obtain

Ta,b,h(c)(j) = Ta,b,h(a)(j).

Since Ta,b,h(a)(h(k)) = ak and Ta,b,h(c)(h(k)) = ck, we have Ta,b,h(c) <lex

Ta,b,h(a). �

4. Algebras with edge term

Let A be a set, and let m ∈ N. For a = (a1, . . . , am) ∈ Am and T ⊆ {1, . . . , m},

we denote the projection to the tuple of entries that are indexed by T as

πT (a) := 〈ai ||| i ∈ T 〉.

For F ⊆ Am and i ∈ {1, . . . , m}, define

ϕi(F ) := {(ai, bi) ∈ A2 ||| a,b ∈ F and π{1,...,i−1}(a) = π{1,...,i−1}(b)}.

By [Aic09, Lemma 3.1] a subuniverse G of a Malcev algebra Am is generated by

every subset F of G with ϕi(F ) = ϕi(G) for all i ∈ {1, . . . , m}.

In [BIM+10] these relations ϕi and projections πT occur in the description

of small generating sets for the subuniverses of Am for a finite algebra A with

edge term operation. These generating sets were then used to obtain a bound

on the number of subuniverses of Am. We reformulate the representation re-

sult [BIM+10, Corollary 3.9] for our purposes.

Lemma 4.1. Let k, m be positive integers with k > 1, let A be a finite algebra

with k-edge term operation t, and let F, G be subuniverses of Am with F ⊆ G.

Assume πT (F ) = πT (G) for all T ⊆ {1, . . . , m} with |T | < k, and ϕi(G) ⊆ ϕi(F )

for all i ∈ {1, . . . , m}. Then F = G.

Proof: We only have to check that F is what is called a representation of G

in [BIM+10, Def. 3.2]. For that we let d be the binary term function on A that is

defined from t in Lemma 2.13 of [BIM+10]. We also need the notion of a signature

SigR of a subset R of Am,

SigR := {(i, u, v) ∈ {1, . . . , m} × A2 ||| (u, v) ∈ ϕi(R) and d(u, v) = v}.

From F ⊆ G, it is immediate that ϕi(F ) ⊆ ϕi(G). Consequently ϕi(F ) =

ϕi(G) for all i ∈ {1, . . . , m}. In particular SigF = SigG. Thus F is a representa-

tion of G. Since F, G are subuniverses of Am, Corollary 3.9 of [BIM+10] yields

F = G. �
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The previous result has also been known in two special cases: For A with a

k-ary near unanimity term it follows from the Baker-Pixley Theorem [BP75]. For

A with a Malcev term, it occurs as Lemma 3.1 in [Aic09], and it is the central fact

underlying Dalmau’s polynomial-time algorithm for solving CSPs which admit a

Malcev polymorphism [BD06].

5. Encoding clones

Let C be a clone on the t-element set A = {1, 2, . . . , t}, and let n ∈ N. Let

C [n] denote the set of n-ary functions in C. As in [Aic09], for a ∈ An, we define

a binary relation ϕ(C, a) on A by

ϕ(C, a) := {(f(a), g(a)) ||| f, g ∈ C [n], ∀c ∈ An : c <lex a ⇒ f(c) = g(c)}.

Intuitively, if ϕ(C, a) is small, then the functions in C are strongly restricted by

their images on c for c <lex a. We also encode these relations in another way.

For (c, d) ∈ A2, we define a subset λ(C, (c, d)) of A+ by

λ(C, (c, d)) := {a ∈ A+ ||| (c, d) 6∈ ϕ(C, a)}.

From the order theoretic observations in Section 3 we obtain the following lem-

mas.

Lemma 5.1. Let t, m, n ∈ N, let C be a clone on the t-element set A =

{1, 2, . . . , t}, and let a ∈ Am, b ∈ An such that a ≤E b. Then ϕ(C,b) ⊆ ϕ(C, a).

Proof: Let (x, y) ∈ ϕ(C,b). Then there are f, g ∈ C [n] such that x = f(b),

y = g(b), and f(c) = g(c) for all c ∈ An with c <lex b. Let h be a function from

{1, . . . , m} to {1, . . . , n} witnessing a ≤E b. Now we define functions f1 and g1

from Am to A by

f1(x) := f(Ta,b,h(x))

g1(x) := g(Ta,b,h(x))

for x ∈ Am. By the definition of Ta,b,h, we see that for each j ∈ {1, . . . , n}, the

mapping that maps x to the j-th component of Ta,b,h(x) is a projection operation.

Hence f1 and g1 lie in the clone C.

We will now show that (f1(a), g1(a)) is an element of ϕ(C, a). To this end,

let c ∈ Am be such that c <lex a. Then Lemma 3.4 yields Ta,b,h(c) <lex b.

Hence we have f1(c) = f(Ta,b,h(c)) = g(Ta,b,h(c)) = g1(c). From this we ob-

tain (f1(a), g1(a)) ∈ ϕ(C, a). Since (f1(a), g1(a)) = (f(b), g(b)) = (x, y) by

Lemma 3.4, we obtain (x, y) ∈ ϕ(C, a). �
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Lemma 5.2. Let C be a clone on a finite set A, and let (c, d) ∈ A2. Then

λ(C, (c, d)) is an upward closed subset of 〈A+,≤E〉.

Proof: Let a ∈ λ(C, (c, d)), and let b ∈ A+ such that a ≤E b. Since (c, d) 6∈

ϕ(C, a), Lemma 5.1 yields (c, d) 6∈ ϕ(C,b) and thus b ∈ λ(C, (c, d)). �

6. Relations

A finitary relation ρ on a set A is a subset of AI for some finite set I. We say

a function f : Ak → A preserves ρ if ρ is a subuniverse of 〈A, f〉I .

For a clone C on a set A and for m ∈ N, the set of m-ary functions C [m] is a

subset of AAm

. In this sense, a function f : Ak → A preserves the relation C [m]

if for all g1, . . . , gk ∈ C [m] the function

Am → A, x 7→ f(g1(x), . . . , gk(x)),

is in C [m] again.

For a ∈ A+ let |a| denote the length of a.

In the next result we give finitely many relations that determine a clone with

edge operation.

Theorem 6.1. Let A be a finite set, let k ∈ N, k > 1, let C be a clone

on A that contains a k-edge operation t, and let A := 〈A, C〉. Let m :=

max{|a| ||| there exists (c, d) ∈ A2 such that a is minimal with respect to ≤E

in λ(C, (c, d))}. Then m is finite, and C is the clone of functions that preserve

the relation C [m] and every subuniverse of Ak−1.

So by Theorem 6.1 the clone C is determined by the finitely many relations

of arity max(|A|m, k − 1). Apart from the condition on the m-ary functions our

result resembles the Baker-Pixley Theorem (see Theorem 2.1 (5) in [BP75]) for

clones with near-unanimity operations.

Proof of Theorem 6.1: Let (c, d) ∈ A2. Since (A+,≤E) has no infinite an-

tichain by Lemma 3.2, λ(C, (c, d)) contains only finitely many minimal elements.

Consequently, as the maximum of finitely many natural numbers, m is finite.

Let D be the clone of functions that preserve C [m] and every subuniverse of

Ak−1. Then C ⊆ D and C [m] = D[m]. We claim that

(6.1) λ(C, (c, d)) ⊆ λ(D, (c, d)).

Let a be minimal in λ(C, (c, d)). Then (c, d) 6∈ ϕ(C, a). By definition, m is at least

the length |a| of a. Hence C [|a|] = D[|a|], which implies that ϕ(C, a) = ϕ(D, a).
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Thus a ∈ λ(D, (c, d)). So we have just proved that every minimal element of

λ(C, (c, d)) is contained in λ(D, (c, d)). Since λ(C, (c, d)) and λ(D, (c, d)) are

upward closed subsets of the well partially ordered set (A+,≤E) by Lemma 5.2,

this proves (6.1).

Next we will show that D[n] ⊆ C [n] for all n ∈ N. For fixed n ∈ N and a ∈ An

we have

(6.2) ϕ(D, a) ⊆ ϕ(C, a)

by (6.1).

Note that F := C [n] and G := D[n] form subuniverses of A|A|n with F ⊆ G.

For every T ⊆ An with |T | < k we claim that

(6.3) πT (F ) = πT (G).

Clearly πT (F ) ⊆ πT (G). For proving the converse inclusion let g ∈ G,

let l := |T |, and let T = {t1, . . . , tl} = {(a11, . . . , a1n), . . . , (al1, . . . , aln)}.

We know that g preserves the subuniverse B of Al that is generated by

{(a11, . . . , al1), . . . , (a1n, . . . , aln)}. From (g(t1), . . . , g(tl)) ∈ B, we obtain an n-

ary term function f of A such that (g(t1), . . . , g(tl)) = (f(t1), . . . , f(tl)). Hence

f |T = g|T , and thus πT (f) = πT (g). Hence πT (F ) ⊇ πT (G) and we have (6.3).

By (6.2) and (6.3) the assumptions of Lemma 4.1 are satisfied. Thus F = G. �

For a finite set A and a set S of finitary relations on A, we will write Pol (A, S)

for the set of those functions on A that preserve all relations in S (cf. [PK79]).

Theorem 6.2. Let A be a finite set, let k ∈ N, k > 1, and let Mk be the set of

all clones on A that contain a k-edge operation. Then we have:

(1) For every clone C in Mk, there is a finitary relation R on A such that

C = Pol (A, {R}).

(2) There is no infinite descending chain in (Mk,⊆).

(3) The set Mk is finite or countably infinite.

Proof: (1) Let C be a clone with k-edge term on the finite set A. By

Theorem 6.1 there exists a finite set S of finitary relations on A such that

C = Pol (A, S). By [PK79, p. 50], there is a single finitary relation R on A

with Pol (A, S) = Pol (A, {R}).

Now (2) follows from (1) using the implication (i)’⇒(ii)’ in [PK79, Charakter-

isierungssatz 4.1.3].

(3) Every finitary relation on the finite set A is a finite subset of the countable

set A+. Hence the claim follows from (1). �
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7. Concluding remarks

Using [Idz99] and [KS09, Corollary 4.10] together with Theorem 6.2 (3), we

obtain that the number of clones with k-edge term for a fixed integer k > 1 on a

finite set A is finite if |A| ≤ 3, and countably infinite if |A| ≥ 4.

Given a set F of functions on a finite set A such that F generates a clone C

with edge operation, Theorem 6.2 guarantees the existence of a single relation R

that determines C; however, even if F is finite, it is not yet clear how to find R

algorithmically.
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