Multi-level Monte Carlo in Stochastic Simulation

Des Higham

Department of Mathematics and Statistics University of Strathclyde

Outline

- Weak versus strong convergence
- Complexity of Monte Carlo
- Multi-level Monte Carlo
- Financial Options
- Hitting Times
- Gillespie/Tau leaping

Multi-level Monte Carlo

Heinrich, Lect. Notes Comput. Sci., 2001 Giles, Operations Research, 2008 (78 citatons)

Path-dependent expectations

Giles, Higham, Mao, Finance and Stoch., 2009

Mean exit times

Higham, Mao, Roj, Song, Tech. Report, 2011

Gillespie/Tau leaping

Anderson, Higham, submitted

SciCADE Des Higham MLMC 2 / 24

Weak versus Strong

SDE:

$$d\mathbf{S}(t) = a(\mathbf{S}(t)) dt + b(\mathbf{S}(t)) d\mathbf{W}(t)$$

S(0) given and $0 \le t \le T$

Euler-Maruyama

$$\mathbf{S}_{n+1} = \mathbf{S}_n + a(\mathbf{S}_n)h + b(\mathbf{S}_n)\Delta\mathbf{W}_n$$

$$\Delta \mathbf{W}_n := \mathbf{W}(t_{n+1}) - \mathbf{W}(t_n), \quad t_n = nh, \quad h = T/K$$

Assume that a and b are smooth and globally Lipschitz

SciCADE Des Higham MLMC 3 / 24

Weak versus Strong

Weak Convergence $|\mathbb{E}[S(t_n)] - \mathbb{E}[S_n]| \leq Ch$

Strong Convergence

$$\mathbb{E}\left[\sup_{0\leq n\leq K}|\mathbf{S}(t_n)-\mathbf{S}_n|\right]\leq Ch^{\frac{1}{2}}$$

Strong convergence + Markov inequality ⇒

$$\mathbf{P}(|\mathbf{S}(t_n) - \mathbf{S}_n| \geq h^{\alpha}) \leq Ch^{\frac{1}{2} - \alpha}$$

Continuous Time/Higher Moments

$$\mathbb{E}\left[\sup_{0 < t < T} \left| \mathbf{S}(t) - \mathbf{S}(t)
ight|^m
ight] \leq C_{m,\delta} h^{rac{m}{2} - \delta}$$

SciCADE Des Higham MLMC 4 / 24

Weak versus Strong

Which is more relevant, weak or strong?

Conventional wisdom:

Weak convergence is usually enough. Most problems require **expected value** type information.

Strong convergence covers cases where we want to **visualize paths** or generate **time series** (e.g. to test a filtering algorithm or a parameter fitting algorithm).

SciCADE Des Higham MLMC 5 / 24

Monte Carlo for SDEs

Approximate $\mathbb{E}\left[\mathbf{S}(T)\right]$ by applying E-M to get samples. Let $\mu=\frac{1}{N}\sum_{i=1}^{N}S_{K}^{[i]}$ Then

$$\mathbb{E}\left[\mathbf{S}(T)\right] - \mu = \mathbb{E}\left[\mathbf{S}(T) - \mathbf{S}_{K} + \mathbf{S}_{K}\right] - \mu$$
$$= \mathbb{E}\left[\mathbf{S}(T) - \mathbf{S}_{K}\right] + \mathbb{E}\left[\mathbf{S}_{K}\right] - \mu$$

Confidence interval width is $O(h) + O(1/\sqrt{N})$

For confidence interval of $O(\epsilon)$, choose $h = 1/\sqrt{N} = \epsilon$

Computational cost is $N \times 1/h$

Hence, computational complexity is $O(\epsilon^{-3})$

SciCADE Des Higham MLMC 6 / 24

Multi-level Monte Carlo

The Multi-level Monte Carlo algorithm will achieve computational complexity of

$$O(\epsilon^{-2}\log(\epsilon)^2)$$

using E-M, and giving good results in practice

A key ingredient: Use a range of h values many paths at large h, few paths at small h

SciCADE Des Higham MLMC 7/24

Multi-level Monte Carlo

Consider payoff f(S(T)), where f is globally Lipschitz. ϵ is required accuracy (conf. int.)

Timesteps $h_l = M^{-l}T$, l = 0, 1, 2, ..., L

M is fixed and $L = \frac{\log \epsilon^{-1}}{\log M}$, so that $h_L = O(\epsilon)$

 $\widehat{\mathbf{P}}_{l}$ denotes E-M approx. to $f(\mathbf{S}(T))$ using h_{l} . Clearly

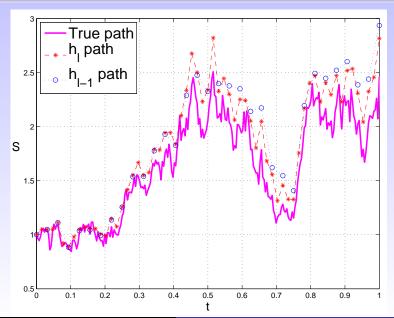
$$\mathbb{E}\left[\widehat{\mathbf{P}}_{L}\right] = \mathbb{E}\left[\widehat{\mathbf{P}}_{0}\right] + \sum_{l=1}^{L} \mathbb{E}\left[\widehat{\mathbf{P}}_{l} - \widehat{\mathbf{P}}_{l-1}\right]$$

 \widehat{Y}_0 estimates $\mathbb{E}[\widehat{\mathbf{P}}_0]$ using N_0 paths, and \widehat{Y}_l estimates $\mathbb{E}[\widehat{\mathbf{P}}_l - \widehat{\mathbf{P}}_{l-1}]$ using N_l paths:

$$\widehat{Y}_{l} = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{[i]} - \widehat{P}_{l-1}^{[i]} \right)$$

SciCADE Des Higham MLMC 8 / 24

Multi-level Monte Carlo (M = 2)



Multi-level Monte Carlo

Strong convergence of E-M + glob. Lip. *f* give

$$\operatorname{var}\left[\widehat{\mathbf{P}}_{l}-f\left(\mathbf{S}(T)\right)\right]\leq\mathbb{E}\left[\left(\widehat{\mathbf{P}}_{l}-f\left(\mathbf{S}(T)\right)\right)^{2}\right]=O(h_{l})$$

and

$$\operatorname{var}\left[\widehat{\mathbf{P}}_{l} - \widehat{\mathbf{P}}_{l-1}\right] \leq \left(\sqrt{\operatorname{var}\left[\widehat{\mathbf{P}}_{l} - f\left(\mathbf{S}(T)\right)\right]} + \sqrt{\operatorname{var}\left[\widehat{\mathbf{P}}_{l-1} - f\left(\mathbf{S}(T)\right)\right]}\right)^{2} = O(h_{l})$$

So
$$\widehat{Y}_l = \frac{1}{N_l} \sum_{i=1}^{N_l} \left(\widehat{P}_l^{[i]} - \widehat{P}_{l-1}^{[i]} \right)$$
 has variance of $O(h_l/N_l)$

SciCADE Des Higham MLMC 10 / 24

Recap:
$$\mathbb{E} \left| \stackrel{\frown}{\mathbf{P}}_{L} \right| = \mathbb{E} \left| \stackrel{\frown}{\mathbf{P}}_{0} \right| + \sum_{l=1}^{L} \mathbb{E} \left| \stackrel{\frown}{\mathbf{P}}_{l} - \stackrel{\frown}{\mathbf{P}}_{l-1} \right|$$

Estimator for RHS is
$$\widehat{Y} := \widehat{Y}_0 + \sum_{l=1}^L \widehat{Y}_l$$

For $l > 1$, $\widehat{Y}_l = \frac{1}{N_l} \sum_{i=1}^{N_l} \left(\widehat{P}_l^{[i]} - \widehat{P}_{l-1}^{[i]}\right)$ and $\operatorname{var}\left[\widehat{Y}_l\right] = O(h_l/N_l) \Rightarrow \operatorname{var}\left[\widehat{Y}\right] = \operatorname{var}\left[\widehat{Y}_0\right] + \sum_{l=1}^L O(h_l/N_l)$
Take $N_l = O(\epsilon^{-2}Lh_l)$, to give $\operatorname{var}\left[\widehat{Y}\right] = O(\epsilon^2)$
Because $h_L = O(\epsilon)$, the bias $\mathbb{E}\left[\widehat{\mathbf{P}}_L - f(\mathbf{S}(T))\right] = O(\epsilon)$

Computational complexity is

$$\sum_{l=0}^{L} N_l h_l^{-1} = \sum_{l=0}^{L} \epsilon^{-2} L h_l h_l^{-1} = L^2 \epsilon^{-2}$$

Since $L = \frac{\log \epsilon^{-1}}{\log M}$, this gives $O(\epsilon^{-2}(\log \epsilon)^2)$

SciCADE Des Higham MLMC 11/24

Financial Options

Now S(t) represents the **asset price**

Option Payoffs:

European call: max(S(T) - E, 0)

Digital: $\mathbf{1}_{S(T)>E}$

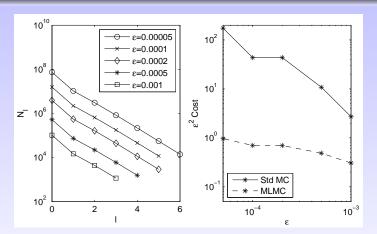
Lookback: $S(T) - \min_{0 \le t \le T} S(t)$

Up and out: $\max (\mathbf{S}(T) - E, 0) \times \mathbf{1}_{(\sup_{0 \le t \le T} \mathbf{S}(t)) \le B}$

Task: compute E [Payoff]

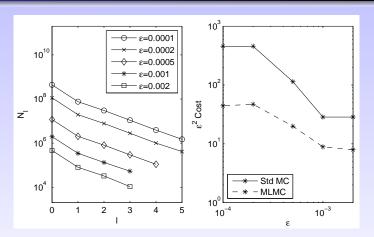
SciCADE Des Higham MLMC 12/24

Lookback with geom. Brownian motion



SciCADE Des Higham MLMC 13 / 24

Digital with geom. Brownian motion



SciCADE Des Higham MLMC 14 / 24

Payoff Not Globally Lipschitz?

Extending Giles (2008) reduces to getting

$$\mathbb{E}\left[\left(\mathbf{P}-\widehat{\mathbf{P}}
ight)^{2}
ight]\leq O\left(h^{eta}
ight)$$

where

P is true payoff,

P is Euler-Maruyama payoff

In Giles, Higham, Mao (2009), we confirmed rigorously that, given any $\delta > 0$,

- $\beta = 1 \delta$ for a lookback
- $=\beta=\frac{1}{2}-\delta$ for a digital
- $\beta = \frac{1}{2} \delta$ for a barrier

(Still assume SDE coeffs glob. Lipsch. Up and out fits well!)

SciCADE Des Higham MLMC 15 / 24

Stopped Exit Times

Required in many physical modeling scenarios Look at scalar case for simplicity

Suppose $S(0) = x \in (\alpha, \beta)$. For the SDE we define

$$\tau := (\inf\{t > 0 : \mathbf{S}(t) \notin (\alpha, \beta)\}) \wedge T$$

For the E-M approximation

$$\nu := (\inf\{t > 0 : \mathbf{S}(t) \notin (\alpha, \beta)\}) \wedge T$$

Assumptions

- Drift and diffusion globally Lipschitz and smooth
- Diffusion strictly positive (uniform ellipticity)

This ensures that $u(x) := \mathbb{E}[\tau]$ is Lipschitz

SciCADE Des Higham MLMC 16 / 24

Weak Error in Mean Hitting Time

Gobet & Menozzi, Stoch. Proc. Appl., 2010:

$$\mathbb{E}\left[\tau\right] - \mathbb{E}\left[\nu\right] = O(h^{\frac{1}{2}})$$

Standard Monte Carlo for accuracy ϵ : to balance bias and sampling error we need

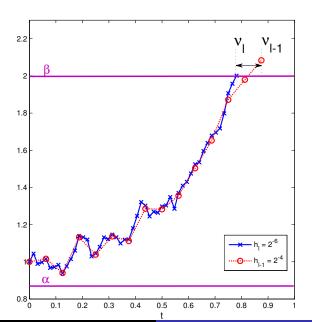
$$\epsilon = h^{\frac{1}{2}} = 1/\sqrt{N}$$

This gives computational complexity of $O(\epsilon^{-4})$

We will show that multi-level can achieve $O\left(\epsilon^{-3}(\log \epsilon)^2\right)$

SciCADE Des Higham MLMC 17 / 24

Illustration of one sample at one level



Key Result

Strong error in mean exit time

We need to show that

$$\mathbb{E}\left[|\tau-\nu|^2\right]=O(h^{\frac{1}{2}})$$

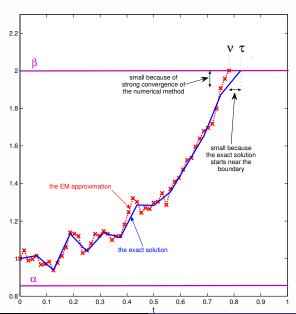
We use

$$\mathbb{E}\left[|\tau - \frac{\mathbf{v}}{\mathbf{v}}|^2\right] \leq T\mathbb{E}\left[|\tau - \frac{\mathbf{v}}{\mathbf{v}}|\right]$$

Then deal separately with the cases $\nu < \tau$ and $\tau < \nu$

SciCADE Des Higham MLMC 19 / 24

Case where $\nu < \tau$



Overall

We can show

$$\mathbb{E}\left[\left(au- u
ight)\mathbf{1}_{\{ extstyle
u< au\}}
ight]=O(h^{rac{1}{2}})$$

and

$$\mathbb{E}\left[\left({\color{red} m{
u}} - au
ight) {\color{blue} m{1}}_{\{ au < m{
u}\}}
ight] = O(h^{rac{1}{2}})$$

So

$$\mathbb{E}\left[|\tau-\nu|\right]=O(h^{\frac{1}{2}})$$

⇒ multi-level version has complexity of

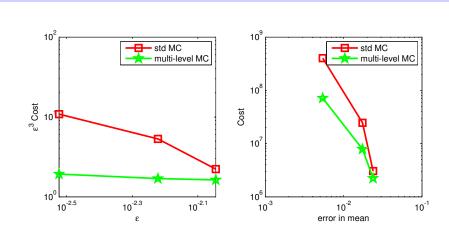
$$O\left(\epsilon^{-3}(\log \epsilon)^2\right)$$

compared to the standard

$$O(\epsilon^{-4})$$

SciCADE Des Higham MLMC 21 / 24

Mean-Reverting Square Root SDE



SciCADE Des Higham MLMC 22 / 24

Gillespie/Tau-leaping

$$G \stackrel{25}{\rightarrow} G + M$$

$$M \stackrel{1000}{\rightarrow} M + P$$

$$P + P \stackrel{0.001}{\rightarrow} D$$

$$M \stackrel{0.1}{\rightarrow} \emptyset$$

$$P \stackrel{1}{\rightarrow} \emptyset$$

Start with 1 gene Estimate expected number of dimers at t = 1

Method	Solution	Updates	CPU time
Gillespie/MC	3714.6 ± 1	8.3×10^{10}	1.5×10^5 sec
Tau-leap/MC	3708.4 ± 1	1.7×10^{10}	$2.0 \times 10^4 \text{ sec}$
Tau/Gill/MLMC	$\textbf{3713.9} \pm \textbf{1}$	5.8×10^{8}	$1.7 \times 10^3 \text{ sec}$

[Joint work with David Anderson]

SciCADE Des Higham MLMC 23 / 24

Summary

- Multi-level approach dramatically improves Monte Carlo simulation when samples contain discretization errors
- Compute many (cheap) samples at low resolution and few (expensive) samples at high resolution
- Original SDE analysis of Giles (2008) extends to some $\mathbb{E}[f(\mathbf{S}(t))]$ where f is not globally Lipschitz
- Works for mean exit times
- Now available for Gillespie/tau-leaping

MLMC is currently being pursued in many directions

SciCADE Des Higham MLMC 24 / 24