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Abstract—We classify completely the complexity of evaluating
positive equality-free sentences of first-order logic over a fixed,
finite structure D. This problem may be seen as a natural
generalisation of the quantified constraint satisfaction problem
QCSP(D). We obtain a tetrachotomy for arbitrary finite struc-
tures: each problem is either in L, is NP-complete, is co-NP-
complete or is Pspace-complete. Moreover, its complexity is
characterised algebraically in terms of the presence or absence of
specific surjective hyper-endomorphisms; and, logically, in terms
of relativisation properties with respect to positive equality-free
sentences.

We prove that the meta-problem, to establish for a specific D
into which of the four classes the related problem lies, is NP-hard.
Keywords: Galois Connection, Quantified Constraint Satisfac-
tion, Universal Algebra, Computational Complexity, Logic in
Computer Science.

I. INTRODUCTION

We conclude the study of the complexity of the evaluation
problem for positive equality-free first-order logic, on fixed
and finite structures, begun in [1], [2]. This problem, denoted
{∃,∀,∧,∨}-FO(D), is a close relative of the constraint sat-
isfaction problem, CSP(D), and an even closer relative of the
quantified CSP, QCSP(D). In fact, it is noted in [1] that among
a wide family of problems, the only interesting case, other than
the CSP and QCSP, is the one addressed in the present paper
(the other cases fail to manifest complexity-theoretic richness).
The bulk of the theoretical research into CSPs concerns the
so-called dichotomy conjecture: that the complexity of the
problem of evaluating a primitive positive sentence on a fixed
finite D, CSP(D), is either in P or is NP-complete. This was
solved for structures with two-element domains in [3] and
improved to encompass structures with three-element domains
in [4]. The most successful approach to date, and the method
used in [4], has been the so-called algebraic method, in which
the problem of classification reverts to classes of functions
under which the relevant relational structures are invariant. A
similar algebraic approach has been successful in the study of
the evaluation problem for positive Horn sentences, QCSP(D),
and, while no formal trichotomy has there been conjectured,
the only known attainable complexities are P, NP-complete
and Pspace-complete [5], [6].

The problem {∃,∀,∧,∨}-FO(D) may be seen as a gener-
alisation of CSP(D) (which becomes in our notation {∃,∧,=

}-FO(D)) and QCSP(D) ({∃,∀,∧,=}-FO(D)), despite the
forbidding of equality – as in instances of CSP and QCSP,
equalities may be propagated out in all but trivial cases. In con-
trast, the forbidding of equality from {∃,∀,∧,∨ =}-FO(D)
becomes very significant, as these problems with equality
have a straightforward complexity classification [7] (note that
equalities may no longer be propagated out). In [1] and [2],
the complexity of {∃,∀,∧,∨}-FO(D) is studied through an
analagous algebraic method to that used for CSP(D). These
papers culminate in a full classification – a tetrachotomy
– as D ranges over structures with four-element domains.
Specifically, the problems {∃,∀,∧,∨}-FO(D) are either in L,
are NP-complete, are co-NP-complete or are Pspace-complete.
In [2], a conjecture is ventured as to where the general
tetrachotomy lies for arbitrary finite structures D. In this paper
we prove that conjecture.

We derive our result by studying sets of surjective hyper-
operations (shops) under which our relational D may be
invariant. These sets, always containing the identity and closed
under composition and sub-shops, are known as down-shop-
monoids. For membership of L, NP and co-NP, it is proved
in [8] that it is sufficient to have certain special shops as
surjective hyper-endomorphisms (shes). The converse, that it
is necessary to have these special shops as shes, is more subtle,
and is the major contribution of this paper.

For the CSP there is the well-known notion of the core of D,
that may be seen as the minimal induced substructure D′ ⊆ D
such that D′ and D agree on all primitive positive sentences.
Equivalently, the domain D′ of D′ is minimal such that any
primitive positive sentence is true on D iff it is true on D
with all (existential) quantifiers relativised to D′. Cores are
minimal structures in their equivalence classes, given by the
equivalence relation of satisfying the same primitive positive
sentences. Cores are very robust, for instance, being unique
up to isomorphism, and sitting as induced substructures in all
other structures in their equivalence class. A similar notion to
core exists for the QCSP, but it is not nearly so robust (they
need no longer be unique nor sit as an induced substructure
in other structures in their equivalence class [9]). For the
problems {∃,∀,∧,∨}-FO(D), a notion of core returns, and
it is once again robust. The U -X-core of D consists of a
minimal substructure induced by the union U ∪ X of two



minimal sets U and X of D such that a positive equality-free
sentence is true on D iff it is true on D with the universal
quantifiers relativised to U and the existential quantifiers
relativised to X . Analysing U -X-cores gives us the necessary
converse alluded to in the previous paragraph. In the Pspace-
complete case, some completion of the U -X-core is either
fundamentally very simple and can be classified as in a two-
element domain, known from [1], or it is a generalisation of
one of the four-element cases from [2]. For the NP-complete
and co-NP-complete cases, some completion of the U -X-core
is fundamentally very simple and can be classified as an easy
generalisation of a three-element domain.

We are able therefore to give the delineation of our tetra-
chotomy by two equivalent means. Firstly, by the presence
or absence of certain shops – so-called A-shops and E-shops
– as shes. Secondly, by the existence or not of trivial sets
for the relativisation of universal and existential quantifiers.
Thus, {∃,∀,∧,∨}-FO(D) is in L iff D has both an A-shop
and an E-shop for shes, iff there exist singleton sets U and X
such that a sentence of positive equality-free logic is true on
D exactly when it is true on D with the universal quantifiers
and existential quantifiers relativised to U and X , respectively.
Otherwise, and in a similar vein, {∃,∀,∧,∨}-FO(D) is NP-
complete (resp., co-NP-complete) if it has an A-shop (resp.,
E-shop) for a she, iff there exists a singleton set U (resp., X)
such that a sentence of positive equality-free logic is true on
D exactly when it is true on D with the universal quantifiers
relativised to U (resp., the existential quantifiers relativised
to X). In all remaining cases, {∃,∀,∧,∨}-FO(D) is Pspace-
complete, and D has neither an A-shop nor an E-shop as a she,
and there are no trivial sets U nor X affording the required
relativisation properties.

Finally, we investigate the complexity of the meta-problem:
given a finite structure D, what is the complexity of evaluating
positive equality-free sentences of FO over D? We establish
that the meta-problem is NP-hard, even for a fixed and finite
signature.

The paper is organised as follows. After the preliminaries
of Section II, we introduce the central notion of U -X-cores,
and relativisation, in Section III. In Section IV, we use cores
to derive the outstanding NP-, co-NP- and Pspace-hardness
proofs. In Section V, we examine the complexity of the meta-
problem and in Section VI we make some final observations.
For reasons of space, several proofs are deferred to the
appendix.

II. PRELIMINARIES

Unless otherwise stated, we shall work with finite relational
structures that share the same finite relational signature σ. Let
D be such a structure. We will denote its domain by D. We
denote the size of such a set D by |D|. The complement D
of a structure D consists of relations that are exactly the set-
theoretic complements of those in D. I.e., for an a-ary R,
RD := Da \ RD. For graphs this leads to a slightly non-
standard notion of complement, as it includes self-loops.

We denote positive equality-free first-order logic by
{∃,∀,∧,∨}-FO. We will occasionally refer to other log-
ics in this notation, for example primitive positive logic
is {∃,∧,=}-FO. For a fixed and finite D, the prob-
lem {∃,∀,∧,∨}-FO(D) takes as input a sentence ϕ of
{∃,∀,∧,∨}-FO and asks whether D |= ϕ. We will occasion-
ally refer to related problems in this notation, for example
{∃,∧,=}-FO(D) – better known as CSP(D) – takes as input
a sentence ϕ of primitive positive logic, and asks whether
D |= ϕ.

Let D be a finite set. A hyper-operation is a function from
D to its powerset. When we wish to stress that an element may
be sent to ∅, we speak of a partial hyper-operation, (phop).
For a subset S of D, we will define its image f(S) under the
hyper-operation f as

⋃
s∈S f(s). Let f and g be two hyper-

operations. The hyper-operation g ◦ f is defined naturally as
g ◦ f(x) := g(f(x)) (recall that f(x) is a set). A surjective
(total) hyper-operation (shop) f over D satisfies: f(D) = D
(surjectivity) and ∀z ∈ D, f(z) 6= ∅ (totality). The inverse of
a shop f , denoted by f−1, is the hyper-operation defined for
any y in D as f−1(y) := {x ∈ D | y ∈ f(x)}.

We call an element of f−1(y) an antecedent of y under f .
Observing that the totality of f may be rephrased as f−1(D) =
D, it is now clear that the inverse of a shop is a shop. It is
also straightforward to verify that if f and g are two shops
then g ◦ f is also a shop.

Observing that shop composition is associative and that
the identity shop (which sends an element x of D to the
singleton {x}) is the identity with respect to composition,
we may consider the monoid generated by a set of shops.
A shop f is a sub-shop of a shop g whenever, for every x
in D, f(x) ⊆ g(x). In our context, we will be interested in
particular monoids which will be closed further under sub-
shops, the so-called down-shop-monoids (DSMs).1 We denote
by 〈F 〉DSM the DSM generated by a set F of shops.

Let U and X be subsets of D. We say that a shop f is U -
surjective if f(U) = D. In the special case where the set U is
a singleton, we speak of an A-shop. We say that a shop g is
X-total if f−1(X) = D. In the special case where the set X
is a singleton, we speak of an E-shop. Note that these notions
are dual to one another, that is the inverse of a U -surjective
shop is an X-total shop with X = U and vice versa.

Somewhat abusing terminology, we will drop the word
surjective and by U - or U ′-shop we will mean a U - or U ′-
surjective shop. Similarly, we will speak of an X- or X ′-shop
in the total (existential) case and of a U -X-shop in the case
of a shop that is both U -surjective and X-total.

Suitable compositions of U -shops and X-shops preserve
these properties.

Lemma 1. Let f and g be two shops.

1) If f is a U -shop then g ◦ f is a U -shop.
2) If g is a X-shop then g ◦ f is a X-shop.

1The “down” comes from down-closure, here under sub-shops; a nomen-
clature inherited from [10].



3) If both f is a U -shop and g is a X-shop then g ◦ f is
a U -X-shop.

4) If both f and g are U -X-shops then g◦f is a U -X-shop.
5) The iterate of a U -X-shop is a U -X-shop.

Proof: We prove (1). Since f(U) = D, we have
g(f(U)) = g(D). By surjectivity of g, we know that g(D) =
D. It follows that g(f(U)) = D and we are done. (2) is
dual to (1), and (3) follows directly from (1) and (2). (4) is
a restriction of (3) and is only stated here as we shall use it
often. (5) follows by induction on the order of iteration using
(4).

A homomorphism (resp. strong homomorphism) from a
structure D to a structure E is a function h : D → E
that preserves (resp. strongly preserves) the relations of D,
i.e. for all ai-ary relations Ri, and for all x1, . . . , xai ∈ D,
Ri(x1, . . . , xai) ∈ D implies Ri(h(x1), . . . , h(xai)) ∈ E
(resp. Ri(x1, . . . , xai) ∈ D iff Ri(h(x1), . . . , h(xai)) ∈ E).
D and E are homomorphically equivalent if there are homo-
morphisms both from D to E and from E to D.

A surjective hyper-endomorphism (she) of D is a shop f
on D that satisfies, for all relations R of D,
• if D |= R(x1, . . . , xi) then, for all y1 ∈ f(x1), . . . , yi ∈
f(xi), D |= R(y1, . . . , yi).

We will also say that f preserves D. More generally, for
r1, . . . , rk ∈ D, we say f is a she from (D, r1, . . . , rk) to
(D, r′1, . . . , r′k) if f is a she of B and r′1 ∈ f(r1), . . . , r′k ∈
f(rk). A she may be identified with a surjective endomorphism
if each element is mapped to a singleton set. On finite
structures surjective endomorphisms are necessarily automor-
phisms. We will freely talk of A-shes and E-shes of a certain
structure D.

For a set F of shops on the finite domain D, let Inv(F ) be
the set of relations on D of which each f in F is a she (when
these relations are viewed as a structure over D). We say that
S in Inv(F ) is invariant or preserved by (the shops in) F . Let
shE(B) be the set of shes of B. Let 〈B〉{∃,∀,∧,∨}-FO be the
sets of relations that may be defined on B in {∃,∀,∧,∨}-FO.
Our main methodological tool to establish the complexity of
{∃,∀,∧,∨}-FO(D) is that the Galois connection captures the
complexity [1], [11]

Theorem 2 ([1], [11] Galois connection and Complexity).
For a finite structure D and a set of shops F , the following
holds,
• 〈D〉{∃,∀,∧,∨}-FO = Inv(shE(D)); and,
• 〈F 〉DSM = shE(Inv(F )).

For finite D and D′ (s.t. D = D′), if shE(D) ⊆ shE(D′) then
{∃,∀,∧,∨}-FO(D′) ≤L {∃,∀,∧,∨}-FO(D).

A. Main result

The following – left as a conjecture at the end of [2], [8] –
is the main result of this paper.

Theorem 3 (Tetrachotomy). Let D be any structure.
I. If D is preserved by both an A-shop and an E-shop, then
{∃,∀,∧,∨}-FO(D) is in L.

II. If D is preserved by an A-shop but is not preserved by
any E-shop, then {∃,∀,∧,∨}-FO(D) is NP-complete.

III. If D is preserved by an E-shop but is not preserved by
any A-shop, then {∃,∀,∧,∨}-FO(D) is co-NP-complete.

IV. If D is preserved neither by an A-shop nor by an E-shop,
then {∃,∀,∧,∨}-FO(D) is Pspace-complete.

Proof: The upper bounds (membership in L, NP and co-
NP) for Cases I, II and III were known from [8], but we
reprove them here as Corollary 9. Theorem 18 deals with the
lower bounds. NP-hardness for Case II and co-NP-hardness
for Case III are proved in Subsection IV-C. Pspace-hardness
for Case III is proved in Subsection IV-D.

III. THE NOTION OF A CORE FOR POSITIVE
EQUALITY-FREE FO

Recall that a core of a finite structure D is an induced
substructure D̃ of D such that there is a homomorphism
from D to D̃ (and consequently, they are homomorphically
equivalent) and every endomorphism of D̃ is an automorphism.
The core of a structure is unique up to isomorphism. The
notion of core is ubiquitous in the study of CSPs. The property
of core can be rephrased in the logical context as the minimal
X = D̃ ⊆ D such that a primitive positive sentence ϕ is
true on D iff it is true on D with the (existential) quantifiers
relativised to X = D̃. Let us say in this case that D
has X-relativisation with respect to primitive positive logic
{∃,∧,=}-FO.

Thus, the notion of a core can be recast in the context of
{∃,∧,=}-FO in a number of equivalent ways, as a minimal
induced substructure D̃ of D,
• that satisfies the same {∃,∧,=}-FO sentences;
• that is induced by minimal X ⊆ D such that D has X-

relativisation w.r.t. {∃,∧,=}-FO; or,
• that is induced by minimal X ⊆ D such that D has an

endomorphism with image X .
We are looking for a useful characterisation of the analogous

concept for our positive equality-free logic, {∃,∀,∧,∨}-FO.
As we now have both quantifiers, it is natural to specify two
sets U and X , one for each quantifier. As we shall see shortly,
there are two equivalent ways of defining a U -X-core – one
is logical, the other algebraic – as a minimal substructure D̃
of D, induced by minimal U,X ⊆ D such that:
• D has U -X-relativisation w.r.t. {∃,∀,∧,∨}-FO; or,
• D has a U -X-she.

We will show that the sets U and X are unique up to
isomorphism and that within a minimal induced substructure
D̃, the sets U and X are uniquely determined. This will
reconcile our definition of a U -X-core with the following
natural definition, in which U and X are not explicit:
• as a minimal induced substructure D̃ of D that satisfies

the same {∃,∀,∧,∨}-FO sentences.
In order to prove the equivalence between the algebraic and

the logical definitions we need some technical results about
U -X-shops. Since it is U -X-relativisation that motivated us



to introduce U -X-shops in the first place, we will delay until
later the proof of these results.

A. Relativisation

Given a formula ϕ, we denote by ϕ[∀u/∀u∈U,∃x/∃x∈X] the
formula obtained from ϕ by relativising simultaneously every
universal quantifier to U and every existential quantifier to X .
When we only relativise universal quantifiers to U , we write
ϕ[∀u/∀u∈U ], and when we only relativise existential quantifiers
to X , we write ϕ[∃x/∃x∈X]. We will say that a shop g over D
may act as the identity over Z ⊆ D iff for every z ∈ Z, we
have g(z) 3 z. Note that this property is preserved by shop
composition.

Definition 4. Let D be a finite structure over a set D,
and U,X be two subsets of D. We say that D has U -X-
relativisation if, for all formulae ϕ(w) in {∃,∀,∧,∨}-FO
whose free variables w may range over U ∪X , the following
are equivalent

(i) D |= ϕ(w)
(ii) D |= ϕ(w)[∀u/∀u∈U ]

(iii) D |= ϕ(w)[∃x/∃x∈X]

(iv) D |= ϕ(w)[∀u/∀u∈U,∃x/∃x∈X]

Lemma 5. Let D be a finite structure over a set D, and U,X
be two subsets of D. If D has a U -X-she that may act as the
identity over U ∪X , then D has U -X-relativisation.

Proof: Let g be a U -X-she of D such that for every z
in U ∪ X , we have g(z) 3 z. This means that when taking
the image or a preimage under this she g, we may fix at will
elements in U ∪X .

We have (iii) ⇒ (i) ⇒ (ii) and (iii) ⇒ (iv) ⇒ (ii)
trivially. It suffices to prove that (ii) ⇒ (i) and (i) ⇒ (iii)
to complete the proof. To do so, we will consider the well
known Hintikka game corresponding to Case (i), called the
unrelativised game hereafter; and, the relativised Hintikka
games corresponding to the relativised formulae from Cases
(ii), (iii) and (iv) (the relativised game considered being
clear from context). We will show how to transfer existence
of winning strategies from one game to another. We will not
introduce formally the notion of a winning strategy, as the
heavy notation would not clarify the proof exposition.

((ii) ⇒ (i)). If ∀ plays a variable v∀ on some value d,
such that g(u′) 3 d for some u′ in U (since g is a U -shop),
then ∃ will consider that he has actually played on u′ in the
relativised game, for which ∃ has a winning strategy, and can
answer some existential variable v∃ with some e′ ∈ D. In
the unrelativised game, ∃ now answers with some e ∈ D
such that g(e′) 3 e (since g is total). Note that applying the
shop g to ∃’s relativised winning strategy, sending u′ to d and
e′ to e, leaving free variables fixed, and preserving positive
information, proves that ∃ is indeed following a winning
strategy.

((i) ⇒ (iii)). If ∀ plays a variable v∀ on some value d,
such that g(d′) 3 d for some d′ in D (since g is surjective),
then ∃ has a winning strategy in the unrelativised case and can

answer some existential variable v∃ with some e′ ∈ D. In the
relativised game, ∃ now answers to ∀’s move of d for v∀ with
some x ∈ X such that g(e′) 3 x (since g is an X-shop). Note
that applying the shop g to ∃’s relativised winning strategy,
sending d′ to d and e′ to x, and leaving free variables fixed,
proves that ∃ is indeed following a winning strategy.

We will prove the converse shortly. We will use the formula
Θr from the following lemma, which was used to establish one
half of the Galois Connection in [1].

Lemma 6 ([1] Canonical {∃,∀,∧,∨}-FO-query). Let r :=
(r1, . . . , rk) be a k-tuple of elements of D. There exists a for-
mula Θr(u1, . . . , uk) ∈ {∃,∀,∧,∨}-FO s.t. (D, r′1, . . . , r′k) |=
Θr(u1, . . . , uk) iff there is a she from (D, r1, . . . , rk) to
(D, r′1, . . . , r′k).

We will now explain what this formula Θ involves (for more
see [1]). Let r ∈ Dk, s := (d1, . . . , d|D|) be an enumer-
ation of D and t ∈ D|D|. ΦD(r,s)(u1, . . . , uk, v1, . . . , v|D|)
is a conjunction of the positive facts of (r, s), where the
variables (u,v) correspond to the elements (r, s). Similarly,
ΦD(r,s,t)(u1, . . . , uk, v1, . . . , v|D|, w1, . . . , w|D|) is the con-
junction of the positive facts of (r, s, t), where the variables
(u,v,w) correspond to the elements (r, s, t). Set

Θr(u) := ∃v ΦD(r,s)(u,v) ∧ ∀w
∨

t∈D|D|

ΦD(r,s,t)(u,v,w).

We have already pointed out that U -shop and X-shop are
dual to one another. It is a simple exercise to show that the
complement D of a structure D is preserved precisely by the
inverses of the shops that preserve D [11]. Thus the above
lemma holds in reverse for a formula Ξr that is built in exactly
the same manner as Θr but by using conjunctive negated
queries Ψ involving negative facts instead of Φ and its positive
facts (in other words, the negative fragment of equality-free
FO is characterised by the same lattice of DSMs).

Lemma 7. Let D be a finite structure over a set D, and U,X
be two subsets of D. If D has U -X-relativisation then D has
a U -X-she that may act as the identity over U ∪X .

Proof: We will use Θr and Ξr to establish that D has an
X-she g and a U -she f , that may both act as the identity over
U ∪ X . Then we may compose these to obtain a U -X-she
g ◦ f that may act as the identity over U ∪ X . Let r = r′

be an enumeration of U ∪ X (we retain the dash on r′ for
pedagogical reasons).

Since the identity is a she from (D, r) to (D, r′), it
follows by Lemma 6 that D |= Θr(r

′). By assumption,
we may equivalently relativise only the existential quanti-
fiers to X ((i) ⇒ (iii)): D |= Θr(r

′)[∃x/∃x∈X]. Let s′

be the witnesses in X for the variables v. Finally we set
w := s = (d1, . . . , d|D|) and obtain a witness t′ to the
disjunction. D |= ΦD(r,s)(r

′, s′)∧ΦD(r,s,t′)(r
′, s′, s). Consider

the following phops on D.
1) gr given by gr(ri) = {r′i}, for 1 ≤ i ≤ |U ∪X|.

(U ∪X-identity.)
2) gs given by gs(di) = {s′i}, for 1 ≤ i ≤ |D|. (X-totality.)



3) gt given by di ∈ gt(dj) iff t′i = dj , for 1 ≤ i, j ≤ |D|.
(surjectivity.)

Let g := gr ∪ gs ∪ gt. By construction, g is an X-shop that
may act as the identity over U ∪ X by gr. Its surjectivity
is guaranteed by gt and its “X-totality” is guaranteed by gs.
That g is a she of D follows from the right-hand conjunct
ΦD(r,s,t′).

Now recall that Ξr is

∃v ΨD(r,s)(u,v) ∧ ∀w
∨

t∈D|D|

ΨD(r,s,t)(u,v,w).

Since the identity is a she from (D, r′) to (D, r), it follows
that D |= Ξr(r

′). Now, this is equivalent to

D |=/ ∀v ¬ΨD(r,s)(r
′,v) ∨ ∃w

∧
t∈D|D|

¬ΨD(r,s,t)(r
′,v,w).

This is now a sentence of {∃,∀,∧,∨}-FO and by the U -X-
relativisation assumption, we may relativise only the universal
quantifiers to U (contrapositive of (ii)⇒ (i)). Rewriting, we
obtain

D |= ∃v ∈ U ΨD(r,s)(r
′,v) ∧ ∀w

∨
t∈D|D|

ΨD(r,s,t)(r
′,v,w).

Now we obtain witnesses s′ in U and set w := s =
(d1, . . . , d|D|) to obtain a witness t′ to the disjunction.

D |= ΨD(r,s)(r
′, s′) ∧ΨD(r,s,t′)(r

′, s′, s).

Consider the following phops on D.
1) fr given by fr(r′i) = {ri}, for 1 ≤ i ≤ |U ∪X|.

(U ∪X-identity.)
2) fs given by fs(s′i) 3 d, for 1 ≤ i ≤ |D|. (U -surjectivity.)
3) ft given by ft(di) = {dj} iff t′i = dj , for 1 ≤ i, j ≤
|D|. (totality.)

Let f := fr ∪ fs ∪ ft. By construction, f is an X-shop that
may act as the identity over U ∪X by fr. Its “U -surjectivity”
is guaranteed by ft and its totality is guaranteed by fs. That f
is a she of D follows from the right-hand conjunct ΨD(r,s,t′).

Together, the two previous lemmata establish an algebraic
characterisation of relativisation.

Theorem 8. Let D be a finite structure over a set D, and U,X
be two subsets of D. The structure D has U -X-relativisation
if, and only if, it has a U -X-shop as a she that may act as
the identity over U ∪X .

As a corollary, we obtain the upper bound for the complexity
in Cases I, II and III of our tetrachotomy theorem (Theorem 3).
We knew this already [8] but it keeps this paper self-contained.

Corollary 9 (upper bounds).
I. If D is preserved by both an A-shop and an E-shop then
{∃,∀,∧,∨}-FO(D) is in L.

II. If D is preserved by an A-shop then {∃,∀,∧,∨}-FO(D)
is in NP.

III. If D is preserved by an E-shop then {∃,∀,∧,∨}-FO(D)
is in co-NP.

Proof: We first prove Case II. Recall that an A-shop is
simply a U -X-shop with U = {u}, for some u in D, and
X ⊆ D. As we shall prove shortly (see Proposition 16), there
is a subset X ′ of X such that there is a U -X ′-shop which
may act as the identity over U ∪ X ′ as required. We may
therefore replace every universal quantifier by the constant u
and relativise every existential quantifier to X ′ by Theorem 8.
This means that {∃,∀,∧,∨}-FO(D) is in NP in the presence
of an A-she.

Recall that an E-shop is simply a U -X-shop with X = {x}
for some x in D, and U ⊆ D. So Case III is dual to Case
II and we finally turn to Case I. With both an A-shop and
an E-shop, we have a U -X-shop with U = {u} and X =
{x} where u and x are in D. Plainly this U -X-shop may act
as the identity over U ∪ X . We may therefore replace every
universal quantifier by the constant u and every existential
quantifier by the constant x, by Theorem 8. We have reduced
{∃,∀,∧,∨}-FO(D) to the Boolean sentence value problem,
known to be in L [12].

An induced substructure D′ of D, such that there is an
endomorphism from D to D′ which is the identity over D′, is
called a retract; and cores are simply minimal retracts. In the
context of {∃,∀,∧,∨}-FO, the analogous notion corresponds
to a substructure induced by a she which is a U -X-shop that
may act as the identity over U ∪X .

Corollary 10 (retraction). Let D be a finite structure that has
a U -X-she that may act as the identity over U ∪X . Let D̃ be
the substructure of D induced by U ∪X . For any sentence ϕ
in {∃,∀,∧,∨}-FO, D |= ϕ if, and only if, D̃ |= ϕ.

B. The U -X Core.

Let D be a finite structure and M its associated DSM; i.e.
M := shE(D).

We consider all minimal subsets X of D such that there
is an X-shop g in M, and all minimal subsets U such that
there is a U -shop f in M. Such sets always exist as totality
and surjectivity of shops mean that in the worst case we may
choose U = X = D. Since M is a monoid, by virtue of
Lemma 1, it follows that g ◦ f is a U -X shop and belongs to
M. Thus, we may furthermore require that among all minimal
sets satisfying the above, we choose a set U and a set X with
U ∩X maximal. Let D̃ be the substructure of D induced by
U ∪X . We call D̃ a U -X-core of D.

Note that the sets U and X are not necessarily unique.
However, as we shall see later the U -X-core is unique up to
isomorphism, so we fix them arbitrarily from now on.

Remark. Assume that there is an X1-shop h1 and an X2-shop
h2 in M s.t. |X1| > |X2|. We consider images of h1 ◦ h2:

D
h2−→ X2 ⊆ h2(D)

h1−→ ∅ ( h1(X2)∩X1 ⊆ X1 ⊆ h1◦h2(D).

For each element in X2, pick a single element x′1 of X1 in
h1(X2)∩X1 s.t. x′1 ∈ h1(x2). Let X ′1 denote the set of picked
elements. Since |X1| > |X2| then h1 ◦ h2 is an X ′1-shop in
M with |X ′1| ≤ |X2|.



This means that we may look for an X-shop in M where
the set X is minimal w.r.t. inclusion, or equivalently, for a set
with minimal size |X|. So, in order to find an X-shop with a
minimal set |X| inM, we can remove one by one an element
from D until we obtain a set X such that M contains an X-
shop, but no X ′-shop for X ′ ( X . The dual argument applies
to U -shops, and consequently to U -X-shops.

This further explains why minimising U and X , and then
maximising their intersection, necessarily leads to a minimal
D̃ := U ∪X also. Because, would we find U ′∪X ′ of smaller
size, we might look within U ′ and X ′ for potentially smaller
sets of cardinality |U | and |X|, thus contradicting minimality.

Lemma 11. Let f be a shop in M. For any element z in
D, f(z) contains at most one element of the set U , that is
|f(z) ∩ U | ≤ 1.

Proof: Assume for contradiction that there is some z and
some distinct elements u1 and u2 of U such that f(z) ⊇
{u1, u2}. Let z3, z4, . . . be any choice of antecedents under
f of the remaining elements u3, u4, . . . of U (recall that f is
surjective). By assumption the monoid M contains a U -shop
g. Hence, g ◦ f would be a U ′-shop with U ′ = {z, z3, z4, . . .}
since f(U ′) ⊆ U and g(U) = D. We get a contradiction as
|U ′| < |U |.

Lemma 12. Let f be a U -shop in M. There exists a
permutation α of U such that: for any u in U ,
• f(u) ∩ U = {α(u)}; and,
• f−1(u) ∩ U = {α−1(u)}.

The dual statements concerning X-shops hold.

Lemma 13. Let f be a shop in M. for any element z in
D, f−1(z) contains at most one element of the set X , that is
|f−1(z) ∩X| ≤ 1.

Lemma 14. Let f be an X-shop in M. There exists a
permutation β of X such that: for any x in X ,
• f(x) ∩X = {β(x)}; and,
• f−1(x) ∩X = {β−1(x)}.

Lemma 15. Let f be a shop in M. If f is a U -X-shop then
f(X) ∩ (U \X) = ∅.

Proof: Assume for contradiction that for some x1 ∈ X
and some u1 ∈ U \ X , we have u1 ∈ f(x1). Since f is
an X-shop, every element is an antecedent under f of some
element in X , in particular every element x2, x3, . . . ∈ X
(different from x1) has a unique image x′2, x

′
3, . . . ∈ X (see

Lemma 14). Some element of X , say xi does not occur in
these images. Necessarily, x1 reaches xi. Note that xi can not
also belong to U as otherwise, xi and u1, two distinct elements
of U , would be reached by x1, contradicting Lemma 11. Thus,
we must have that xi belongs to X \ U . Let U ′ := U and
X ′ := X \ {xi} ∪ {u1}. Note that f2 := f ◦ f , the second
iterate of f , is a U ′-X ′-shop with |U ′| = |U |, |X ′| = |X| and
|U ′ ∩ X ′| < |U ∩ X|. This contradicts our hypothesis on U
and X .

Proposition 16. There is a U -X-shop h in M that may act
as the identity on U ∪X and has the properties:

• for any y in U ∩X , h(y) ∩ (U ∪X) = {y};
• for any x in X \ U , h(x) ∩ (U ∪X) = {x};
• for any u in U \X , h(u)∩ (U ∪X) = {u} ∪Xu, where
Xu ⊆ X \ U ; and,

• h(U \X) ∩X =
⋃
u∈U\X Xu = X \ U.

We do not need the following to prove the tetrachotomy.

Theorem 17. The U -X-core is unique up to isomorphism.

IV. PROVING HARDNESS

Our aim is to derive the following lower bounds.

Theorem 18 (lower bounds). II. If D is preserved by an
A-shop but is not preserved by any E-shop, then
{∃,∀,∧,∨}-FO(D) is NP-hard.

III. If D is preserved by an E-shop but is not preserved by
any A-shop, then {∃,∀,∧,∨}-FO(D) is co-NP-hard.

IV. If D is preserved neither by an A-shop nor by an E-shop,
then {∃,∀,∧,∨}-FO(D) is Pspace-hard.

It follows from Proposition 16 and Corollary 10 that the
complexity of a structure D is the same as the complexity of
its U -X-core. Hence in this Section, we assume w.l.o.g. that
U ∪ X = D. We will say in this case that the DSM M is
reduced. In order to prove Theorem 18, we need to establish
the following:

II. If U is of size one and X of size at least two then
{∃,∀,∧,∨}-FO(D) is NP-hard;

III. If X is of size one and U of size at least two then
{∃,∀,∧,∨}-FO(D) is co-NP-hard; and,

IV. If both U and X have at least two elements then
{∃,∀,∧,∨}-FO(D) is Pspace-hard.

In the following. we will describe a DSM M as being (NP-,
co-NP-, Pspace-)hard in the case that {∃,∀,∧,∨}-FO(D) is
hard for some D ∈ Inv(M). In order to facilitate the hardness
proof, we would like to show hardness of a monoid M̂ with
a very simple structure of which M is in fact a sub-DSM
(M̂ is the completion ofM). As in general M̂ preserves less
relations thanM, the hardness ofM would follow. We would
like the structure of M̂ to be sufficiently simple for us to build
canonically some gadgets for our hardness proof. Thus, we
wish to better understand the form that elements of M may
take. In order to do so, we first define the canonical shop of
M to be the U -X shop h inM, guaranteed by Proposition 16,
with the property that |h(z)| is maximal for each z ∈ U \X .
Note that this maximal h is unique, as given h1 and h2 of
the form in Proposition 16, h1 ◦ h2 is also of the required
form, and further satisfies |h1 ◦ h2(z)| ≥ |h1(z)|, |h2(z)|, for
all z ∈ U \X .

A. Characterising reduced DSMs

Any U -X-shop in M will be shown to be in the following
special form, reminiscent of the form of the canonical shop.



Definition 19. We say that a shop f is in the 3-permuted
form if there are a permutation ζ of X ∩U , a permutation χ
of X \U and a permutation υ of U \X such that f satisfies:
• for any y in U ∩X , f(y) = {ζ(y)};
• for any x in X \ U , f(x) = {χ(x)}; and,
• for any u in U \X , f(u) = {υ(u)} ∪Xu, where Xu ⊆
X \ U .

Lemma 20. If a shop f satisfies f(X)∩ (U \X) = ∅ then f
is in the 3-permuted form.

Proof: The hypothesis forces an element of X to reach an
element of X and Lemma 13 forces two elements of X to have
different images. Since X is finite, there exists a permutation
β of X such that for every x in X , f(x) = {β(x)}. Since
Lemma 11 forces in particular an element of U to have at most
one element of U in its image and since U is finite, it follows
that there exists a permutation α of U such that for every u
in U , f(u) ∩ U = {α(U)} and f−1(u) ∩ U = {α−1(U)}.

It follows that there exists a permutation ζ of U ∩X such
that for any y in U ∩X , f(y) = {ζ(y)}.

The existence of a permutation χ of X \ U such that β is
the disjoint union of χ and ζ follows. Hence, for any x in
X \ U , f(x) = {χ(x)}.

Similarly, there must also be a permutation υ of U \ X
such that α is the disjoint union of υ and χ. Hence, for any
u in U \ X , f(u) ∩ U = {υ(u)}. Elements of U \ X may
however have some images in X \ U . So we get finally that
for any u in U \X , there is some ∅ ⊆ Xu ⊆ X \U such that
f(u) = {υ(u)}∪Xu. This proves that f is in the 3-permuted
form and we are done.

Theorem 21 (characterisation of reduced DSM).
Let M be a reduced DSM. Every shop in M is in the 3-
permuted form. Moreover, every U -X-shop in M follows the
additional requirement that the elements of U \ X cover the
set X \ U , more formally that

f(U \X) ∩X =
⋃

u∈U\X

Xu = X \ U.

Proof: We can now deduce easily from Lemmata 15
and 20 the form that U -X-shops inM may take. It remains to
prove that an arbitrary shop f inM is in the 3-permuted form.
Let h be the canonical shop of M. It follows from Lemma 1
that f ′ := h ◦ f ◦ h is a U -X-shop. Hence, f ′ is in the 3-
permuted form. Let z in X and u in U \X . If f(z) 3 u then
f ′(z) 3 u and f ′ would not be in the 3-permuted form. It
follows that f(X)∩ (U \X) = ∅ and appealing to Lemma 20
that f is in the 3-permuted form.

We do not need the following result in order to prove our
main result. But surprisingly in a reduced DSM, U and X are
unique. This means that we may speak of the canonical shop
of M instead its canonical U -X-shop. It also means that we
can define the U -X-core of a structure D without explicitly
referring to U or X as the minimal substructure of D which
satisfy the same {∃,∀,∧,∨}-FO sentences.

Theorem 22. Let D be a structure that is both a U -X-core
and a U ′-X ′-core then it follows that U = U ′ and X = X ′.

Corollary 23 (The U -X-core with implicit U and X).
Let D be a finite structure. The U -X-core of D is unique
up to isomorphism. It is a minimal induced substructure
D̃ of D, that satisfies the same {∃,∀,∧,∨}-FO formulae
with free-variables in D̃. Moreover, once D̃ is fixed, there
are two uniquely determined subsets U and X such that
U ∪X = |D̃| ⊂ D which are minimal within D with respect
to the following equivalent properties,
• D has U -X-relativisation w.r.t. {∃,∀,∧,∨}-FO; or,
• D has a U -X-shop that may act as the identity over
U ∪X .

Remark. To simplify the presentation, we defined D̃ as a
minimal induced substructure. Considering substructures that
are not necessarily induced (i.e. w.r.t. size of both the domain
and the relations), we would obtain exactly the same notion
(i.e. we would get minimal induced substructures). This is
also the case for CSP, but it is not the case in general. For
example, this is not the case for the logic {∃,∀,∧,=}-FO,
which corresponds to QCSP [9].

B. The hard DSM above M
Define the completion M̂ ofM to be the DSM that contains

all shops in the 3-permuted form of M. More precisely, the
canonical shop of M̂ is the shop ĥ where every set Xu is the
whole set X \ U , and, for every permutation ζ of X ∩ U , χ
of X \ U and υ of U \X , any shop in the 3-permuted form
with these permutations is in M̂. Note that by construction,
M is a sub-DSM of M̂. Note also that the minimality of U
and X still holds in M̂. We will establish hardness for M̂,
whereupon hardness of M follows from Theorem 2.

C. Cases II and III: NP-hardness and co-NP-hardness

We begin with Case II. We note first that U = {u} and
|X| ≥ 2 implies U ∩ X = ∅ (otherwise, we would have an
X \ {u}-total-shop, contradicting the minimality of X). The
structure K|X| ] K1, the disjoint union of a clique of size
|X| with an isolated vertex u, has associated DSM M̂. The
complexity of {∃,∧,∨}-FO(D), according to D, was fully
characterised in [7] and {∃,∧,∨}-FO(K|X| ]K1) is NP-hard
(as is any loopless graph that has at least one edge). We sketch
a proof here in order to keep the paper self-contained. We
observe that two structures that are homomorphically equiva-
lent satisfy the same {∃,∧,∨}-FO sentences. So it suffices to
prove that {∃,∧,∨}-FO(K|X|) is NP-hard. If |X| ≥ 3, then
it is well known that the NP-complete problem of graph |X|-
colourability reduces to {∃,∧}-FO(K|X|), otherwise |X| = 2
and we will need disjunction. The problem {∃,∧,∨}-FO(K2)
is NP-complete by reduction from 3-not-all-equal satisfiablity
(set RNAE(u, v, w) := E(u, v) ∨ E(v, w)).

For Case III, we appeal to duality. More precisely, if D is the
complement of D, then shE(D) consists of exactly the inverses
of the shops in shE(D) [11] and {∃,∀,∧,∨}-FO(D) is co-
NP-complete iff {∃,∀,∧,∨}-FO(D) is NP-complete [13] (this



is the principle of duality, expounded ad nauseam in papers
passim). It follows that we may reproduce the proof as in Case
II, but with the complement structure K|X| ] K1.

D. case IV: Pspace-hardness

We assume that |U | ≥ 2 and |X| ≥ 2 and consider two
cases.

• When U ∩ X 6= ∅, we show that the monoid M̂ is a
sub-DSM of a DSM M′ which, up to quotienting (to
be defined shortly), is a Pspace-hard DSM with a two-
element domain (dealt with in [1]).

• When U ∩ X = ∅, we are unable to exhibit such a
simple proof but thanks to the relative simplicity of M̂,
we provide a generic proof which is inspired from an
example with a four-element domain [2].

Case 1: when U ∩ X 6= ∅.: Recall that if M is a sub-
DSM of a hard DSM M̂ thenM is also hard (see Theorem 2).
Moreover, in the presence of an equivalence relation on the
domain of the DSM, that is a shop which maps each element to
its equivalence class, we can consider the quotient (see [11]).

Lemma 24 ([11]). Let D be a structure with an equivalence
relation f as a she (each element is mapped to its equivalence
class). Then {∃,∀,∧,∨}-FO(D) = {∃,∀,∧,∨}-FO(D/f ).

To build M̂ fromM, we added all permutations, and chose
for each set Xu = X \ U . We carry on with this completion
process and consider the super-DSM M′ which is generated
by a single shop g′ defined as follows:

• for every y in X ∩ U , g′(y) := X ∩ U ; and,
• for every z in X∆U , g′(z) := X∆U , where X∆U

denotes (X \ U) ∪ (U \X).

In the parlance of [11], the DSMM′ is a blurred permutation
subgroup of the trivial two-element-domain DSM 〈 0 0

1 1
〉

which is known to be Pspace-complete [1]. The result follows
by Lemma 24 and Theorem 2.

Case 2: when U ∩X = ∅.: We will give a structure D̂
such that shE(D̂) = M̂. Firstly, though, given some fixed u

in U and x in X , let G|U |,|X|u,x be the symmetric graph with
self-loops with domain D = U ∪X such that

• u and x are adjacent;
• The graph induced by X is a reflexive clique Kref

X ; and,
• U \ {u} and X \ {x} are related via a complete bipartite

graph KX\{x},U\{u}.

The structure G|U |,|X|u,x and the more specific G4,51,5 are drawn in
Figure 1. Denote by E

|U |,|X|
u,x the binary relation of G|U |,|X|u,x

and let D̂ be the structure with a single 4-ary relation RD̂ with
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(c) G|U|,|X|
u,x

Fig. 1. Main Gadget.

domain D̂ = U ∪X specified as follows,

RD̂ :=
⋃
u∈U

(( ⋃
x∈X

(u, x)× E|U |,|X|u,x

)
∪

( ⋃
x1,x2,x3∈X

(x1, x2)× E|U |,|X|u,x3

))
.

Essentially, when the first argument in a quadruple is from U ,
then the rest of the structure allows for the unique recovery
of some G|U |,|X|u,x ; but if the first argument is from X then all
possibilities from X for the remaining arguments are allowed.
In particular, we note from the last big cup that (x1, x2, x3, x4)

is a tuple of RD̂ for all quadruples x1, x2, x3, x4 in X .

Lemma 25. shE(D̂) = M̂.

Proof: Recall that, according to Theorem 21 and our
assumption on U , X and M̂, a maximal (w.r.t. sub-shop
inclusion) shop f ′ is of the following form,
• for any x in X \ U = X , f(x) = {χ(x)}; and,
• for any u in U \X = U , f(u) = {υ(u)} ∪X .

where χ and υ are permutations of X and U , respectively.
(Backwards; M̂ ⊆ shE(D̂).) It suffices to check that a max-

imal shop f ′ in M̂ preserves D̂. This holds by construction.
(Forwards; shE(D̂) ⊆ M̂.) We proceed by contraposition,

demonstrating that RD̂ is violated by any f /∈ M̂. We consider
the different ways that f might not be in M̂.
• If f is s.t. u ∈ f(x) for x ∈ X and u ∈ U then we, e.g.,

take (u, x, x, x) ∈ RD̂ but (z, u, u, u) /∈ RD̂ (for any
z ∈ f(u)) and we are done. It follows that f(X) = X .

• Assume now that f is s.t. {x′1, x′2} ⊆ f(x) for x′1 6= x′2
and x, x′1, x

′
2 ∈ X . Let u, u′ ∈ U be s.t. u′ ∈ f(u). Take

(u, x, u, x) ∈ RD̂; (u′, x′1, u
′, x′2) /∈ RD̂ and we are done.

It follows that f is a permutation χ on X .
• Assume now that f is s.t. {u′1, u′2} ⊆ f(u) for u′1 6= u′2

and u, u′1, u
′
2 ∈ U . Let x, x′ ∈ X be s.t. x′ ∈ f(x). Take



(u, x, u, x) ∈ RD̂; (u′1, x
′, u′2, x

′) /∈ RD̂ and we are done.
It follows that f restricted to U is a permutation υ on U .

Hence, f is a sub-shop of a maximal shop f ′ from the DSM
M̂, and f belongs to M̂ (recall that a DSM is closed under
sub-shops). The result follows.

Proposition 26. {∃,∀,∧,∨}-FO(D̂) is Pspace-complete.

Proof: We begin with the observation that
{∃,∀,∧,∨}-FO(G|U |,|X|u,x ) is Pspace-complete (for each
u ∈ U and x ∈ X). This follows straightforwardly from the
Pspace-completeness of {∃,∀,∧,∨}-FO(G2,21,3), the simplest
gadget which is depicted on Figure 1a. These gadgets G|U |,|X|u,x

agree on all equality-free sentences – even ones involving
negation – as there is a strong homomorphism from G|U |,|X|u,x

to G2,21,3 ; see the Homomorphism Theorem in [14].
We will prove that {∃,∀,∧,∨}-FO(G2,21,3) is Pspace-hard,

by reduction from QCSP(BNAE) – quantified 3-not-all-equal
satisfiability (see [15]). Recall that we may assume w.l.o.g.
that ∀ variables are relativised to U and that ∃-variables are
relativised to X , by Theorem 8. Let ϕ be an instance of
QCSP(BNAE). We reduce ϕ to a (relativised) instance ψ of
{∃,∀,∧,∨}-FO(G2,21,3). The reduction goes as follows:
• an existential variable ∃x of ϕ is replaced by an existen-

tial variable ∃vx ∈ X in ψ;
• a universal variable ∀u of ϕ is replaced by ∀u ∈ U,∃vu ∈
X, E(u, vu) in ψ; and,

• every clause Ci := R(α, β, γ) in ϕ is replaced by ∀ci ∈
U, E(ci, vα) ∨ E(ci, vβ) ∨ E(ci, vγ) in ψ.

The truth assignment is read from ∃ choices in X for the
variables v: we arbitrarily see one value in X as true and
the other as false. It is not relevant which one is which for
the problem not-all-equal satisfiability, we only need to ensure
that no three variables involved in a clause can get the same
value. The ∀ci ∈ U acts as a conjunction, enforcing “one of
vα, vβ , vγ is true” and “one of vα, vβ , vγ is false”. This means
that at least one in three has a different value.

Now, we can prove that {∃,∀,∧,∨}-FO(D′) is Pspace-
complete by substituting R(u0, x0, u, v) for each instance of
E(u, v) in the previous proof, and by quantifying the sentence
so-produced with the prefix ∀u0 ∈ U,∃x0 ∈ X , once u0 and
x0 are chosen, play proceeds as above but in the copy G|U |,|X|u0,x0 ,
and the result follows.

V. THE COMPLEXITY OF THE META-PROBLEM

The {∃,∀,∧,∨}-FO(σ) meta-problem takes as input a
finite σ-structure D and answers L, NP-complete, co-NP-
complete or Pspace-complete, according to the complexity
of {∃,∀,∧,∨}-FO(D). The principle result of this section is
that this problem is NP-hard even for some fixed and finite
signature σ0.2

Note that one may determine if a given shop f is a she
of a structure D in, say, quadratic time in |D| Since we are

2For now, σ0 consists of two binary predicates and three monadic predi-
cates. The mondaic predicates are for convenience, but it is not clear whether
a single binary predicate suffices.

not interested here in distinguishing levels within P, we will
henceforth consider such a test to be a basic operation. We
begin with the most straightforward case.

Proposition 27. On inputD, the question “is {∃,∀,∧,∨}-FO-
(D) in L?” is in P.

Proof: By Theorem 3, we need to check whether D has
both an A-she and an E-she. In this special case, it suffices
to test for each u, x in D, if the following {u}-{x}-she f
preserves D (this shop was denoted by ∀u∃x in [1], [8]):
f(u) := D and f−1(x) := D.

Proposition 28. For some fixed and finite signature σ0, on in-
put of a σ-structure D, the question “is {∃,∀,∧,∨}-FO(D) in
NP (respectively, NP-complete, in co-NP, co-NP-complete)?”
is NP-complete.

Proof: The four variants are each in NP. For the first,
one guesses and verifies that D has an A-she, for the second,
one further checks that there is no ∀u∃e-she (see the proof
of Proposition 27). Similarly for the third, one guesses and
verifies that D has an E-she; and, for the fourth, one further
checks that there is no ∀u∃e-she. The result then follows from
Theorem 3.

For NP-hardness we will address the first problem only. The
same proof will work for the second (for the third and fourth,
recall that a structure D has an A-she iff its complement D
has an E-she). We reduce from graph 3-colourability. Let G be
an undirected graph with vertices V := {v1, v2, . . . , vs}. We
will build a structure SG over the domain D which consists
of the disjoint union of “three colours” {0, 1, 2}, u, and the
“vertices” from V .

The key observation is that there is a structure GV whose
class of shes shE(GV ) is generated by the following A-shop:

fV :=

0 0
1 1
2 2
u 0, 1, 2, u, v1, . . . , vs
v1 0, 1, 2
v2 0, 1, 2
...

...
vs 0, 1, 2

The existence of such a GV is in fact guaranteed by the Galois
connection, fully given in [11], but that may require relations
of unbounded arity, and we wish to establish our result for a
fixed signature. So we will appeal to Lemma 29, below, for
a σV -structure GV with the desired class of shes, where the
signature σV consists of one binary relation and three monadic
predicates. The signature σ0 will be σV together with a binary
relational symbol E.

The structure SG is defined as in GV for symbols in σV ,
and for the additional binary symbol E, as the edge relation
of the instance G of 3-colourability together with a clique K3

for the colours {1, 2, 3}. By construction, the following holds.
• Any she g of SG will be a subshop of fV .
• Restricting such a shop g to V provides a set of mutually

consistent 3-colourings: i.e. we may pick arbitrarily a



colour from g(vi) to get a 3-colouring g̃.
• Conversely, a 3-colouring g̃ induces a sub-shop g of fV :

set g as fV over elements from {0, 1, 2, u} and as g̃ over
V .

This proves that graph 3-colourability reduces to the meta-
question “is {∃,∀,∧,∨}-FO(D) in NP”.
Note that it follows from the given proof that the meta-
problem itself is NP-hard. To see this, we take the structure
SG from the proof of Proposition 28 and ask which of the four
classes L, NP-complete, co-NP-complete or Pspace-complete
the corresponding problem belongs to. If the answer is NP-
complete then G was 3-colourable; otherwise the answer is
Pspace-complete and G was not 3-colourable.

Lemma 29. Let σV be a signature involving one binary rela-
tions E′ and three monadic predicates One, Two and Three.
There is a σV -structure GV such that shE(GV ) = 〈fV 〉.

VI. CONCLUSION

We complete the complexity classification of
{∃,∀,∧,∨}-FO(D) started in [1], [2], [8] and prove
our conjecture from [2], [8].

In order to prove this result, we introduce the notion of U -
X-core, a generalisation of the well-known concept of core
that is so useful in the context of CSP, and which allows
us to dispense with working out complexities from within
the lattice of DSMs, and escape combinatorial explosion. The
notion of a U -X-core is characterised logically both in terms
of relativisation properties of sentences of {∃,∀,∧,∨}-FO;
and, algebraically in terms of preservation by a U -X-shop.
This means that each of the four cases can be formulated as
in Table I.

TABLE I
REFORMULATIONS OF THE TETRACHOTOMY

Case I
Complexity L
A-shop yes
E-shop yes
U -X-core |U | = 1, |X| = 1
Relativises into {∧,∨}-FO
Dual to case self-dual
Case II III
Complexity NP-complete co-NP-complete
A-shop yes no
E-shop no yes
U -X-core |U | = 1, |X| ≥ 2 |U | ≥ 2, |X| = 1
Relativises into {∃,∧,∨}-FO {∀,∨,∧}-FO
Dual to case III II
Case IV
Complexity Pspace-complete
A-shop no
E-shop no
U -X-core |U | ≥ 2, |X| ≥ 2
Relativises into {∃, ∀,∧,∨}-FO
Dual to case self-dual

We believe that U -X-core could be of interest for other
purposes. Firstly, since equality may be propagated out for
QCSP, computing the U -X-core could be an effective pre-
processing step for a QCSP-solver, which could reduce the

branching factor during search.3 Secondly, though it is not
the right notion of a core for QCSP, it could help with the
classification, for example for graphs and digraphs, for which
only very partial classifications are known [16], [17]. The
key property here being not only that we could shrink the
domain, but that we could relativise quantifiers, in particular
the universal ones.4

The algebraic machinery that we have set up in the course of
our investigation is particularly well-behaved and pleasant to
use and could be of further use. It will be possible to extend it
slightly to characterise, and show the decidability of, problem
containment for {∃,∀,∧,∨}-FO(D) (this was investigated for
QCSP in [18]). Finally, we only considered the usual decision
problem associated with {∃,∀,∧,∨}-FO, and it could be that a
number of other interesting combinatorial questions associated
with {∃,∀,∧,∨}-FO could be solved using this nice algebraic
setting.
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