A new class of low discrepancy sequences of partitions and points

Ingrid Carbone¹

In 1976 Kakutani introduced the well-known splitting procedure of the unit interval. Fix a number $\alpha \in]0,1[$. If π is any partition of [0,1[, its α -refinement, denoted by $\alpha\pi$, is obtained subdividing the longest interval(s) into two parts proportional to α and $(1 - \alpha)$. By $\alpha^n \pi$ we denote the α -refinement of $\alpha^{n-1}\pi$ and by $\{\alpha^n \pi\}$ the sequences of successive α -refinement of π . The sequence of successive α -refinement of the trivial partition of [0,1[, denoted by $\{\kappa_n\}$, is known as the *Kakutani* α -sequence. Kakutani proved that $\{\kappa_n\}$ is uniformly distributed.

In 2011 Volčič generalized Kakutani's splitting procedure as follows: if ρ is a non trivial finite partition of [0,1[, the ρ -refinement of a partition π of [0,1[, denoted by $\rho\pi$, is obtained by subdividing all the intervals of π having maximal length positively (or directly) homothetically to ρ . { $\rho^n\pi$ } denotes the sequence of successive ρ -refinements of π . Volčič proved that the sequence of ρ -refinements { ρ^n } of the trivial partition of [0,1[is *uniformly distributed*.

Soon afterwards, we introduced and studied a countable class of sequences of ρ - refinements of the trivial partition of [0,1[, denoted by $\{\rho_{LS}^n\}$ and called *LS*-sequences of partitions, where ρ is the partition made by *L* intervals of length β and *S* intervals of length β^2 . We proved that $\{\rho_{LS}^n\}$ is uniformly distributed and we gave estimates from above and from below for their discrepancy. In the case $L \ge S$ the sequence of partitions $\{\rho_{LS}^n\}$ has low discrepancy. If L = S = 1 we obtain a Kakutani sequence.

In the same article we also presented an explicit algorithm \dot{a} la van der Corput which associates to each *LS*-sequence of partitions a sequence of points we called *LS*-sequence of points and denoted by $\{\xi_{LS}^n\}$. We estimated the discrepancy of these sequences of points and we proved that whenever $L \ge S$ the sequence of points $\{\xi_{LS}^n\}$ has *low discrepancy*.

Furthermore, we introduced two new algorithms to construct *LS*-sequences of points, one of which uses the (L+S)-radix notation of integer numbers, and does not need the concept of *LS*-sequence of partitions.

¹University of Calabria - Italy

i.carbone@unical.it

Due to the important role of low discrepancy sequences of points in Quasi-Monte Carlo Methods, it is interesting to see what happens in higher dimension. A first step in the multidimensional direction has been done very recently by introducing the two following extensions of *LS*-sequences of points to the unit square.

Definition 0.1. For each *LS*-sequence of points $\{\xi_{LS}^n\}$, the sequence $\{(\xi_{LS}^n, \frac{n}{N})\}$, where n = 1, ..., N, is called *LS*-sequence of points à la van der Corput - Hammersley of order N in the unit square.

Definition 0.2. For each pair of *LS*-sequences of points $\{\xi_{L_1S_1}^n\}$ and $\{\xi_{L_2S_2}^n\}$, the sequence $\{(\xi_{L_1S_1}^n, \xi_{L_2S_2}^n)\}$ is called *LS*-sequence of points à la Halton in the unit square.

An important result concerning the *LS*-sequence of points à la van der Corput-Hammersely is given by the following

Theorem 0.3. The discrepancy of $\{(\xi_{LS}^n, \frac{n}{N})\}$ coincides with the discrepancy of $\{\xi_{LS}^n\}$.

A consequence of the previous theorem is the following

Corollary 0.4. $\{(\xi_{LS}^n, \frac{n}{N})\}$ has low discrepancy whenever $L \ge S$.

In the case of the Halton-type sequences $\{(\xi_{L_1S_1}^n, \xi_{L_2S_2}^n)\}$ a lot of work has still to be done. We have at our disposal several graphical examples which indicate that the situation varies very much: some sequences seem to be uniformly distributed, while other show an unexpected bad behavior.