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Weak versus Strong

SDE:
dS(t) = a(S(t)) dt + b(S(t)) dW(t)

S(0)givenand0<t< T

Euler—Maruyama

AW, :=W(t, 1) — W(t,), th=nh, h=T/K

Assume that a and b are smooth and globally Lipschitz
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Weak versus Strong

Weak Convergence |E[S(f,)] — E[S,]| < Ch
Strong Convergence

E [ sup [S(ty) —s,,@ < Chz

0<n<K

Strong convergence + Markov inequality =
P (|S(t,) — S| > h*) < Chz —°
Continuous Time/Higher Moments
E | sup [S(t) — S(1)|"| < Cmsh?~°
0<t<T
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Weak versus Strong

Which is more relevant, weak or strong?

Conventional wisdom :
Weak convergence is usually enough. Most problems
require expected value type information.

Strong convergence covers cases where we want to
visualize paths or generate time series (e.g. to test a
filtering algorithm or a parameter fitting algorithm).
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Monte Carlo for SDEs

Approximate E [S(T)] by applying E-M to get samples.

Let 1 = 3 2004 S
Then

E[S(T)] = p=E[S(T) = Sk + Sk] —
=E[S(T) — Sk] + E[Sk] —

Confidence interval width is O(h) + O(1/v/N)
For confidence interval of O(e), choose h=1/v/N = ¢

Computational costis N x 1/h

Hence, computational complexity is O(e~3)
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Multi-level Monte Carlo

The algorithm will achieve
computational complexity of

O(e?log(e)?)

using E-M, and giving good results in practice

A key ingredient: Use a range of h values
many paths at large h, few paths at small h
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Multi-level Monte Carlo

Consider payoff f (S(T)), where f is globally Lipschitz.
e is required accuracy (conf. int.)

Timesteps hy = M~'T, 1=0,1,2,...,L

M is fixed and L = 3= so that b, = O(e)

P, denotes E-M approx. to f(S(T)) using h,. Clearly

IR ZE BB

Yo estimates E[Po] using No paths, and
Y, estimates E[P, ~P_ 1] using N, paths:

V=3 (R -PA,)
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Multi-level Monte Carlo (M
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Multi-level Monte Carlo

Strong convergence of E-M + glob. Lip. f give

var [P~ 1(s(Ty] < & (B~ £(s(7)"] = oty
and

var [Py~ By |

< (\/var [ﬁ, - f(S(T))] + \/var [ﬁm — f(S(T))})‘2 = O(hy)

So Y, = N Qi (P[’] P,[’]1> has variance of O(h;/N))
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Estimator for RHS is Y := Yo + -, Y,

For/>1,Y, = D (f’,m — f’,ﬂ) and

var {\Af,} = O(h/N,) = var [\7} = var [\70} + 35, O(hi/Ny)
Take N, = O(e2Lh;), to give var [\7] = O(¢?)

Because h, = O(e), the bias E [ﬁL . f(S(T))} — O(e)
Computational complexity is

L L
S ONATT =D e PLhyht = 1P
1=0

1=0

Since L = "I’c?g—ﬂ this gives  O(e2(log €)?)
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Financial Options

Now S(t) represents the asset price
Option Payoffs :
: max (S(T) — E,0)
S 1s(r)sE
:S(T) — ming<t<7 S(t)
:max (S(T) — E,0) x 1(

SUPo<t<T S(f))SB

Task: compute E [Payoff]
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Lookback with geom. Brownian motion
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Digital with geom. Brownian motion
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Payoff Not Globally Lipschitz?

Extending Giles (2008) reduces to getting

E [(P — ﬁ)z] <0(h)

where
P is true payoff,

~

P is Euler—Maruyama payoff
In Giles, Higham, Mao (2009), we confirmed rigorously that,
given any 6 > 0,

mf3=1-—-0ofora

m3=1—¢fora

mj=1—4¢fora

nI= NI=

(Still assume SDE coeffs glob. Lipsch. Up and out fits well!)
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Stopped Exit Times

Required in many physical modeling scenarios
Look at scalar case for simplicity

Suppose S(0) = x € (a, #). For the SDE we define
= (inf{t >0 : S(t) ¢ (a, 5)}) A

For the E-M approximation

= (inf{t >0 = S(f) ¢ (o, 5)}) A

Assumptions
m Drift and diffusion globally Lipschitz and smooth
m Diffusion strictly positive (uniform ellipticity)

This ensures that u(x) := E[7] is Lipschitz
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Weak Error in Mean Hitting Time

Gobet & Menozzi, Stoch. Proc. Appl., 2010:

E[r] - E[v] = O(hz)

Standard Monte Carlo for accuracy e:
to balance bias and sampling error we need

=1/VN

=

e=h
This gives computational complexity of O(e~*)

We will show that multi-level can achieve O (¢-3(log €)?)
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lllustration of one sample at one level
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Key Result

Strong error in mean exit time

We need to show that

1

E “7‘ — V|2] = O(h2)

We use
E [|7’ - Vﬂ < TE[|T —v|]

Then deal separately with the cases v < rand 7 < v
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Case wherev < 7
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Overall

We can show
E [(r — ) 1<ny] = O(h?)
and 1
E [(V — T) 1{T<,,}} = O(hg)
So

1

Eflr = vl = O(h?)

= multi-level version has complexity of
O (e %(log €)?)
compared to the standard
O(e™)
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Mean-Reverting Square Root SDE
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Gillespie/Tau-leaping

Start with 1 gene
Estimate expected number of dimers at t = 1

Method Solution Updates CPU time
Gillespie/MC 37146 +1 83 x 10" 1.5x 10° sec
Tau-leap/MC 37084 +1 1.7x 10" 2.0 x 10* sec

Tau/GillMLMC 371394+ 1 58x10® 1.7 x 10% sec

[Joint work with David Anderson]
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m Multi-level approach dramatically improves Monte Carlo
simulation when samples contain discretization errors

m Compute many (cheap) samples at low resolution and
few (expensive) samples at high resolution

m Original SDE analysis of Giles (2008) extends to some
E [f(S(t))] where f is not globally Lipschitz

m Works for mean exit times
m Now available for Gillespie/tau-leaping

MLMC is currently being pursued in many directions
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