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Abstract. Let A be an idempotent algebra, α ∈ ConA such that A/α is

Maltsev, and m be a fixed natural number. There is a polynomial time al-

gorithm that can transform any constraint satisfaction problem over A with
relations of arity at most m into an equivalent problem which is m consistent

and in which each domain is inside an α block. Consequently if the induced al-

gebras on the blocks of α generate an SD(∧) variety, then CSP(A) is tractable.

Let A and B be fixed idempotent algebras in the same variety, B be Maltsev,
and m be a fixed and n be an arbitrary natural number.

Lemma 1. Every subuniverse S ≤ Am ×Bn has a compact representation (poly-
nomially many in n tuples that generate S). There is a polynomial time algorithm
that can compute from the compact representations of two subuniverses S1,S2 the
compact representation of S1 ∩ S2.

Proof. By an index we mean a tuple (ā, i, b, c) where ā ∈ Am, 0 ≤ i < n and b, c ∈ B.
A witness for the index (ā, i, b, c) in a subuniverse S ≤ Am ×Bn is a pair of tuples
(ā, b̄), (ā, c̄) ∈ S such that bj = cj for all j < i and bi = b and ci = c. By a compact
representation of S we mean a collection of witnesses for all possible indices. We
assume that |A|, |B| and m are bounded by some fixed constant. Clearly, then
every subuniverse S has a compact representation consisting of polynomially many
vectors in n.

We claim that if S1,S2 ≤ Am ×Bn and the compact representations of S1 and
S2 are known, then the compact representation of S1 ∩ S2 can be computed by a
polynomial algorithm. To check whether an index (ā, i, b, c) can be witnessed in
S1∩S2 it is enough to check whether (i, b, c) can be witnessed in P1∩P2, as defined
by Dalmau, where

Pi = { b̄ ∈ Bn : (ā, b̄) ∈ Si }.

From his algorithm it is not at all clear that the compact representation of the
intersection can be computed at all because in the “next” procedure he has to
apply a constraint to a compact representation. There is a trick, however, which
can help us here. Suppose that we know the compact representations of P1 and
P2. Then we can compute the compact representation of P1 × P2 ≤ B2n, and by
applying the equality constraint to the (1, n+ 1), . . . , (n, 2n) pairs of indices we get
the compact representation of (P1 ∩ P2)2. This yields the compact representation
of P1 ∩ P2 ∈ Bn in polynomial time. �
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Lemma 2. Let k ≤ m. There is a polynomial time algorithm that can compute
from the compact representation of S ≤ Am ×Bn the compact representation of

P = { (ā, b̄) ∈ Ak ×Bn : ∃â ∈ Am−k, (â, ā, b̄) ∈ S }.
Conversely, if the compact representation of P ≤ Ak × Bn is known, then the
compact representation of Am−k ×P can be computed in polynomial time.

Proof. Take an index (ā, i, b, c) where ā ∈ Ak. First we find a tuple b̄ ∈ Bn such
that (ā, b̄) ∈ P and bi = b. For each choice of â ∈ Am−k we check if S has a witness
for (â, ā, i, b, b). If we have no such witness, then (ā, i, b, c) does not have a witness
in P , otherwise we have the tuple (â, ā, b̄) ∈ S such that bi = b. For each ã ∈ A we
can check with the Dalmau algorithm if there exists c̄ ∈ Bn such that (ã, ā, c̄) ∈ S,
cj = bj for all j < i and ci = c. If we have such, then we are done and (ā, b̄), (ā, c̄)
is a witness for (ā, i, b, c) in P , otherwise there is no wittness in P .

The second claim of the lemma is trivial. �

Definition 3. By a Maltsev strategy we mean a collection

S = {SI ≤ AI × (A/α)n : I ⊆ {1, . . . , n}, |I| ≤ m }
of subuniverses such that

(1) ai/α = bi for all (ā, b̄) ∈ SI and i ∈ I,
(2) SI = { (ā|I , b̄) : (ā, b̄) ∈ SJ } for all I ⊆ J .

We say that S is nonempty if S∅ 6= ∅. A tuple ū ∈ An is a solution of S if
(ū|I , ū/α) ∈ SI for all I.

Lemma 4. Let P be an instace of CSP(A) with n variables and constraints of
arity less than m. There is a polynomial time algorithm that constructs a Maltsev
strategy S which has a solution if and only if P does.

Proof. For all subsets I ⊆ {1, . . . , n}, |I| ≤ m, let PI ≤ AI be the set of partial
solutions of P on the set I of variables. Define

SI = { (ā, b̄) ∈ PI × (A/α)n : ∀i ∈ I, ai/α = bi },
and put S = {SI : I }. Clearly, S has a solution if and only if P does, however S
is not yet a Maltsev strategy as it might not satisfy condition (2).

Suppose that SI does not equal SJ |I = { (ā|I , b̄) : (ā, b̄) ∈ SJ } for some I ⊂ J .
If SI 6⊆ SJ |I , then we can replace SI with SI ∩ SJ |I , which we can calculate by
Lemmas 1 and 2. If on the other hand SI 6⊇ SJ |I , then we can replace SJ with
SJ ∩ (SI ×AJ\I) where (SI ×AJ\I) is the extension of SI to the domain J . In both
cases the number of witnesses decreeses. As therere are only polinomially many
witnesses in the whole of S, this consystency step must terminate in polynomially
many steps.

Note, that whenever P has a solution, then the corresponding solution of S
cannot be removed, so S is nonempty in this case. �

Lemma 5. If S is a nonempty Maltsev strategy then for each (∅, b̄) ∈ S∅ the
collection A = {AI ≤ AI : I } of the relations

AI = { ā ∈ AI : (ā, b̄) ∈ SI }
is an m-consistent strategy such that A{i} ⊆ bi ∈ A/α for each 1 ≤ i ≤ n.

Proof. Follows directly from the definition. �
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Note, that if A is an idempotent algebra, and α ∈ Con A, then the α-blocks are
subalgebras of A.

Theorem 6. Let A be an idempotent algebra, α ∈ Con A such that A/α is Maltsev
and the α-blocks (which are subalgebras of A) generate SD(∧) varieties. If Γ is a
finte set of relations over A, that is, Γ ⊂ SP(A), then CSP(Γ) can be solved in
polynomial time.

Proof. Let m be the maximum arity of relations in Γ. By Lemma 4 we can convert
any instance P of CSP(Γ) into an equivalent Maltsev strategy S. If S is empty,
then S and therefore P have no solution. On the other hand, if S is non-empty,
then we can take an element (∅, b̄) ∈ S∅. By Lemma 5 we have a nonempty m-
consistent A = {AI ≤ AI : I } strategy, such that for each 1 ≤ i ≤ n the domain
A{i} is a subuniverse of an α-class. We can encode the strategy A as an instance
(or strategy) over the direct product

B =
∏
ā∈α

ā

of the α-classes of A. Since the α-classes generate SD(∧) varieties, B is also gen-
erates an SD(∧) variety, therefore by the bounded-width characterization we know
that A has a solution (since it is m-consistent). Therefore P has a solution as
well. �

Corollary 7. Let V be a pseudo-variety (containing finite algebras closed under
subalgebras, homomorphic images and finite direct products) generated by algebras
of bounded width and Maltsev algebras. Then for every algebra A ∈ V and finite
set of relations Γ ⊂ SP(A) the problem CSP(Γ) can be solved in polynomial time.

Proof. We know that CSP(A) can be solved in polynomial time both for algebras
of bounded width and Maltsev algebras. It is true in general that if CSP(A)
can be solved in polynomial time, then the same holds for any subalgebras and
homomorphic images of A. So the only problem we face is about finite products.

We know that finite products of bounded width algebras has bounded width as
well (from the SD(∧) description). The same tractability result is true for Maltsev
algebras, however it is not as straightforward, since the Maltsev operation in these
algebras might come from different terms, so the finite direct product might not
have a Maltsev term.

One option is to use R. McKenize’s observation/result, that the direct product
of algebras of few subpowers has few subpowers and reprove all the lemmas in this
writeup for few subpowers instead of Maltsev algebras. The other option is to
develop a hybrid algorithm for the Maltsev over Maltsev problem, which can be
handled somewhat similarly to this writeup.

Finally, we have to show that the direct product of a Maltsev algebra and n
algebra of bounded width is stractable. However, in the direct product we do have
the α projection congruence which satisfies the conditions of Theorem 6, which
finishes the proof. �
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